Electronic Collogquium on Computational Complexity, Report No. 11 (1998)

A Lower Bound for Integer
Multiplication on Randomized
Read-Once Branching Programs

*

FARID ABLAYEV MAREK KARPINSKI f

Abstract

We prove an exponential lower bound (29(”/ log”)) on the size of any
randomized ordered read-once branching program computing integer mul-
tiplication. Our proof depends on proving a new lower bound on Yao’s ran-
domized one-way communication complexity of certain boolean functions.
It generalizes to some other common models of randomized branching pro-
grams. In contrast, we prove that testing integer multiplication, contrary
even to nondeterministic situation, can be computed by randomized or-
dered read-once branching program in polynomial size. It is also known
that computing the latter problem with deterministic read-once branching
programs is as hard as factoring integers.

1 Preliminaries

Oblivious (or ordered) read-once branching programs become an important tool
in the field of digital design and verification (see, for example, [8] and [22]). In
these fields they are also known as “OBDDs” (ordered binary decision diagrams).
There are some important practical functions which are hard for OBDDs. One
of such functions is integer multiplication [7]. The other function is testing mul-
tiplication for which there is an exponential lower bound (29(”1/4)) known for
nondeterministic OBDDs [12]. An interesting open problem remained whether
randomization can help in computation of these functions by OBDDs. In this

*Dept. of Computer Science University of Bonn. Email: ablayev@cs.uni-bonn.de. Vis-
iting from University of Kazan. Research partially supported by the Volkswagen-Stiftung and
Russia Fund for Basic Research 96-01-01962

tDept. of Computer Science University of Bonn, and International Computer Science In-
stitute, Berkeley, California. Research partially supported by DFG Grant KA 673/4-1, by the
ESPRIT BR Grants 7097, and EC-US 030, and by the Max—Planck Research Prize. Email:

marek@cs.uni-bonn.de

ISSN 1433-8092

paper we show, firstly, that the method of [4] yields polynomial size (O(n® log* n))
bound for the latter function for randomized OBDDs. Interestingly, it is known
that computing this function with deterministic read-once branching programs is
as hard as integer factoring [22, 15]. Further we prove an exponential lower bound
2Un/1ogn) on the size of any randomized OBBD computing integer multiplication.

During last decade there were several attempts to find generalizations of OB-
DDs model for hardware verification, strong enough to compute efficiently integer
multiplication. But again the results showed that multiplication remained hard
for these models ([11, 15]).

In [4], a randomized model of branching programs was introduced. The im-
portance of this model was highlighted by the fact that there is a function which
is hard for deterministic OBDDs but is easy for randomized OBDDs [4]. During
the last couple of years new examples of such function were presented by different
authors. For example, clique-only function is hard for nondeterministic syntac-
tic read-k-times branching programs [5] but is simple for randomized OBDDs
[18, 20]. See [21] for another example.

It was proved that randomized and nondeterministic models of OBDD are
incomparable [2]. So there was still hope (note that multiplication is hard for
nondeterministic OBDD [11]) that randomized OBDDs can compute integer mul-
tiplication in polynomial size. Our results show that randomized OBDDs can test
integer multiplication in polynomial size but integer multiplication itself requires
exponential size.

Up to now it was not clear what is harder to multiply or to test the mul-
tiplication (see [16] for more information). It is known that DMULT (testing
multiplication) is hard for syntactic nondeterministic read-k-times branching pro-
grams [12]. Note that DMULT function is ACY equivalent to MULT [9]. Our
result answers also to the open problem raised in [22] about succinct representa-
tions for functions DMULT and MULT.

We recall now basic definitions ([17]).

A deterministic branching program P for computing a boolean function ¢ :
{0,1}" — {0,1} is a directed acyclic multi-graph with a distinguished source
node s and a distinguished sink node ¢. The out degree of of each non-sink
node is exactly 2 and the two outgoing edges are labeled by #; = 0 and z; = 1
for variable z; associated with the node. Call such node an z;-node. The label
“r; = 07 indicates that only inputs satisfying z; = d may follow this edge in the
computation. The branching program P computes a function ¢ in the obvious
way: for each o € {0,1}" we let f(o) = 1 iff there is a directed s — ¢ path starting
in the source s and leading to to the (accepting) node ¢ such that all labels z; = o;
along this path are consistent with ¢ = o1,09,...,0,.

