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Abstract

We present a new approach to the composition of learning algorithms
(in various models) for classes of constant VC-dimension into learning
algorithms for more complicated classes. We prove that if a class C is
learnable in time t from a hypothesis class H of constant VC-dimension
then the class C* of all functions F of the form F = f(g1,...,gm), where
f is any function and gi,...,9m € C, is learnable in time polynomial in
t and m . We also use a simple argument to prove that the composition
theorem cannot be extended to classes with a nonconstant VC-dimension.

A composition theorem for the exact learning model (with equivalence
queries only) is proven in [BBK97] only for classes C of constant VC-
dimension that have constant space learning algorithms. Constant space
algorithms are hard to find and have large complexity. Our algorithm is
simple and has a complexity lower than the algorithm in [BBK97].

We then show how to change a PAC-learning algorithm of C from H
to an SQ-learning algorithm and to a PAC-learning algorithm for C* with
malicious noise that achieves the optimal error rate /(1 —n) + 3 for any
B. This, in particular, shows that if a class of constant VC-dimension
is PAC-learnable from a class of constant VC-dimension then it is SQ-
learnable and PAC-learnable with malicious noise. We apply this result
for SQ-learning and PAC-learning with malicious noise a general class of
geometric objects. This class includes the set of all geometric objects
in the constant dimensional space that are bounded by m algebraic sur-
faces of constant degree (for example, hyperplanes, spheres, etc.). This
result generalizes all the results known from the literature about learn-
ing geometric objects in the SQ-learning and PAC-learning models with
malicious noise.
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1 Introduction

The Composition Theorem for learning algorithms [BBK97] shows that if a class
of concepts C is exactly learnable (from equivalence queries only) in time ¢ using
constant space from a class of concepts H, (and therefore H must have a con-
stant VC-dimension) then the class C* of all functions of the form f(g1,...,9m)
is exactly learnable in time polynomial in ¢ and m where f is any function and
91,---,9m € C. This result is applied in [BBK97] to prove the exact learn-
ability of geometric classes from equivalence queries only. It is shown that
algebraic surfaces of constant degree (for example, hyperplanes, spheres, or any
p(x1,...,24) = 0 for a constant degree polynomial p) over a constant dimen-
sional space d are constant space learnable. Therefore, by applying the compo-
sition theorem, any geometric object bounded by constant degree surfaces in the
constant dimensional space is exactly learnable. Space bounded exact learning
algorithms are hard to find and have large complexity.

In this paper we prove the Composition Theorem for a broader set of classes
C and for other learning models. We first show that if a class of concepts C is
exactly learnable in time ¢ by a hypothesis class H of constant VC-dimension
then the class C* is learnable in time polynomial in ¢ and m. We then show
that a much weaker condition can be placed on C and H to ensure learnability
of C*. For example, if C is PAC-learnable (this is weaker than exact learning)
from a constant VC-dimension hypothesis class H then the randomized Halving
algorithm for C (here the hypothesis class is not of constant VC-dimension) can
be changed to an algorithm for C*. We also show that the composition theorem
cannot be extended to classes with nonconstant VC-dimension.

We then investigate SQ-learning model and the PAC-learning with malicious
noise model. We show that if C is PAC-learnable in time ¢ by a hypothesis
class H of constant VC-dimension then the class C* is SQ-learnable and PAC-
learnable with malicious noise 7 = €¢/(1 + €) + A in time polynomial in ¢ and
1/A. In particular, if a class C of constant VC-dimension is learnable from
a constant VC-dimension hypothesis class then it is SQ-learnable and PAC-
learnable with malicious noise. Here the malicious noise model is the one defined
in [CFSS97] which is weaker than the one defined in [KL93]. In this model the
learner makes one request for m examples. The teacher (adversary) chooses m
examples {(z;, F(z;))} according to the distribution D and then marks each
example (z;, F'(z;)) with probability 7. The teacher then replaces each marked
example by an arbitrary pair (a, b).

One type of concept classes which has attracted considerable attention (in
the exact model as well as in other models) is that of geometric concept classes.
In the case of exact learning we consider a discretized domain of RZ (i.e., the
set of points of the form {0,1,...,n}¢, for some n) and the concepts considered
are of geometric nature such as axis-parallel boxes (e.g., [?, 7, ?]) and geometric
objects bounded by constant degree algebraic surphaces (e.g. [BGMST96]). We
apply our composition theorem to the class of constant degree algebraic surfaces



to get the first polynomial time SQ-learning algorithm and PAC-learning algo-
rithm with malicious noise for the class of all geometric objects in the constant
dimensional space bounded by constant degree algebraic surfaces.

