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Lower Bounds, “Pseudopolynomial” and Approximation

Algorithms for the Knapsack Problem with Real Coefficients

Valentin E. Brimkov* Stefan S. Dantchev'

Abstract

In this paper we study the Boolean Knapsack problem (KPr) a’z =1, z € {0,1}”
with real coefficients, in the framework of the Blum-Shub-Smale real number compu-
tational model [4]. We obtain a new lower bound € (nlogn) - f(1/@min) for the time
complexity of this problem, as well as an Q (nlogn) - f(b/@min) lower time complexity
bound for the classical Boolean Knapsack problem a2 = b, 2 € {0,1}" with positive in-
teger coefficients. Here n is the dimension of the problem, an;, is the minimal coefficient
in the input, and f is any continuous function of one variable. These lower bounds appear
as alternatives to the well known lower bound Q(n?) [1] which applies to both cases.

We also construct certain algorithms for KPr. We suggest a way of defining the con-
cept of a pseudopolynomial algorithm for KPR and design such an algorithm. On integer
inputs this algorithm is pseudopolynomial according to the classical complexity theory.
Overall, it is seen as superior to the classical dynamic programming algorithm. Finally,
we present two algorithms with running times O(n?/g) and O(n/(€amin)), respectively,

with each finding an approximation solution with an absolute error €.

1 Introduction

Blum et al. [4] establish the groundwork for a theory of real computation, with the goal of

providing theoretical foundations to scientific computing and numerical analysis. They intro-
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duce a real number model of computation in terms of a “real” Turing machine, able to operate
with real numbers at unit cost by the four arithmetic operations. They also define the basic
complexity classes and prove an analog of the well known Cook’s theorem.

Recently an increasing number of authors have contributed to the progress in this new
realm. Various problems have been studied under the Blum-Shub-Smale computational model
or under some of its variations. A number of papers address the following version of the well

known Boolean Knapsack problem.
(KPgr) Given a € R%, decide if there is @ € {0,1}" such that «"z = 1.

In the classical complexity theory the Knapsack problem is among the best studied com-
binatorial problems. Regarding KPg, a number of results are also known. An Q(n?) lower
bound for this problem is provided by [1]. In [4] its topological complexity is found. [8] gives a
parallel time lower bound. Some complexity properties of KPg are obtained in [6]. For related
discussion on the matter, the reader is also referred to [3]. In a recent paper [5], we consider
another formulation of the Knapsack problem for which we present some complexity results
and algorithms.

With the present note, we take one more step towards the study of the Knapsack problem
under the Blum-Shub-Smale computational model. We obtain a new lower bound € (nlogn) -
f(1/amin) for the time complexity of this problem, as well as an Q (nlogn) - f(b/dmin) lower
time complexity bound for the classical Boolean Knapsack problem o’z = b, x € {0,1}"
with positive integer coefficients. Here n is the dimension of the problem, api, 1s the minimal
coefficient in the input, and f is any continuous function of one variable. These lower bounds
appear as alternatives to the well known lower bound €(r?) [1] which applies to both cases.

We also construct certain algorithms for KPr. We suggest a way of defining the concept
of a pseudopolynomial algorithm for KPR and design such an algorithm. On integer inputs this
algorithm is pseudopolynomial according to the classical complexity theory. Overall, it is seen
as superior to the classical dynamic programming algorithm. Finally, we present two algorithms
with running times O(n?/¢) and O(n/(eamm)), respectively, with each finding approximation

solution with an absolute error bounded by &.

2 Model of Computation

Our results are valid in the Blum-Shub-Smale computational model [4]. As an overview, it suf-

fices to give an idea about the notions of problem size, arithmetic, cost of arithmetic, algorithm



and problem complexity.

In the model considered, a problem instance is a tuple of real numbers, with the number
of coordinates counting as the instance (or input) size. Infinite precision real numbers can be
stored and operated at unit space and time by the four arithmetic operations +,—,*,/ and
relation <.

Let 11 be a problem and Ap be any algorithm solving IlI. The cost of computation for
an instance of II is the number of arithmetic operations and branchings performed by An to
solve the instance. Then the (time) complexity of algorithm Ay is the maximal cost to solve
the problem, over all instances of size n. The (computational) complexily of 11 is the minimal
cost of solving II over all possible algorithms.

To obtain rigorous definitions and a detailed presentation of complexity theory over R

the reader is referred to [4] (see also [2]).

3 Lower Bound

As mentioned, an (n?) lower bound exists for KPg’s complexity [1]. Next we obtain an alter-
native lower bound Q (nlogn) - f(1/amin), where f is any continuous function of one variable.

Let us denote .
BF = {;v |z e {0,1}",> =k},
=1

where k& € N. Specifically, let us consider B2. We say that a pair (S, 52) of subsets of
B? is a linear separation of B2 if B2 = S; U S,, and S, = {L | x € BTQL,'LUTLL' < 0}, Sy, =
{x | z € B} wlz > 0} for some w € R™. We shall also say that the vector w defines the linear
separation (S, S3). Clearly, a linear separation (S, S2) can be defined by uncountably many

different vectors w. The following lemma can be proved along the lines of a similar claim in

[6]".