We define a randomized branching program [4] as a program having in addition
specially designated random (“coin-toss”) inputs. When values of these random
inputs are chosen from the uniform distribution, the output of the branching
program is a random variable.

We say that a randomized branching program (a, b)-computes a boolean func-
tion f if it outputs 1 with probability at most a for input o such that f(o) =0
and outputs 1 with probability at least b for inputs ¢ such that f(o) = 1. For
1 > p > 1/2 we write shortly “p-computes” instead of “(1 — p, p)-computes”.
A randomized braching program computes a function g with on-sided error if it
(e, 1)-computes g.

We define the size of (P), size(P), (complexity of the branching program P)
as the number of its internal nodes.

Read-once branching program is a branching program in which every variable
is tested at most once in every path. A 7-ordered read-once branching program is
a read-once branching program which respects an ordering 7 of the variables, i.e.
if an edge leads from an z;-node to an z;-node, the condition 7(z) < 7(j) has to
be fulfilled. An OBDD (alternatively ordered read-once branching program) is a
T-ordered read-once branching program respecting some ordering 7 of variables.

2 Results

We start with defining a boolean decision function: the testing integer multi-
plication function (or alternatively, decision problem of recognizing the graph
of multiplication) DMULT as follows. DMULT : {0,1}*" — {0,1} and
DMULT(X,Y,Z) = 1 iff XY = Z. Here X,Y, and Z are binary represen-

tations of integer numbers, | X| = |Y| = n, |Z| = 2n.

Theorem 1 Function DMULT can be computed by a randomized OBDD with

one-sided e(n)-error of size
n® n
0 log* .
(es<n> " e<n>>

Proof. Uniformly at random select a prime number p from the set Qg(n) =
{p1,.- - Pam)}, d(n) = O(n), of first d(n) primes. Then deterministically count
a = X mod p, b = Y mod p, multiply ab, then count ¢ = Z mod p, and verify

whether ab = ¢. If ab = ¢ then accept an input else reject. Chinese reminder the-
orem provides the correctness of such computation and fingerprinting arguments
of [4] provide a correct result of testing XY = Z mod p by randomized OBDDs
with high probability. All these manipulations can be done by a polynomial size
randomized OBDD P constructed below.

Phase 1. (randomized). Choose d(n) to be some function in O(n), s.t. d(n) >
4n. P randomly selects a prime number p from the set Q) = {p1,p2: - - ., Pi(n)
of first d(n) prime numbers.

P uses t = [logd(n)| random bits for selecting a prime number p. P reads
random bits in the order &,...,&. € = & ...& is interpreted as binary notation

of a number N(§). P selects i-th prime number p; € Q () iff N(§) = ¢ mod d(n).

3

Phase 2. (deterministic). During a computation path P counts a = X mod p,
by reading consequently bits from X. P stores a by internal node (state). Then,
P counts b =Y mod p and stores the product ab. At last P counts ¢ = Z mod p
and verify whether ab = ¢. If ab = ¢ then it accepts else it rejects.

So, if XY = Z, then P with probability 1 outputs the correct answer. If
XY # Z, then it can happen that XY = Z (mod p) for some p € Qupn). In
these cases P makes an error.

For XY # 7 we have | XY — 7| < 2*" < py---py, where py,...,py, are
the first 2n prime numbers. This means that in the case when XY £ 7| the
probability ¢(n) of the error of P on the input X,Y,Z is less than equal to
4n/d(n) (less than equal to 2n/d(n) if ¢ is a power of 2).

For p € Q4(n) denote by S, a deterministic subprogram of P that carries out
the deterministic part of computations of the phase 2 with the prime p.

The size of P is bounded by

o+l 14 Z size(Sy).
PEQa(n)
Sp has the length 3n. For the realization of the procedure described
in the phase 2 it is sufficient to store in the internal nodes four numbers:
X mod p,Y mod p, XY mod p and Z mod p. The i-th prime is of order O(7log1).

Therefore we have
size(S,) = O(np*) = O(n(d(n)log d(n))?*).

iFrom the above upper bounds for the size(S,), size(P) and from the upper
bound for e(r) (¢(n) < 4n/d(n)), the upper bound of the theorem follows. I

We define now integer multiplication function MU LT as follows. The function
MULT, : {0,1}* — {0,1} computes the k-th bit, 0 < k < 2n — 1 in the
product of two n-bit integers. That is MULT,(X,Y) = z; where X = z,,_y ...z,
Y =vy,_1...y0,and Z = 29,1 ... 2z9. Now denote by MULT function MULT, _,
which computes the middle bit in the product xy. It is known that the middle
bit is the “hardest” bit (see, for example [15]).