Organization: In section 2 we will give some preliminary background infor-
mation. In section 3 we present our composition theorem for the exact learning
model and in section 4 we present the theorem for the SQ-learning model and
for the PAC-learning model with malicious noise.

2 Preliminaries

2.1 Dual Class and VC Dimension

Let X = {z1,...,2,} be aset and H C {0,1}* be a class of boolean functions
over X. Define the dual class H* C {0,1}" to be the class of boolean functions
z; where for every h € H we have z;-(h) = h(z;).

It is convenient to think of a class H as a matrix M where each row of
M corresponds to a function h € H and each of its columns corresponds to a
function z+ € H*. The class H=* is the class represented by the transposed
matrix M7T. The VC-dimension of M, denoted VC-dim(#), is the maximal
number of columns d in which all of the 2¢ combinations of 0’s and 1’s appear.
The following claim relates the VC-dim of H and H* is well known (see, for
example, [BBK97]).

Claim 1 For every class H, VC-dim(#) > |log VC-dim(H1)|.

2.2 The Learning Models

In the exact learning [A88, L88] there is a boolean function F, called the target
function, which is a member of a class of functions C defined over the domain X.
An exact learning algorithm is given access to an equivalence query and the
goal of the learning algorithm is to find and output a formula H that is logically
equivalent to F'. To ask an equivalence query, the learning algorithm supplies any
function H € H as input to an equivalence oracle and the reply of the oracle is
either “YES”, signifying that H is logically equivalent to F', or a counterexample,
which is an assignment b such that H(b) # F(b). For our algorithms we will
represent a query to this oracle as a procedure EQ(H). We say that a class of
boolean functions C is ezactly learnable from H in polynomial time if for any
F € C over X there is an algorithm that is given access to an equivalence oracle
and outputs a hypothesis H € H that is logically equivalent to F' using time
polynomial in log|X| and the size of F' (in some representation).

In the PAC-learning [Val84] there is an unknown distribution D defined over
the domain set X. The learning algorithms in this model are given access to
an examples oracle which, upon request, supplies the algorithm with a labeled



example (a, F'(a)) where a is drawn according to D and F is the unknown target
formula. We say that a class of boolean functions C is PAC-learnable from #
in polynomial time if there is an algorithm given access to an examples oracle
such that for any F' € C over X, any 0 < ¢,§ < 1 and any distribution D on
X, the algorithm runs in time polynomial in log |X|, the size of F', 1/ and 1/e
and with probability at least 1 — § outputs a hypothesis H € H that is e-close
to F' with respect to the distribution D, i.e.,

PiF(x) # H(x)] < c.

In the PAC-learning model with a malicious noise rate 7, when the learning
algorithm asks for an example from the example oracle, the oracle will, with
probability 1 — 7, provide the learning algorithm an example (a, F'(a)) where a
is chosen from X according to the distribution D and with probability 7 it will
provide the learning algorithm any labeled example, i.e., (b, c) where ¢ may not
be F(b). It is known [KL93] that in this model the desired accuracy cannot be
less than e = /(1 — 7).

In the SQ-learning model [K93] the learner can ask a statistical query or
ask for unlabeled examples. To ask a statistical query the learning algorithm
supplies any polynomial time computable function G : X x {0,1} — {0,1} and
a constant 7 > 1/poly to the statistical oracle and the reply of the oracle is a
real number £ such that

|Ep[G(z, F(z))] = ¢l < 7.

When the algorithm asks for an unlabeled example the oracle returns an example
z € X choosen according to the distribution D. An SQ-learning algorithm is
defined the same as a PAC-learning algorithm except the algorithm has access
to a different oracle.

In all of the above models we assume that the classes C and H are classes
of formulas. We also assume that C and H are decidable in polynomial time,
that is, there is an algorithm that decides whether a formula A is or isn’t in H.
Notice that it is possible to have a formula h that is not in # but is logically
equivalent to a formula in H. The answer to decidability in this case would be
“NO?? .

It is known from [A88] that if a class is exactly learnable in polynomial time
from equivalence queries then it is PAC-learnable in polynomial time. It is also
known from [K93] that if a class is SQ-learnable then it is PAC-learnable.

