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Abstract. Recently, Ajtai [2] discovered a fascinating connection between
the worst-case complexity and the average-case complexity of some well-
known lattice problems. Later, Ajtai and Dwork [4] proposed a cryptosys-
tem inspired by Ajtai’s work, provably secure if a particular lattice problem
is difficult. We show that there is a converse to the Ajtai-Dwork security
result, by reducing the question of distinguishing encryptions of one from
encryptions of zero to approximating some lattice problems. This is es-
pecially interesting in view of a result of Goldreich and Goldwasser [14],
which seems to rule out any form of NP-hardness for such approximation
problems.

1 Introduction

Lattices are discrete subgroups of some n-dimensional space and have been
the subject of intense research, going back to Gauss, Dirichlet, Hermite and
Minkowski, among others. More recently, lattices have been investigated from
an algorithmic point of view and two basic problems have emerged: the shortest
vector problem (SVP) and the closest vector problem (CVP). SVP refers to the
question of computing the lattice vector with minimum non-zero euclidean length
while CVP addresses the non-homogeneous analog of finding a lattice element
minimizing the distance to a given vector. It has been known for some time that
CVP is NP-complete [12] and Ajtai has recently proved that SVP is NP-hard for
polynomial random reductions [3].

The celebrated LLL algorithm [18] provides a partial answer to SVP since it
runs in polynomial time and approximates the shortest vector within a factor of
2"/2 where n denotes the dimension of the lattice. This has been improved to the
bound (1 + €)™ by Schnorr [20]. Babai [6] gave an algorithm that approximates
the closest vector by a factor of (3/4/2)". The existence of polynomial bounds
is completely open: CVP is presumably hard to approximate within a factor
20087)** a5 shown in [5] but a result of Goldreich and Goldwasser [14] suggests
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that unless the polynomial-time hierarchy collapses, this inapproximability result
cannot be extended to y/n.

Recently, in a beautiful paper, Ajtai [2] found the first connection between the
worst-case and the average-case complexity of SVP. He established a reduction
from the problem of finding the shortest non zero element u of a lattice provided
that it is “unique” (i.e. that it is polynomially shorter than any other element of
the lattice which is not linearly related) to the problem of approximating SVP
for randomly chosen instances of a specific class of lattices. This reduction was
improved in [8]. Later, Ajtai and Dwork [4] proposed a cryptosystem inspired
by Ajtai’s work and proved that it was provably secure under the assumption
that the “unique” shortest vector problem considered above is difficult in the
worst-case.

Again, from a theoretical point of view, the achievement in the Ajtai-Dwork
paper is a masterpiece. However, its practical significance is unclear. This is partly
due to the fact, exemplified by RSA, that the success of a cryptosystem is not only
dependent on the computational hardness of the problem on which it is based, but
also on the performances that it displays in terms of speed, key size, expansion
rate, etc. It is also related to the fact that, so far, use of lattices in cryptography
has been directed at successfully breaking schemes [1, 21, 7, 17, 10, 22, 16, 9]:
experiments have shown that lattice reduction algorithms behave surprisingly
well and can provide much better approximations to SVP or CVP than expected.

At this point, it was natural to ask whether or not the security level offered
by the Ajtai-Dwork cryptosystem is exactly measured by the hardness of approx-
imating lattice problems. In other terms, is there a converse to the Ajtai-Dwork
security result 7 The present paper shows that this is actually the case by re-
ducing the question of distinguishing encryptions of one from encryptions of zero
to approximating CVP or SVP (recall that AD encrypts bits). More precisely,
we prove that if one can approximate CVP within a factor cn!33, then one can
distinguish encryptions with a constant advantage d, where ¢ and d are related
constants. This is especially interesting in view of the result of Goldreich and
Goldwasser quoted above since it seems to rule out any form of NP-hardness for
AD, which was an open question. We prove a similar result for SVP, with a more
restrictive factor. This shows that AD is essentially equivalent to approximating
the shortest vector within a polynomial ratio and allows to reverse the basic
paradigm of AD: for dimensions where lattice reduction algorithms behave well
in practice, AD is insecure.

This opened the way to a practical assessment of the security of AD for
real-size parameters. It was later proved at Crypto’98 that any realistic imple-
mentation of the Ajtai-Dwork was insecure. We refer to [19] for a practical attack
and more details.