For p € (1/2,1), k € {0,...,2n — 1}, and a permutation 7 of {1,...,2n} let
P,(k,7) be a randomized OBDD with the ordering 7 that p-computes MU LTj.

Theorem 2 Given p € (1/2,1). For every T there exists a k such thal

size(Py(k, 7)) > 2r1-H@)/8

Y

where H(p) = —plogp — (1 — p)log(1 — p) is Shannon entropy.

Theorem 3 Let for p € (1/2,1) the function MULT(X,Y) is p-computed by a
randomized OBDD P. Then

size(P) > ofHn/logn)

These two theorems state that multiplication is hard for randomized OBDD.
The first one is “theoretically weaker” than the second. But the proof of the
first one is shorter and more direct. It is based on proving lower bound for the
polynomial projection function of MU LT} ([6]). The proof of the theorem 3 itself
is based on proving lower bound for another polynomial projection of MULT
[7, 11] using randomized binary search communication game. See [14, 13] for
more information. Proofs of the theorems are presented in the next section.

3 Proofs

3.1 Proof of the theorem 2

Our proof proceeds as follows:
i) we construct a polynomial projection f*7 of MULT}, and then
ii) we prove that f®7 is hard for a randomized r-ordered OBDD.

For an arbitrary ordering 7 in a randomized OBDD, there are two subsets L
and W of equal sizes [> n/2 such that:

1) P reads all variables from L before starting reading variables from W and

2)LCXand WCYor LCYand W CX.

W.l.g. assume in the rest of the proof that L € X and W C Y. So, L =
{ziyy.. oy fand W ={yj,, ...,y }

;From now on we are interested only in inputs o € {0,1}?" such that:
for variables Y all bits of o except for a one bit of W are 0. Call such W control
set. Variables from L can take arbitrary values from {0,1}. For convenience fix
the remaining variables from X\ L to be 0. Call such L data set.

Denote by [k] a set of pair of bits of data and control sets that are transmitted
to the k-th bit of the product XY. Formally

(] = {(zi,y;) €L X W i+ j = k}.
As |L x W| =1* > n?/4, there exists a k such that

K]l =t >1°/(2n) = n/8. (1)

Now fix this set [k]. Denote by L, C L (Wy C W) a subset of L (W) that
consists of all variables z; (y;) that “take part” in the set [k].

Consider a projection f*7 : L, x W, — {0,1} of MULT,}, for which all
variables from (Y U X)\(L; U W})) are fixed and equal 0. The communication
matrix CM of f*7 for a partition (L, W) of inputs has the following property:
1) it is 2! x ¢ boolean matrix and
2) all rows of C'M are different.

We use now Yao’s standard randomized one-way communication computation
[23, 24] (see also [13]) for boolean functions.

The following lemma is proved in [2]. It states the connection between the
size of OBDDs and the one-way communication complexity. Consider a boolean
function h : {0,1}™ — {0,1}. Let U = V X R be partition of a set of variables
of h into two parts. For p > 1/2 denote by PC;](h) a randomized one-way
communication p-computation for h (a computation which outputs the correct
result with the probability greater or equal to p) according to the partition U of
inputs.

Lemma 1 Lete €[0,1/2], p=1/2+¢. Let a randomized OBDD P p-computes
the function h. Let U =V x R be a partition of inpuls between players with V' and
R defined according to ordering T of inputs of P. Thal ts P can read variables
from R only after reading variables from L and does not read variables from L
after starting reading variables from R. Then

size(P) > 9Py (h)-1,

Now use the theorem proved in [1] which states that the randomized one-way
communication complexity cannot be too “small” for a function with a “large”
data set and a “small” control set.

Choose a set Z C R such that for an arbitrary two words w,u’ € V there
exists a word y € Z such that h(u,y) # h(u',y). The set Z is called the control
set for the matriz CM.

Denote by ts(CM) the minimum size of a control set for matrix CM and
nrow(CM) the number of different rows of matrix CM.

For a number p € [1/2,1], define (probabilistic communication characteristic
(cf. [1]) pect (h) = emeidgs H(p), where H(p) = —plogp — (1 — p)log(1 — p)
is the Shannon entropy [10].