2.3 Halfspaces and Algebraic Surfaces

For an integer d we call the domain X,, = {0,1,...,n}? the d-dimensional
discretized space. We will consider boolean functions in {0,1}*», in particular,



the class of Halfspaces over X,, which is the set of functions of the form

_ 1 cx1+---+cqxg>Db
h(w)_{ 0 cazi+--+cgzqg<b

where ¢y, .. .,cq,b are integers.
Let C be the class of all halfspaces over {0,1,...,n}?. We define C" to
be the class of all functions f(g1,...,9,) where f is any boolean function and

g1,---,9r € C. Notice that any geometric object that is bounded by r hyper-
planes is in C". Denote C* = U, C". The size of a geometric object G in C* will
be the minimal r such that G € C7, i.e., the minimal number of hyperplanes
that bound G.

An algebraic surface of degree k is defined by a degree-k multivariate polyno-
mial in x4, ..., 2z4. If P(z) is such a polynomial then the corresponding function
f gives the value 1 to every = such that P(z) > 0 and the value 0 otherwise.
(Obviously a halfspace is a special case of such a surface with degree k = 1.)
Let C be the class of all degree-k algebraic surfaces over {0,1,...,n}¢. The class
C* is called the class of degree-k semi-algebraic functions (over RY).

For the PAC-model and SQ-model all the results of the paper are also true
when the domain is X = {z | 0 < z <n}%

3 The Composition Theorem for the Exact Learn-
ing Model

In this section we present our main tool which is a reduction that constructs
an algorithm that learns any combination of concepts in the above classes using
any learning algorithm for any concept class of constant VC-dimension.

Let C be a class of boolean functions g : X — {0,1}". Define the class C*
to be the set of all boolean functions that can be represented as f(g1,-..,9m)
where f is any boolean function, m > 0 and g; € C for i = 1,...,m. We define
the size s of f(g1,---,9m) to be m.

Let P and N be set of points in X. We say that a boolean function h : X —
{0,1}™ is consistent with (P, N) if h takes value 1 on all the points of P and
value 0 on all the points of N. For two classes (C,H) we say that (C,H) has a
consistency algorithm if there is an algorithm that takes (P, N) as input, runs
in time polynomial in |[P U N| and with probability at least 1/2 satisfies the
following. If there is a function in C that is consistent with (P, N) the algorithm
outputs “YES” and some h € H that is consistent with (P, N). If there is no
h € H that is consistent with (P, N) then the algorithm outputs “NO”. Notice
that the algorithm can output anything if there is an h € H that is consistent
with (P, N) but no member of C is consistent with (P, N).

First we notice a relationship between exact learning algorithms and consis-
tency algorithms.



Claim 2 If C is PAC-learnable (or exact learnable) from H with equivalence
queries then (C,H) has a consistency algorithm.

Proof: Let ALG be the algorithm that learns C from 7. We can change
ALG to an algorithm CON that is a consistency algorithm for (C, ) as follows.
Algorithm CON runs algorithm ALG and simulate the distribution D(z) =
1/|[PUN| for x € PUN and D(z) = 0 for all other . The value of € is
1/(|[PUN|+1) and § = 1/2. If there is a consistent hypothesis in C then with
probability at least 1/2 we will get a consistent h € H. If there is no consistent in
‘H the algorithm will get stuck, run more than it should, output an inconsistent
h or it will output an h ¢ H. All those can be verified in polynomial time. [

Let @ be a set of points and CON be a consistency algorithm for (C, ). We
would like to find the set

ScoN(@) = {P | CON(P,Q\P) = “YES"}.

This is the set of all possible splittings of @ into two sets { P, @\ P} where CON
answer “YES” for (P, Q\P). One way to generate all the elements of ScN(Q)
is using the following recursive approach. To find ScoN(R U {z}) we take all
P € Scon(R) and run CON on (PU{z}, R\P) and (P, (R\P)U{z}). Then we
include in SooN(RU {z}) all the pairs for which CON answers “YES”. Notice
that the algorithm will answer “YES” for at least one of the pairs for a given
P. This recursive execution has a tree structure of depth |@| and width at most
IScoN(Q)[- So the time complexity of this algorithm is bounded by

Q1 - IScon (@)] -t

where ¢ is the running time of CON. We now give a bound on the value of

[Scon(@)I-
Lemma 1 For any set of points @,
IScon(@)] < |@|VC-dimeo,

Proof: Let @ = {z1,22,---,2)g/}. Notice that the number of Ps in
SconN(Q) is at most the number of the combinations

By Sauer’s Lemma the number of distinct elements in F' is at most |Q |VC'dim(H).