2 The Ajtai-Dwork Cryptosystem

In this section we recall the construction of Ajtai and Dwork [4], with the no-
tations and the presentation of [15]. For any ¢ between 0 and %, we denote by
Z + ¢ the set of real numbers for which the distance to the nearest integer is at
most €. We denote the inner product of two vectors in the Euclidean space R"
by (z,y). Given a set of n linearly independent vectors ws,...,wy,, the paral-
lelepiped spanned by the w;’s is the set P(wq,...,wy,) of all linear combinations
of the w;’s with coefficients in [0, 1[. Its width is the minimum over ¢ of the
Euclidean distance between w; and the hyperplane spanned by the other w;’s.
Reducing a vector v modulo a parallelepiped P(w1,...,w,) means obtaining a
vector v’ € P such that v — v belongs to the lattice spanned by the w;’s, which
we denote by v' = v (mod P). To simplify the exposition, we present the scheme
in terms of real numbers, but we always mean numbers with some fixed finite
precision. Given a security parameter n (which is also the precision of the binary
expansion for real numbers), we let m = n® and p, = 278" We denote by B,
the big n-dimensional cube of side-length p,. We also denote by S, the small
n-dimensional ball of radius n 8.

Given n, the private key is a uniformly chosen vector w in the n-dimensional
unit ball. For such a private key, we denote by #, the distribution on points in
B,, induced by the following construction:

1. Pick a point a uniformly at random from {z € B,, : (z,u) € Z}.
2. Select 41, ..., 0, uniformly at random from S,,.
3. Output the point v =a+ ), ;.

The public key is obtained by picking the points w1, ..., wy, v1,..., vy indepen-
dently at random from the distribution H,, subject to the constraint that the
width of the parallelepiped w = P(w1,...,wy,) is at least n=2p,, (which is likely
to be satisfied, see [4]).

Encryption is bit-by-bit. To encrypt a ’0’, uniformly select b1, ..., by, in {0, 1},
and reduce the vector > 7", b;v; modulo the parallelepiped w. The vector ob-
tained is the ciphertext. The ciphertext of ’1’ is just a randomly chosen vector in
the parallelepiped w. To decrypt a ciphertext z with the private key u, compute
7 = (z,u). If 7 € Z+n~!, then z is decrypted as 0’, and otherwise as ’1’. Thus,
an encryption of 0’ will always be decrypted as ’0’, and an encryption of ’1’
has a probability of 2n~! to be decrypted as ’0’. These decryption errors can be
removed (see [15]). The main result of [4] states that a probabilistic algorithm
distinguishing encryptions of a ’0’ from encryptions of a ’1’ with some polynomial
advantage can be used to find the shortest nonzero vector in any n-dimensional
lattice where the shortest vector v is unique, in the sense that any other vector
whose length is at most n8||v|| is parallel to v.



3 Deciphering with a CVP-oracle

We define an (n, k)-CVP-oracle to be any algorithm which, given a point z € R"”
and a n-dimensional lattice L, outputs a lattice point o € L such that for every
B € L: dist(z, @) < kdist(z, §), where dist denotes the Euclidean distance. Each
oracle call made by a Turing machine contributes by a single unit to the overall
complexity of the machine.

Using such an oracle, we will see how one can distinguish in probabilistic
polynomial time ciphertexts of ’0’ from ciphertexts of '1’, thanks to some prop-
erties of the keys. To any choice of the keys, we associate a particular lattice.
Given a ciphertext, one can build a vector such that: if the ciphertext is a cipher-
text of ’0’, this vector is likely to be close to the lattice ; and if the ciphertext is
a ciphertext of ’1’, this vector is unlikely to be close enough. To check whether
this vector is close enough, one calls an oracle.

3.1 Vulnerable keys

Theorem 1. For sufficiently large n, for any €1 and €2 in ]0,1[, any set of keys
(Uy Wiy, Wy, V1,...,0m) picked at random as described in Ajtai-Dwork’s proto-
col satisfies the following with probability at least (1 —e1)(1 — e2):
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where wj- denotes the unit vector orthogonal to the hyperplane spanned by the
other w;’s, and the expectation is with respect to a uniform random choice of

(b1,...,bm) in {0,1}™.