Theorem 4 ([1]) Let e € [0,1/2] and p=1/2+¢e. Let U C{0,1}" be such that
U=V xR, where V and R are defined in according to partition m of inpuls of
function h : {0,1}" — {0,1}. Then

U U U
PC)(h) = DC”(h)(1 — pec, (h)) — 1,
where DCY(R) is the deterministic one-way communication complexily of h.

In our case we have that 1) for U = Ly x W, pccg(fk”') = H(p) and 2)
DCY(f*7) = logt (because all rows of the communication matrix CM are dif-
ferent). From the above we get that

size(P) > 2t(1=H(p)),

Using (1) and the inequality above we get the lower bound of the theorem.

3.2 Proof of the theorem 3

The proof consists of 3 steps:

i) we construct a polynomial projection f of MULT (cf. [7, 11]),

ii) using randomized OBDD P for MULT (which is turned to a randomized
OBDD for f when values of proper variables are fixed) construct a randomized
one-way communication protocol for computing the function g defined in [19],

and

iii) finally we prove the lower bound of the theorem, using the fact

— that randomized one-way communication complexity gives the lower bound
for randomized OBDD size [2] and

— that g is hard for randomized one-way communication computation [2].

Let 7 be an ordering of variables of randomized OBDD P. Then there are
two subsets L and W of the set X such that:

1) [L|=|W]|=I(n)=Q(n) and

2) P reads all variables from L before starting reading variables from W.
Now if the remaining variables (variables from (Y U X)\(L U W)) are fixed in a
proper way, then randomized OBDD P p-computes the boolean function f (poly-
nomial projection of MU LT') which has the following communication description.
Communication matrix CM(f) of size 21(n) 5 21" for f with rows correspond-
ing to variables from L and columns to variables from W is the lower triangle
boolean matrix. That is all the elements above the second diagonal are 0 and all
elements in the second diagonal and below it — are 1 [11]. Formally, function
J(L,W) can be described as follows. View L and W as a binary presentation of
numbers. Numbers presented in the reverse order (first bits of L and W represent
the lowest bits and last bits — the highest bit of a number). Then f(L, W) =1
iff L+ W > 2!+ [11].

We assume in the remaining part of the proof the variables from (Y UX)\(LU
W) been fixed as needed. So P is turned to the randomized OBDD that p-
computes f. Below, using P we construct a randomized one-way communication
protocol ® for a “pointer” function.

The “pointer” function g, ([19]) is defined as follows. Let n be an integer and
let p[n] be the smallest prime number greater than or equal to n. Then, for every
integer s, let w,(s) be defined as follows. Let j be the unique integer satisfying
J = smod p[n] and 1 < j < pln]. Then, w,(s) =7,if 1 < j < n, and w,(s) =1
otherwise.

For every n, the boolean function g, : {0,1}" — {0,1} is defined as g, (o) =
oj, where j = w,(3°F, t0y).

For the purposes of the proof we use the following “communication” variant
of the “pointer” function g in the remaining part of the proof.

Let L = {z;,,... ,:L‘Z'l(n)}. Let for k(n) = logl(n) (w.l.g. we consider that I(n)
is a power of 2) R = {z1,22,..., 25(») } is a set of “new” variables, that is R does
not contains variables from X UY. Then define a “communication” variant of

the “pointer” function g as g : L x R — {0,1}.

We use now Yao’s standard randomized one-way communication computation
for g when the first player I gets values of the variables from L and the second
player I gets values from the remaining variables K. Player [starts the com-
putation on his part of inputs, then the player 11, on receiving a message from [
and his part of the input, outputs the result.

Below, in Lemma 2 we construct a randomized one-way communication pro-
tocol @ for g-computing (¢ € (1/2,1)) g such that

C(®) < a(logbl(n))(log size(P)), (2)

where a, b are positive constants. Then we prove (see Lemma 3 below) that for
this partition of inputs between players, the following lower bound for randomized
one-way communication g-computation is true

PCy(g) 2 c(a)l(n), (3)

where ¢(q) is positive constant. As the inequality (3) is correct for all the ran-
domized one-way communication protocols that g-computes g then from (2) we
get the lower bound of the theorem.

.size(P) > 9ct(n)/logl(n)

Lemma 2 For g € (1/2,1) there is a randomized one-way communicalion pro-
tocol ® for g-computing function g such that

C(®) < a(logbl(n))(log size(P)),
where a, b are positive constants.