The algorithm in Figure 1 takes an algorithm CON and creates a set of all
((P,Q\P),h) such that P € SooN(Q) and h is consistent with (P,Q\P). We
are now ready to state and prove our main result.



Algorithm SooN(Q)-

S+ {((9,9),0)}.
Let Q = {x1,...,2q}.
For i =1 to q do

T+ Q.
For all ((P,N),h) €S
Run CON(P U {z;}, N) and if the
answer is (“YES”, A') do 7 « T U {((P U {z:}, N),h')}
Run CON(P, N U {z;}) and if the
answer is (“YES”, h') do T + T U {((P,N U {z;}),h')}
S+ T.
Output(S)

Figure 1: An algorithm for generating ScoN(Q)-

Theorem 2 Let C and H be classes of boolean functions over domain X where
C C H. If the concept class C is learnable from H using q equivalence queries
in time T then the concept class C* is learnable using
T Iy N
p= (qu)VC dim(#)VC-dim(#+)
equivalence queries and poly(p,T) time where m is the size of the target, i.e.,
number of functions in C on which the target function is based.

Let ALG be the algorithm that learns C from H and CON be a consis-
tency algorithm for (C,H) that is generated from ALG using Claim 2. Let
F = f(g1,---,9m) be the target function g;,...,g, € C. Consider the algo-
rithm ALG* in Figure 2. To understand the algorithm and prove its correctness

and complexity we prove the following claims. Some of these claims are from
[BBK97].

Claim 3 [BBK97]. For everyt (i.e., t is the number of hypotheses h;), the
number of entries y € {0,1} such that M(y) # * is at most

tVC—dim(Hl) )

Proof: Notice that M (y) # % implies that y = (h1 (), ..., hi(z)) for some x
in A. Therefore, the number of non-star entries of M is at most the number of



Algorithm ALG™.
1. Q« Q.
2. Let ScoN(Q) = {((Pr, N1),h1), ..., ((P, Nt), he) }.
3. Define a table M(yi,...,y:) = * for (y1,...,y:) € {0,1}*
4. A+ Q.
5. Define a hypothesis

_ M(y17"':yt) ifM(yla"'ﬁyf)7é*
Hyr, - sye) = { 0 otherwise )

6. Ask EQ(H(hi(z), - -,hi(x))) — a. If the answer is “yes” then return
H(hi(x),---,hs(x)) and Halt.

7. If M(hi(a),...,hs(a)) = % then set M(hi(a),...,ht(a)) to 1, set A <
AU {a}, and goto 5.

8. If M(hi(a),-..,hi(a)) # * then there exists a’ € A such that
(hl(a): vy ht(a)) = (hl(a')z LR ht(al))'

9. Q<+ QU{a,d'}.
10. goto 2.

Figure 2: Algorithm ALG* for learning C*.

different values of (hi(z), ..., h(z)) over all z. These are simply vectors in the
space H*. Using Sauer’s Lemma the result follows. ]

The next claim shows that if in the collection of our hypotheses we have the
correct functions g1, - .., g, then the protocol will halt.

Claim 4 [BBK97]. If g1,-..,9m € {h1,...,h} then the algorithm will only
ezecute steps 5-7 several times (at most t where v = VC-dim(H')) and then
it will get the answer “yes” to one of its equivalence queries (in which case the
algorithm halts).

Proof:  We will show that if g1,...,9m € {h1,...,h:} then for every coun-
terexample a we have M (hy(a),...,hi(a)) = % (hence, in this case, the condi-
tion in step 7 holds and the condition in step 8 does not). This implies that
the algorithm will execute only steps 5-7 (see the condition in 7). Suppose
M(hi(a),...,ht(a)) # . Then (by the description of the algorithm) there is



an assignment a’ € A such that (hyi(a),...,hs(a)) = (h1(a'),...,hi(a’)). On
the other hand since a is a counterexample then (by the way H is defined)
flgi(a), ..., gm(a)) # f(gi(a’),...,gm(a)). However, since we have hi(a) =
h;(a") for all ¢ and because g1,...,9m € {h1,...,ht} then in particular g;(a) =
gi(a') for every i. Therefore f(g1(a),...,gm(a)) = f(gi(a'),...,gm(a’)). A con-
tradiction. l

The next claim shows that the number of times that the main loop (steps 2-
10) is performed is at most gm.