We show how to prove this result, which will be used afterwards. Let u be a
non-zero private key: ||u|| < 1. We start with a technical lemma:

Lemma 2. Let § be a randomly chosen point from S,,. Then E[{u,d)] = 0 and

Var[(u,6)] = é'li”;):ﬁ’z , where Wy, = fow/ %5in™ 0d6 is the n-th Wallis integral.

Proof Sketch. The expectation E[(u,d)] is clearly zero. To compute the vari-
ance, we can assume that u = (||u|[,0,0,...,0) since S, is invariant by rotation.
We obtain:

n—8

—16 _ 2
Var[<u,5>]=||u||2/ g2 Yn-1(Vn i )dm,

—n-8 Vo (n=8)

where V,,(r) denotes the volume of the n-dimensional ball of radius r. The result
follows after a few simplifications using Wallis integrals. O



This leads to a more general result:

Lemma 3. Let v be a randomly chosen point from the distribution H,. Then:

2
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Proof Sketch. Write v = a+), §; where the §;’s are independently chosen with

uniform distribution over S,,. Apply the previous lemma with §; as . Conclude
as W2 < 2n/n and ||u|| < 1. |

Denote by X the random variable »77_, dist(Z, (u,w;))?, where the w;’s are
chosen according to Ajtai-Dwork’s rules. From the previous lemma:
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By Markov’s inequality, it follows that (1) is satisfied with probability at least
1 — &1 over the choice of wy,...,w,.

Now, we assume that the the w;’s are fixed and satisfy (1). We will prove
that for sufficiently large n, when (vy,...,vy) and (by,. .., by ) are independently
picked at random as described in Ajtai-Dwork’s protocol,

2 nis
Z vaz, < 5 (3)
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Thus, by Markov’s inequality, (2) is satisfied with probability at least 1 —e9 over

the choice of vy, ..., vy, which completes the proof of Theorem 1.
To prove (3), it suffices to prove that for sufficiently large n, for all choice of
(b1,...,bm), (3) is satisfied with respect to a random choice of (v1,...,v,). The

core of this result is the following basic lemma:

Lemma 4. Let t on the n-dimensional unit sphere. Let s be a randomly chosen
point (with uniform distribution) from the hypercube By. Then E[(s,t)] =0 and

E[(s,t)*] = p},/3.

Proof Sketch. Decompose s and ¢ with respect to the canonical basis to express
the dot product (s, t). The result follows from a short computation, using the fact
that the coordinates of s are independent random variables uniformly distributed
over | — pp, +pnl- O

Now, we fix by, ..., by, in {0,1} and denote by X the random variable of (3), for
which we want to bound the expectation.

Assume first that the v;’s are independent random variables uniformly dis-
tributed over the hypercube B,. Then, applying Lemma 4 several times:

=" B E[(vi,w;)?] < nm=t < n4?".

j=11=1



To conclude, we show how to take care of the actual distribution of the wv;’s.
Let a denote a point chosen at random from {z € B,, : (z,u) € Z}. Let X be
randomly chosen in [0,1[. Then, the sum a + Au is uniformly distributed over
an n-dimensional volume C,, which differs from B, by points y such that the
segment [y,y + u] crosses the border of B,. Such points are within distance 1
of this border. It follows that one can bound the volume of the difference of B,
and C,, by 2np"~!. Replacing the uniformly distributed variable v; by a; + \u
chosen according to the above distribution, one sees that E[X] is modified by at
most 2npl~1/pt x n(mpy/n)? = 2n%p, since each (fui,wj-) is less than pp+/n.
Noting that the actual v; is obtained from some instance of a; by adding a small
perturbation vector d;, and that 2n°p, = o(n*p2/3) as n grows, we obtain for

sufficiently large n,
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3.2 Deciphering

For any real 3, let Lg be the n + m-dimensional lattice (in R***™) spanned by
the columns of the following matrix:

B pwn  Por ... Pop
(B g P B B

0

n?\/n
0
0 0 n%/n

The following proposition shows that a ciphertext of '0’ is, in some sense, close
to this lattice.