Proof. We describe a randomized one-way communication protocol @ for ¢-
computing the “pointer” function g as follows. Let o = o1,...,0y») be an input
sequence of player I and w = wi,...,wyn) — an input sequence of player I1.
Let ¢t(n) = alog(bl(n)). We define constants a,b later in a proper way. Player [
runs branching program P on his part of inputs ¢(n) times and sends ¢(n) nodes
U1, .. ., Vy(n) Which were reached by P during the computations to the player I1.
The goal of player T is to determine the input string o of player I with prob-
ability no less than ¢ (more precisely player /1 determines a string o’ such that
probability of the event ¢’ = o is no less than ¢). Then, player IT having his
part of input can outputs the correct result with probability no less than ¢g. Let
By := {0,1}™, In each step ¢ > 1, IT reduces a set B,_; and in the last step
[(n) of procedure I gets a set By = {o'}. Player IT after getting vq,. .., vyn)
determines ¢’ by a randomized binary search procedure as follows.

Step 1. Take a “middle” input sequence o' (sequence o' determines the mid-
dle column of the communication matrix C M (f). Columns of C M(f) are ordered
in a natural order of input strings, that is 0 = (0,...,0),...,1=(1,...,1)).

Run P on o' ¢{(n) times starting from nodes vy, . . ., Vi(n) and take the majority
result Ay € {0,1}. Using Ay, select a set By of potential inputs of player I (the
set of sequences that determine the upper half of rows of CM(f) or the set of
sequences that determine the lower half of rows of CM(f)). |By| = 2™ /2.

Step 2. If A; =1 then select a “middle” input sequence o? between o' and
1 else — between 0 and o'.

Run P on ¢? t(n) times starting from nodes vy, ..., vy, and take the majority
result Ay € {0,1}. Using A,, select a set By C By of potential inputs of player
I. |By| = |By]/2.

After [(n) steps procedure stops by selecting a set B,y that consists of unique
input sequence o’. Player I] outputs the result g(o’,w). Clearly we have

C(®) < t(n)logsize(P)).

The following counting arguments show that protocol ® g-computes g.

For a string v € {0, 1} that determines a column of matrix C'M(f) denote
by Pr(v) a probability of getting the correct result A by the binary search proce-
dure above. Then the probability Pr(c¢’ = o) of correctly determining an input
of player I is

Pr(c’ =a)= Pr(a")... Pr(al(”)).

The probability 1 — Pr(v) of getting error A is no more than (1/¢(p))""™ for
some constant ¢(p) > 1 depending on probability p of correct computation of P
(see, e.g., [14]). By choosing a constant a in a proper way we get

1= Pr(7) < 1/((n).
;From the above it follows that

Pr(c’ = o) > (1 —1/(bl(n)))™.

Using the fact that function (1—1/z)%/® is monotonically increasing to (1/¢)!/*

for x — oo we get for properly selected constant b > 1 and for n large enough

Pr(c' =0) > q.

We formulate now the last lemma.

Lemma 3 For arbilrary q € (1/2,1) and arbitrary § > 0 and for every n large
enough, we have

PCy(g) 2 (l(n) = ofl(n)))(1 — (1 + 6)H(q)).
where H(q) = —qlog g — (1 — q)log(1 — q) is Shannon entropy.
See [2] for the proof of the lower bound of the lemma.

4 Generalization and concluding remarks

Note that in the proof technique used in the section above for ordered read-once
branching programs we used the following essential fact. The set of variables of
P can be partitioned (according to the ordering 7 of P) into two parts L and
W (of approximately equal sizes) such that for any computation path of P the
following is true. If a variable from W is tested, then no variable from L can be
tested in the rest of this path. This means that the statement of the theorem 3
is true also for other common models of branching programs we define below.
Define a balanced partilioning as any partition of a set X (more precisely the

sequence of sets) into subsets X; and X, of | X;]| = O(]X3]).

Definition 1 Call branching program P a w-balanced-weak-ordered branching
program if il respects a balanced partition w of its variables X into two parts X,
and X, such that if an edge leads from an x;-node lo an x;-node, where z; € X,
and x; € X,,, then the condilion t < m has to be fulfilled.

Call branching program P an balanced-weak-ordered if it is m-balanced-weak-
ordered for some partition w of the sel of variables of P into two sets.