Claim 5 We have |Q| < 2¢gm.

Proof: We will show that after executing steps 2-9 r times we will have
the following. For every g; there is a hypothesis h,(; that is equivalent to
the hypothesis that we would get from running algorithm ALG for at least r;
phases for the target g; and r = r; + -+ + r,,. By “step” we mean the running
of the algorithm until a new equivalence query is asked. We show the above by
showing that executing steps 2-9 is equivalent to running the algorithm ALG
at least one more step for some g;. This will imply that steps 2-9 are executed
at most ¢gm times and therefore |Q| < 2gm.
To show the above, suppose we get to step 8 and we have M (hi(a), ..., hi(a)) =

& # . There is a' such that

(h1(a), ..., hu(a)) = (ha(d), ..., hu(a))

and
f(g1(a),....gm(a)) # f(g1(a’), ..., gm(a)).

From the latter we must have g;(a) # g;(a') for some i. Now because hy;)(a) =

hy(iy(a') we have that either a or a' is a counterexample for h,;). Therefore

using this counterexample one of the algorithms CON (P, U {w}, Ny(;) or

CON(Pys), Ny U {w}) for some w € {a,a’} will generate the hypothesis gen-

erated by ALG in one more steps. [
Now by Lemma 1 and Claim 5 we have

Claim 6 We have .

Now since t < (2mq)VC'dim(H), the size of the table is at most

tVC—dim(HL) <( VC-dim(#)VC-dim(n+)

2mq)
as stated in Theorem 2.0

To learn a geometric object bounded by m hyperplanes in the d dimensional
space of the [0,n]? lattice the algorithm complexity is

(2mlogn)( @)’



The algorithm in [BBK97] has complexity (at least)

(2m log® n)o(ds).

We now can prove a more general theorem.

Theorem 3 Let C and H and G be classes of boolean functions over the domain
X where C CH C G. Suppose we have the following

1. There is an algorithm A that with an input (P, N) runs in polynomial time
in [PUN| and decides whether there is a consistent hypothesis h € C with
(P,N) or if there is no hypothesis h € H that is consistent with (P,N).

2. For every polynomial number of functions g1,-..,9m € G the number of
distinct vectors (g1(x), - .., gm(x)) over all x € X is T'(m).

If the concept class C is learnable from G using q equivalence queries in time T
then the concept class C* is learnable using

p=T ((2m q)VC—dim(’H))

equivalence queries and poly(p,T) time where m is the size of the target, i.e.,
number of functions in C on which the target function is based.

Proof:  We follow the steps of the algorithm ALG* in figure 2. Step 2 in the
algorithm cannot be simulated. Instead we use algorithm A to generate the set
{(P1,N1),...,(P;, N)} and then run the algorithm that learns C from G to find
hypotheses g1, ..., g: consistent with (P, Ny),..., (P, N¢), respectively.

As in the proof of Theorem 1 we have |Q| < 2gm and t < (2mgq) ¥ C-dim@),
Now the number of possible entries in the table will be at most I'(¢). O

Notice that G may have a nonconstant VC-dimension. If these conditions
are true and I is polynomial then C* is learnable in polynomial time.
We now show the following.

Theorem 4 Let C be a class that is PAC-learnable from a class of constant
VC-dimension H. If C is exactly learnable from H* in polynomial time then C*
is learnable in polynomial time.

Proof: By Claim 2 we have the first condition of Theorem 3. To prove that
condition (2) is also true with polynomial T, let g1,...,9m, be in H* and m
be polynomial (in the size of the target and log|X|). Since g; € H* and is of
polynomial size (because the algorithm runs in polynomial time) we have g; =
fi(gia, -, 9i4;) where l; is polynomial and g; ; € H. Now the number of distinct
vectors (g1(x),- .., gm(x)) for x € X is at most the number of distinct vectors
(94,5(x))s,; for z € X. Since g;; € H and H is of constant VC-dimension then

10



we know that this number is polynomial in )", lym and therefore is polynomial.