Proposition 5. Let € > 0 and (u, w1, ..., Wn,v1,...,0y) satisfying (2). A ci-
phertext © of 0’ satisfies with probability at least 1 — e: for all > 0,

. Bx 1
d Lg ) <y/1+ —n".
zst(( 0 )27 = + 262€n

Proof. Any ciphertext z of "0’ is of the form z = }7I% | bjv; + > 7, ajw; where
b; € {0,1} and a; € Z. We prove that the vector X = *(3z,0) is close enough to
the lattice point Y = ¥(8z,a1,...,an,b1,...,by). We have aj = |0;]| where the
0;’s are defined by: I, bv; = Y 7, 6;w;. Since the width of the parallelepiped
P(wy,...,w,) is at least n=2p,,, we have:

n , n , A m N 2
PILTEP I/ p—zz<zbi“i’“’j > :
j=1 j=1 n j=1 =1



Applying Markov’s inequality to (2), we obtain with probability at least 1 — ¢
over the choice of by, ..., by:

n 8

o_nt ntpy n
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- pi - 2e9e 2e9€
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8 1
Therefore: dist(X, Lg) < dist(X,Y) < {/ s + n3n5 < 4 /1 4+ —n".
2e9¢€ 2e9¢€

Somehow, there is a converse to the previous proposition:

Proposition 6. Let ¢ > 0 and (u, w1, ..., Wn,V1,...,0n) satisfying (1). Let y be
a point in the parallelepiped w = P(w1,...,wy).

(5 )2) oo tn oy ez (1 [ 1+ 7))

Proof. The vector By is of the form (Z:’;l bjv; + Z?:I ozjwj> +e, where ||e||?
and >0, b2n® + Y0 oz? are both less than e2¢1n!%/(27). Thus,

1=1"

m n
dist(Z, (u,y)) < Z; |b|dist(Z, (u, v;)) + ; || dist(Z, (u, w;)) + % ;‘_;ns.
By the Cauchy-Schwarz inequality and the fact that each (v;,u) € Z + n~",
the first term is bounded by /e2e1n1/(27) x Vmn=14 = ¢,/e;/(27). Also, the
second term is less than:

n

Z af % Z dist(Z, (u,w;))2.
j=1

J=1

We know that the first term of this product is less than e/e1/(2m)n8. And (1)
bounds the second term. We conclude from all the inequalities obtained. O

If we collect these two propositions, we obtain a probabilistic reduction:

Theorem 7. There exists N such that for all o,01,09 > 0, there ezxists a polyno-
mial time Turing machine taking a public key and a ciphertext x as an input and
making a single call to a (n+m,n*=Goto1+02)/2 )1 /r(1 4 2n=7=92)])-CVP-oracle
which outputs a yes/no answer such that: for all n > N, if the keys are picked
at random as described in Ajtai-Dwork’s protocol, then with a probability of at
least (1 —n 71)(1 —n 92),

— Ifx is a ciphertext of ’0°, the answer is yes with probability at least 1—n"".

— If x is a ciphertext of ’1’, the answer is yes with probability at most 3n~7.



Proof. We let ey = n~ 7! and e2 = n~?2. For sufficiently large n (independently
of 01 and 02), (1) and (2) are satisfied with probability at least (1—e1)(1—e2) over
the choice of the public key by Theorem 1. We let e = n~ 7 and 8 = 4n8\/e1/(27).
Calling once the CVP-oracle above, we obtain a lattice point o € Lg such that,
for all v € Lg:

o ) 5 )

The machine outputs ’yes’ if and only if:

dist (a, ( ﬂOI )) < 6\/;In8.

If z is a ciphertext of ’0’, Proposition 5 then ensures that the answer is ’yes’ with
probability at least 1 —e. Now, if this inequality is satisfied, Proposition 6 implies
that: (u,z) € Z+e(1 + i + i) =Z+ %E. But this happens with probability at
most 3¢ if x is a ciphertext of 1. O

4 Deciphering with a SVP-oracle

We now show how to use SVP-oracles. Given a n-dimensional lattice L, an (n, k)-
SVP-oracle outputs a point a € L such that for every 5 € L: ||a| < k||3||. The
main result of this section is the following:

Theorem 8. Let 6,y > 0 such that 577 + 20 < 2. For all 01,09 > 0, there
erists N > 0, 0 €]0;3 + 3/5][ and a polynomial time oracle Turing machine
calling a (n®>T7,n?)-SVP-oracle such that: for all n > N, if the keys are picked
at random as described in Ajtai-Dwork’s protocol, then with a probability of at
least (1 — n~?')(1 — n~ %), the machine distinguishes encryptions of 0’ from

encryptions of ’1’ with polynomial advantage n=7.