Our theorem 3 can be generalized as follows.

Theorem 5 Let for p € (1/2,1) the function MULT(X,Y) be p-computed by

randomized balanced-weak-ordered branching program P. Then

size(P) > ofHn/logn)

Open problems

It is an interesting open problem to prove a lower bound for integer multiplication
on randomized branching programs with 1) limited number of inputs readings,
and 2) without any condition on ordering of variables. We conjecture that the
corresponding lower bounds are also exponential.

Acknowledgment We would like to thank Anna Gal, Stephen Ponzio, Sasha
Razborov, Thomas Thierauf and Andy Yao for helpful discussion on the subject
of the paper.

10

References

1]

[4]

[5]

[12]

[13]

[14]

F. Ablayev, Lower bounds for one-way probabilistic communication com-
plexity in Proceedings of the ICALP’93, Lecture Notes in Computer Science,
Springer-Verlag, 700, (1993), 241-252.

F. Ablayev, Randomization and nondeterminism are incomparable for or-
dered read-once branching programs, in Proceedings of the ICALP’97, Lec-
ture Notes in Computer Science, Springer-Verlag, 1256, (1997), 195-202.

F. Ablayev and M. Karpinski, On the power of randomized branching pro-
grams, in Proceedings of the ICALP’96, Lecture Notes in Computer Science,
Springer-Verlag, 1099, (1996), 348-356.

F. Ablayev and M. Karpinski, On the power of randomized ordered branch-
ing programs, Research Report 85181-CS, University of Bonn, 1997.

A. Borodin, A. Razborov, and R. Smolensky, On lower bounds for read-k-
times branching programs, Computational Complexity, 3, (1993), 1-18

R. Bryant, Graph-based algorithms for boolean function manipulation TKFEE
Trans. Comput., C-35, (8), (1986), 677-691.

R. Bryant, On the complexity of VLSI implementations and graph repre-
sentations of boolean functions with applications to integer multiplication,

IEEE Trans. Comput., 40 (2), (1991), 205-213.

R. Bryant, Symbolic boolean manipulation with ordered binary decision di-

agrams, ACM Computing Surveys, 24, No. 3, (1992), 293-318.

R. Buss, The graph of multiplication is equivalent to counting, Information

Processing Letters, 41, (1992), 199-201.

R. Gallager, Information theory and reliable communication, Wiley, New

York, 1968.

J. Gergov, Time-space tradeoffs for integer multiplication on various types
of input oblivious sequential machines, Information Processing Letters, 51,

(1994), 265-269.

S. Jukna, The graph of integer multiplication is hard for read-k-times net-
works, TR 95-10 Mathematik/Informatik University of Trier, 1995.

E. Kushilevitz and N. Nisan, Communication complexity, Cambridge Uni-
versity Press, 1997.

R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univer-
sity Press, 1995.

11

[15]

[16]

[17]

[18]
[19]

S. Ponzio, A lower bound for integer multiplication with read-once branching

programs, Proceedings of the 27-th STOC, (1995), 130-139.

S. Ponzio, Restricted branching programs and hardware verification, Tech-

nical Report, MIT/LCS-TR-633, MIT, 1995

A. Razborov, Lower bounds for deterministic and nondeterministic branch-
ing programs, in Proceedings of the FCT’91, Lecture Notes in Compuler
Science, Springer-Verlag, 529, (1991), 47-60.

T. Thierauf, personal communication, 1997.

P. Savicky, S. Zak, A large lower bound for 1-branching programs, Electronic
Colloquium on Computational Complezily, Revision 01 of TR96-036, (1996),
available at http://www.eccc.uni-trier.de/eccc/

M. Sauerhoff, personal communication, 1997.

M. Sauerhoff, On nondeterminism versus randomness for read-once branch-
ing programs Flectronic Colloquium on Computational Complexity, TRIT-
030, (1997), available at http://www.eccc.uni-trier.de/eccc/

[. Wegener, Efficient data structure for Boolean functions, Discrete Mathe-

matics, 136, (1994), 347-372.

A.C. Yao, Some Complexity Questions Related to Distributive Computing,
in Proc. of the 11th Annual ACM Symposium on the Theory of Computing,
(1979), 209-213.

A.C. Yao, Lower bounds by probabilistic arguments, in Proc. of the 27th
Annual IEEE Symposium on Foundations of Computer Science (1983), 420-
428.

12

ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