O

Notice here that H* may not be of constant VC-dimension. One of the
algorithms that learns C using hypotheses from C* is the randomized Halv-
ing algorithm. At each step of the randomized Halving algorithm the algorithm
randomly chooses a polynomial number of consistent hypotheses and asks equiv-
alence queries with their majority. So the hypothesis class is C*.

3.1 Lower Bound

In this short subsection we show that the Composition Theorem cannot be
extended to a class with a nonconstant VC-dimension. To prove the lower
bound we use a simple argument.

Theorem 5 For every d there is C of VC-dimension d such that learning F' € C*
will require at least (m/d)? equivalence queries where m = size(F).

Proof: It is known that there is a class of VC-dimension d and m functions
J1,-- -, 9m such that the number of distinct vectors (g1 (z), - .., gm(x)) is at least

> (1) =)

Now this means that the class {f(g1,--.,9m) | f} C C* has VC-dimension
(m/d)?® and therefore we need at least (m/d)? equivalence queries to learn it.

O

4 The Composition Theorem for Other Learn-
ing Models

Let ALG be a PAC-learning algorithm that learns C from H. As was shown in
Claim 2 using this algorithm we can also build a consistency algorithm CON
for (C,H).

Let hi,...,hy € H. We define the set of domains W(hy,...,h:) to be the
set of all W, = {z | (hi(x),...,h(z)) = a} for a € {0,1}¢. Notice that
W(h1,...,h;) is a partition of the domain X and

Wik, ..., hy)| < tVC-dimes),
Now the algorithm for learning F' € C* is in Figure 3.
In the first step the algorithm takes r examples and then in step 2 finds all

possible splittings of the examples using the algorithm in Figure 1. Each split-
ting (P;, Q\P;) defines a hypothesis h; € H that is consistent with (P;, Q\F;).

11



Learning C*.

1. Get r examples E. Let Q « {z | (z,y) € E}.

2. Let Scon(Q) = {((P1, Q\P1), h1),..., (P, Q\F%), he) }-
3. Get s examples R.
4

. Define H(y1, ..., y:) as follows: For every y if W, € W(h1,...,h:) is not
empty then find all examples R, C RN W, and define

H(y) = Maj(;,r(:))er, (F(2))-

If R, or W, is empty then define H(y) =0
5. Return H(h1,...,hs).

Figure 3: Algorithm for learning C*

The set of all hypothesis {h, ..., h;} defines at most tVC-dim(*") domains. The
domains are all

W, = {:U | (hl(x)a e aht(m)) = a}

that are not empty. We then take another round of examples and define the
value of each domain to be the majority of the labels of the examples that fall
in this domain. Domains that contains no examples are given a value 0.

Notice that these steps can be done in the SQ-learning model. The first step
does not use the labels of the examples. In the second step we can find the
expectation of the sign in each domain W, using

E[hy" --- hy' F]

E[F 1=
[F | & € Wal = G e

where h{* is h; if a; = 1 and —h; otherwise. Now if E[h{* - - - h{*] is “too small”
we can disregard this domain. If E[F' | z € W,] > 1/2 then we define H(a) = 1.
Otherwise, we define H(a) = 0.

4.1 Analysis

We now give the analysis for the PAC model with malicious noise 7. The analysis
for the SQ-model is very similar and we leave it to the reader. We first give
Chernoff bounds

12



Lemma 6 (Chernoff) Let X; be independent random variables all with mean
u such that for all i, X; € {0,1}. Then for any &

1 n
" l_ STXi>(A+Eu| <e
n
=1
and
1 & o
Pri{= " X;<(1—&u| <e /2
n
=1

The VC-dimension result is

Lemma 7 [BEHWS89] Let C be class of functions and H D C. Then the
Occam algorithm (that take M examples and find a consistent hypothesis from
H) with

2
M(e,6) = % (2 - VC-dim(H) log ? +log 5)

examples is a PAC-learning algorithm for C.

Let F = f(g1,-.-,9m) be the target function where g; € C. We will show
that the algorithm in Figure 3 achieves an error n/(1—7)+ £ in time polynomial
in1/8,1/6, m and 1/(1 — 7).

Let
A = fn/16, (1)
and
8m 13m 6m
= (2.VCdi log —" 4 log — 2
T (1_77))\( VC-dim(H) log \ + log 6) (2)
By Chernoff bound since |Q| =r > :;n logg and the probability that z € @ is

chosen according to a distribution D is 1 —n we have: With probability at least
1-46/3, (1—n)r/2 of the examples in @ are chosen according to the distribution
D.