Note: recall that the advantage € of a distinguishing algorithm A is such that

1
P[A answers correctly] > 3 +e.

We will need a technical improvement over the computations of section 4 which
reads as the following generalization of Theorem 1, proved in the appendix. The
key to the improvement is to replace Markov’s inequality by moments inequali-
ties, using the multinomial formula.

Theorem 9. Let k be a positive integer. There exists My and My such that
for sufficiently large n: for any choice of 1 and e in ]0,1[, any set of keys



(Uy W1,y ey Wy, V1, - .-, Um) picked at random as described in Ajtai-Dwork’s proto-
col satisfies the following with probability at least (1 —e1)(1 — e9):

M
S dist(Z, (u,w;))? < —) (4)
: 16.1/k
]:1 n 61
n | m 2\ * 4k 2k
n M.
Bl :<§_ :bm,wj> < # (5)
7j=1 \:=1
This leads to the following results:
Lemma 10. For all k, there exists M3 such that: if (u,w1,...,Wn,V1,...,0m)

satisfies (5), then a random ciphertext y of 0’ is, with probability at least 1 —e3,
of the form y = > bjv; + 2?21 ajw;, where b; € {0,1}, oy € Z and

1

n
2 8
o; < M3n® ———
Z 7= (egeq) /R

j=1

(6)

Proof Sketch. Apply Markov’s inequality to the random variable of (5), then
extract k-th roots. Conclude with M3z = M21 / k, by bounding the sum of the a?
as in the proof of Proposition 5.

O

Ciphertexts of ’0’ satisfying (6) are called good ciphertexts. Note that it is pos-
sible to produce good ciphertexts, given the public key, by a polynomial time
algorithm.

Lemma 11. For all k, there exists My such that: if (u,w1,..., Wn,V1,...,0n)
satisfies (4), then any good ciphertext y of ’0’ satisfies

1

dist(Z SMy———.
ist(Z, (u,y)) < 4n4(51€253)1/2k

Proof Sketch. Decompose y with the b;’s and the «;’s. Conclude by Cauchy-
Schwarz thanks to (6) and (4), with My =1+ /M M3.
O

We now fix some constants. Since 26 + 577 < 2, there exist strictly positive
Y1, Y2, 03, k, A such that

3 1
204 4yt A+ o (o1 +0r+03) <2,

with:
4/5 >y >y >, v1 <vy+ A, and 03 > 2(2 + 7y + 7).

We let €1 = n™ %1, g9 = n~72 and €3 = n~7%. We assume that the keys satisfy (4)
and (5) (which happens with probability at least (1 —e1)(1 — e2) for sufficiently



large n). We will use our oracle as follows: let v = n?*7 and consider a sequence
(y1,-.-,yy) of elements of P(w,...,w,). Choose a random permutation p of
{1,...,v} and apply the (n?T7,n%)-SVP-oracle to the lattice spanned by the

columns of the following matrix, with 8 = nfnl*t3:
Pupy Bupz) - Bp)
1 0 ... 0
0 1
: . 0
0 . e- 0 1

The output is a vector (z,A1,...,A,). Say that y; is hit if:
0< |>‘p—1(i)‘ < n%+0+)‘.

The following two propositions (proved in the appendix) show that ciphertexts
of '0’ and ’1’ behave differently.

Proposition 12. Ifyi,...,y, are ciphertexts of ’1°, then y1 is hit with probability
Q(n=").

Proposition 13. If y1 is a ciphertext of 1’ and ya,...,y, are good ciphertexts
of ’0°, then y1 is hit with probability O (n*'ﬁ).

We show how to conclude. The distributions S, = (y1,...,¥y : ¥; is a cipher-
text of '1’) and T, = (y1,...,Y» : y1 is a ciphertext of '1’ and the others are
good ciphertexts of ’0’) are distinguished by the test “y; is hit” with advantage
Q(n~ 7). Using the “hybrid technique” (see [13]), we introduce the distributions
Si = (Y1,---3Yv : Y1,...,y; are ciphertexts of '1’ and y;y1,...,y, are good ci-
phertexts of ’0’). There exists 7 such that S;_; and S; are distinguished by the
test with advantage:
Qn™ " Jv) = Q(n~2177).

One can check whether a given y is a ciphertext of ’0’ or 1’ by querying the
answer of the test for (y1,...,%i-1,Y,Yi+1,---,Yy) Where y1,...,y;_1 are random
ciphertexts of ’1’ and y;41,. ..,y are random good ciphertexts of ’0’. Since the
bad ciphertexts of 0’ form a set of probability less than €3 = n~?3 where o3 >
2(2+y+1), the distinguisher has (for sufficiently large n) polynomial advantage
n~ % if o > 2+ v+ . But:

247+m <2+§+%=3+%.
Therefore, o can be chosen strictly less than 3 + 3/5, and the result follows.
Note: the above construction is non-uniform. Eliminating the non-uniformity
requires “sampling” the test for the various distributions S; (see [13]).



5 Conclusion

We have shown how to reduce the question of distinguishing encryptions of one
from encryptions of zero in the Ajtai-Dwork cryptosystem to approximating CVP
or SVP. For the sake of simplicity, our results were proved with the choice of
constants from [15]. Of course, the method extends to a more general setting
as well, with the same proofs. More precisely, if we let m = n¢ (instead of n?)
and denote by S,, the n-dimensional ball of radius n~¢ (instead of n~8), one
can show that with a (n 4 m, nd (¢+5)/2=Gvt1+12)/2 /[ /7 (1 + 2n~7-72)])-CVP-
oracle, Theorem 7 remains valid. Theorem 8 also remains valid with a constant
o in]0;2+2(2d— (9+¢))/5] if @ and 7 are such that 3 +20 < d— (9+¢)/2 and
we use a (n?T7,n?)-SVP-oracle. In particular, the CVP-reduction implies that
breaking the Ajtai-Dwork cryptosystem is unlikely to be NP-hard.
Acknowledgements. We would like to thank the anonymous referees of Crypto’98
for their helpful comments.
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A Appendix

A.1 Proof of Theorem 9
The proof is similar to the one of Theorem 1. Let u be a private key. For (4), we
need to generalize Lemma 2 and 3. Let ¢ be a randomly chosen point from Sy,:

aw, [t o
E[(’U,, 6>2k] < —5 i (1 _ y2)( 1)/2y2kdy.

This integral is equal to I(n,k) = 7r/ ?sin™ 0 cos?* 9df. We have I(n,0) = W,
and an integration by parts shows that I(n,k) =2 +111 (n+2,k—1). This implies
I(n,k) < W, (2k)!/n*. Hence:

4 (2k)

27 (2k)!
Bl %) < 3 x Py < 2020

nl7+k -

The expectation would be equal to zero if there was an odd power instead of 2k.
Now, let v = a+ ), 6; be a randomly chosen point from the distribution #,,. We
have:

n 2k
E kﬁst(Z,(u,tQ)zk] <E (:g:<u,6i?>

If we expand this product, we obtain a sum of m?* terms. But all the terms for
which some (u, d;) has an odd exponent disappear. By the multinomial formula
and the independence of the J;’s, this expectation is therefore equal to:

! - .
i1t tin=k nrt =1

27(2i4)!
17—|—zJ

(27 (2k)1)2k
nl7k+k

We know that each product is less than H . And:

1;>0

5 (k! _ (2h)! T B _ @R,

(20 ) = k! 1o, | !
Z.l‘f““'f'in:k (211). (2171,) k. ’i1+"'+in:k - an. k'

<

Thus:

. 2k (2k)! (27T(2k)!)2k Ik ok 2k+1
E[dlst(Z,(u,'u)) ]5 AR v §n17k47r (2k)15F T,

Therefore:
k
P zd )| s S T B st )
1St u w; < — 18t(Z, (u, wy
I ) gt gn!
ietin=k =1
k! 1 k
< Z — — (4k 2k(2k)|2k+1>
j1_|_..._|_jn:k'71 ‘7 n

— <4k 2k(2k)|2k+1) k



Thus, by the moment inequality, (4) is satisfied with probability at least 1 — ¢;
with respect to the choice of wy, ..., wy, if we let M; = 4%72k(2k)12k+1,

For (5), as in the proof of (2), we bound the expectation when the b;’s are
fixed. A first bound is obtained when the v;’s are independent random variables
uniformly distributed over the hypercube B,,. Then, we show that with the actual
distribution of the v;’s, the additional error is negligible, so that the bound of
(5) is satisfied for sufficiently large n, thanks to Markov’s inequality.