Let ((Pj;, Q\Pj;), hj;) be the triple for which g; is consistent on (Pj;, Q\P;; ).
Since hj; is also consistent on (Pj;, Q\P;;) and since, with probability at least
1-4/3,

1-— 4 1
% - Tm (2 - VO-dim(H) log % +log %m)
of the examples in () came from the distribution D, by Lemma 7 we have with
probability at least 1 — §/(3m)

A

m .

%r[hji # 9i] <
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So assuming we know h;, and we know f, with probability at least 1 —¢§/3
we have

%r[f(gla---agm) # f(hj17“‘)hj7n)] <A

Let T be the set of all points in which f(g1,...,9m) and f(hj,,...,h;,,) disagree.
We have
D(T) < A

Notice that W(hy,... ,h;) is a subpartition of the partition W(hj,, ..., h;,.).
Since the algorithm do not know hj, and f it will learn a new f such that
f(ha, ..., hy) is good approximation of f(g1,...,gm). Now the algorithm learns
f for different values of (h1,...,ht). Let W be the set of all nonempty domains

W,. By Lemma 1 the number of nonempty domains in W is at most

d< tVC—dim(H) < TVC—dim(H)VC—dim(HJ‘)‘ (3)

Now we define the important domains T C W to be the set of all domains W,
such that
D(W,) > A/d.

We will show that those domains that are not important have small weight. We
have )
> DW.) < Sd <
D(Wa)<A/d

Therefore we may ignore the nonimportant domains.
In the second round we choose

2
s = Wd—ﬂ) <logg +log d) (4)
examples. For the sake of analysis, we assume that we have three phases. In
the first phase the teacher chooses s examples F; of the target function. In the
second phase the teacher chooses each example in F; with probability 1 —n and
puts it in a set Es. In the third phase the teacher chooses |E;i\E>| arbitrary
new labeled examples E3 and then sends E» U E3 to the learner.

Now we will define for each important domain W, four integers (t,, to4%¢, tin terr

Va Y Va
The integer ¢, is the number of examples in E; N W,. The integer 2% is the
number of examples in (E;\E2) N W, and ¢ is the number of examples in
Es N W,. The integer t¢'" is the number of examples in E; N T N W,. Let
tin — Za t'(iln and t¢"" = u tgrr_
Now since each important domain has distribution greater than A\/d, by
Chernoff bound we have

Pr|(Wo e D) % < -N-mDOT)| < Y e emoomrs
S
Wa.€eZ
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< deM's-m/(2d)
<2
-9
Using again Chernoff bound again we have that with probability at least 1—24/9
we have ¢ < (1 + \)ps, and ™" < 2)s.

Therefore with probability at least 1 — /3 we have

1. For every important W,,

(1=X)D(Wa)(1 —n)s < ta,

" < (14 A)ns,

and,

£ < 2)s.

Now by ignoring the nonimportant domains we already have an error A. No-
tice that because W(h1, ..., ht) is a subpartition of W(h;, , . .., h;,,) the function
f has the same value on all the points in W,\T'. So if we define H(W,) to be
F(W,\T) then the only error W, will contribute is at most D(T' N W,). The
total error in this case is at most D(T) < A. The third kind of error is when
H(W,) is defined to be —~f (W, \T). This can happen only if t{? +¢¢" > t, — ™.
So using 1-3 the total error is at most

20+ Y D(W).

tin4terT >t —temT

Now

IN

1 1
> D(W.) A=NA=7s > ta

tin4temT >t — g ) tin4terT >t — 1"
< 1 lztin+2ter1‘
S T-nNA-psie T
1 tin terr
< — [ — + 2
: <1—A>(1—n)(s i )
1
< 1+ XM)n+4(1+ M)A
Ty (L + 40+
7 1+ A
= — . (14+4—
1—n 1—)\( +
< 145
- 1—-n 3



The last inequality follows from the fact that A < A/n < /16 < 1/16. There-
fore, with probability at least 1 — § the error is

n_ ., B U
2 —+ - | < — .
+(1—n+3) B 1—n+ﬂ
Now by (1)-(4) and if VC-dim(#) is constant, the sample complexity of the
algorithm is polynomial in m, 1/§, 1/8 and 1/(1 — n).
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