For the first bound, we generalize Lemma 4 with the same tricks we used to
generalize Lemma 2. Let ¢ = (¢1,...,t,) be a vector in the n-dimensional unit
sphere. Let s = (s1,...,s,) be a randomly chosen point with uniform distribution

from B,,. We have:
2k

E[<S,t>2k] =F isj'tj

If we expand this product, we obtain m?* terms. But all the terms for which
some s; has an odd exponent disappear. We obtain by the multinomial formula:

E[<S’t>2k] = Z &E [(81t1)2i1 oo (Sntn)2i"] .

v GO LY
And since the s;’s are independent:

1 1
2% +1 2,1

E [(s141)20 -+ (sptn)2in] = £201 ... g2in p2intot2in
Therefore:

(2k)! 0; N
E(s, t)*] = p2 > ' ' 20 g2,
’ ... ! n
e Qi D (200 + 1)

And this sum is less than:
(2k)!

(2k)! K .
D DR o s A At T R
T diteetin=k ) )

k (2k)!
Ok

11 in

Thus:

Blfs, %) < C2R 2k

And this expectation would be equal to zero if there was an odd power instead
of 2k. Therefore, if we assume that the v;’s are distributed uniformly over B,,:

2k
S k) ”,
3 <Zb“’> < Y ey o]

i1+-+im=k =1



We know that each product is less than H ' p2” < p2k(2k)!*. And:
z.
’Ll>0

5 (2k)  _ (2K) 5 R @R

i) - (20 ) = & looeg | !
i1+ tim=k (i)t (2im)! LN L LU k!

It follows that:

m %
(2k)! (2k)1k+1
<Z bwi,ij> < p%k(Zk)!kka = pikka.
i=1

Therefore, if we denote by X the random variable (Z?Zl(zz 1 bivi, w; 1)2)k the
multinomial formula shows that:

E[X] < Z j|HE <vaz,wz>

—k Jil-

Ji+-+in i=1
(25 m+1

< Y e

J1t++in=k gitee gnt §e>0

'

< 3 %p%(w{:),k—l—l k

j1+---+jn:k‘71""j

1

< (k) Lmk X (Zk)-nk

k!

2K)! k+2
< n4kp,21k( ]1'

With the actual distribution of the wv;’s, there is an additional term which is
negligible, so that the wanted bound is satisfied for sufficiently large n, with for
instance: My = (2k + 1)1¥+2/k!.

A.2 Proof of Proposition 12

We first need a combinatorial lemma:

Lemma 14. For sufficiently large n, for all elements yi,...,y, in the paral-
lelepiped P(wn,...,wy), there ezist coefficients A; (not all zero) in {—1,0,+1}
such that:

1Yi

Proof. Let z; = [n'%;|. Each z; has integral entries in {—n'%p,,...,n'%,}.
Consider all combinations ) A;z; with A; € {0,1}. There are 2” such combi-
nations, but there are at most (2vn'®p, + 1)" distinct combinations. By the
pigeon-hole principle, it follows that if 2 > (2vn'%p, 4+ 1)", which is satisfied



for sufficiently large n, then there exist two distinct sequeunces (A1,...,\,) and
(1, -, py) in {0,1}” such that: > | Njzi = > 7 pizi. Letting x; = A\ — pi,
we obtain:

nl0 ?

Y Y ok (n19% — |nt0z
Zﬂizi _ D et Z( i — | ZJ)
i=1

> k=1 V1 <1l

whose norm is less than

10 = 6
n n O
Lemma 15. Let Ai,..., A, be integers not all zero. If y1,...,y, are chosen at
random in the parallelepiped P(w1,...,wy,) then:
14
1 1
Pr ;)\zyz < W] < %

Proof. Assume that the inequality on the norm is satisfied. Write Y., | Aiy; as

>io1 ejwj. We have: |aj| < || 3201, Niill X n®/pn < 1/(2ps). The probability is
1

2pn

Each y; is of the form Y, _, p1; qwy where the p; ¢’s are independently chosen

in [0,1] with uniform distribution. It follows that: a; = Y., 4 Ajpij. If A is
non-zero, then A;u; ; modulo 1 is uniformly distributed over [0,1[. Since the
Ai’s are not all zero, oj modulo 1 is therefore uniformly distributed over [0, 1.
Furthermore, the «;’s are independent, and the result follows.

therefore bounded by the probability that each «; is between —2’% and

O

This probabilistic lemma. is the core of the following result:

Lemma 16. Let T =~ —~. If y1,...,y, are chosen at random in P(w, ..., wy)
then the probability that there exist A1,..., )\, not all zero such that

v
> A
i—1

A
5

‘ -
3

nb6—0
[, A < Van! /20 (8)
[{i: X £0} < n®7 9)

is exponentially small (with respect to n).

Proof. The number of non-zero (A1,..., A, ) satisfying (8) and (9) is at most

2
( Z;Z ) (2n1+7/2+0)n2‘T < (n2+7)"2_T(2n1+7/2+7)"2_7.

Since § < 3, by Lemma 15, each vector has probability less than p," to satisfy
(7). This yields an overall probability less than (n2t7)" ™" (21 +7/2+0)n*7 5-n_
Taking logarithms we get:

n? T [(2 + ) logyn + (1 + % + 0) logy n + 1] —n?logy n.



Since 2 — 7 < 2, the leading term is —n?log, n and the result follows.
O

Now, consider the output (z,A1,...,A,) of the oracle. By Lemma 14 and by
definition of the oracle, ||z||? and >_7_; A? are both less than:

1
n?? (ﬂ2m + I/) <n? (nz+7 + n2+7) = 2n2 7120,

Therefore:
H)\lvp(l) + e+ Ay’l)p(y) || < \/i’nﬁ_a and ||()\1, ceny AU)H < \/§n1+7/2+9.

This means that (7) and (8) are satisfied if we use the y,;)’s instead of the y;’s.
Since the \;’s are not all zero and vyi,...,y, are ciphertexts of ’1’, Lemma 16
implies that with overwhelming probability, (9) is not satisfied: at least n2~"
coefficients are non zero. By symmetry, the probability that y; is hit does not
depend on i. Furthermore, (8) implies that the number z of (A1,...,A,)’s such
that |\;| > n?/219+X is such that:

o PP < (A, AP < 202

Hence:
Tz < o2m2=2A,

T

Since A > 7 (because 71 < y+ A), this number is negligible with respect to n? 7.
Now, the probability that A; is hit is:

n2-7 1 1
0 (5m) = () =2 ()

A.3 Proof of Proposition 13

As in the proof of Proposition 12, consider the output (z, A1, ..., A,) of the oracle.
llz|| and |[(A1,...,\)|| are still less than v/2n!+9+7/2 And we have:

1 v
Mty = 52 = D M
1=2

Since y2, ..., y, are good ciphertexts of ’(0’, Lemma 11 implies that for all 1 > 2:
1
nt (e eqe3) /26

Therefore, by the Cauchy-Schwarz inequality:

v v 1
] . 2 2 -
dist (Z, <§>‘p1(i)y““>) < ;kp—l(i) % \/VM4 n8(e1e9e3)1/k

1
< \/§n1+9+’)’/2M n1+’7/2—4
4 (e16063) /2
\/i 0+v—2

(e1e2€3)

dist(Z, (u,y;)) < My

< M,



Furthermore:

dist(Z, (z/8,u)) < vV2n°~C.

Therefore, for sufficiently large n:

_ V3 0+v—2
Aist (2, gy ) < Mag e

If Ap-1(1) is a fixed integer, since y; is a random vector in the parallelepiped, the
latter inequality is satisfied with probability at most:

2M4Ln9+772.
(816283)1/2k

But if y; is hit, then:
|)‘p—1(1)| S {1, 2,... ,n%+0+)‘} .
Hence, y; is hit with probability at most:

oM, 23 0729, 7/2+04X

As n grows, this is:

o) (n20+37/2+)"2+(”1+"2+"3)/(2k)) =0 (L) .

n2

And this concludes the proof.
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