Lemma 1 Let &, = {z € R" | Vy € {0,1}" xTy # 0}. Then two points u,v € R" define the

same linear separation of B2 if and only if they belong to the same connected component of E,.

Clearly, the connected components of &, are open sets. In offering proof for our result,

we shall use the following lemma.

IThis work shows that the classes NTIME(O(n?)) and co-NTIME(O(n?)) are different. To this end, first
a characterization is given for the set of hyperplanes that separate a given threshold subset of K™, where
K ={0,1,...,k—1}. Lemma 1 provides an analogous characterization for the set of hyperplanes that define a

given linear separation.



Lemma 2 There are exactly n! distinet linear separations of B2, n > 2.

Proof. We use induction on n. Let us consider an arbitrary linear separation (57, S2) of B2_,,
defined by some vector w € R™. Without loss of generality assume that w; < wy < -+ < wy,_1.
If we choose w,, such that —w; < w,, —w;y1 < w, < —w; for 1 <1< n—2, and w, < —w,_1,

we obtain the following n linear separations (S{, Sﬁ) of B2for 0 <j<n-—1:

51 = {(2,0) |2 € Si} U <:c,1>|:ceB;_1,i1:ci=1},

] n—1
S5 = {(2,0) |z € S} U (2,1) |2 € Bl_,, % :cy;=1}.

Thus every linear separation of B?_, generates exactly n distinct linear separations of BZ.
Since there are two linear separations of B;, namely (0, {(1,1)}) and ({(1,1),0}), we find

that the number of all distinct linear separations of B? is n! a

Now we are in a position to prove the following theorem.

Theorem 1 Any algorithm solving KPg has lower time complexity bound Q (nlogn)- f(——),

@min

where [ is an arbilrary continuous function of one variable.

Proof. Consider the class of Knapsack problems KPgr which satisfies the condition % > a; >
for 1 <17 <n, and denote

L=

U={a|l2>a>%1<i<n},
A:{(J,|%2022]§,3T€{0,1}n aTrzl},
W=U\A

We define a correspondence between the set of linear separations of B? and the set of connected

components of W: if a vector w € R" defines a linear separation of BZ, then the vector

a = (a,as,...,a,) which specifies the corresponding connected component of W' is computed
by
1 n w;
a; ==+ —.
2 6 max |w
1<i<n

This correspondence can be seen as a continuous mapping. Consequently, for any two different
linear separations of B? there will be at least two different corresponding connected components
of W. Then, keeping in mind Lemmas 1 and 2, we can conclude that W has at least n! connected

components.



From [1] we have a lower bound Q(log ¢(W)) for the complexity of any algorithm solving
the considered subclass of Knapsack problems, where ¢(W) is the number of connected com-
ponents of W. Therefore any algorithm solving KPr must have time complexity Q(logn!) =
Q(nlogn). On the other hand, if k is a constant, f is any continuous function of one variable,
and if amin > 1/3, then f(1/amin) = O(1). Thus, if one assumes that there is an algorithm
for KPg with time complexity o(nlogn)- f(1/amin) for certain continuous function f, then, in
particular, for amin > 1/3 this algorithm will have time complexity o(n log n), which contradicts

the lower bound Q(nlogn). O

Clearly, an analogous lower bound holds for the complexity of the classical Boolean Knap-

T

sack problem a'x = b with integer coefficients. This problem is equivalent to the equation

al 1

b
Q(nlogn) - f(1/amin) = Q(nlogn) - f(b/amin). Thus, we have lower time complexity bounds,

x =1, where @ = ya. If Gy, = “2* is the minimal entry in @, we obtain the lower bound
both for the Boolean Knapsack problem with real coefficients and the classical formulation, and

these bounds are independent on the known lower bound Q(n?).

4 Algorithms for KPgr

In this section, we present and analyze the complexity of algorithms for KPg under the Blum-

Shub-Smale computational model.

4.1 “Pseudopolynomial” Algorithm

One direction of research in complexity theory over R can be seen as seeking appropriate
definitions for some basic notions, corresponding to the traditional terminology of the classical
complexity theory. It is difficult to discover universal definitions which would be expedient for
all possible numerical problems. As Smale notes in a related discussion [9], this only can be
done by “taking into account the particular numerical analysis setting, its limitations, and just
what a good algorithm can be expected to accomplish.”

In this type of attempt, we look for algorithms for KPg to be similar to the pseudopoly-
nomial algorithms for the Knapsack problem over Z. We shall call an algorithm for KPg
pseudopolynomial if its time complexity is bounded by a polynomial in the input size n and the
number 1/6(a), where 6 (¢) = min {|aTz| calz40, z€ {-1,0, 1}”} Note that if an algorithm
for KPg is pseudopolynomial according to this definition, then for integer inputs it will also be

pseudopolynomial according to classical complexity theory. The following result holds.



Theorem 2 There is a pseudopolynomial O (5((1)) time and space algorithm for KPg.

Proof Let us suppose first that the value of ¢ (a) is known in advance. We partition the
interval [0,1] into [1/d (a)] + 1 “cells” C; = [(j—1) d(a),76(a)), 1 <7< [1/0(a)] +1. In
particular, 0 € Cy = [0,6 (a)) and 1 € C1/5(a)j41 = [[1/0 (a)] 6 (a), |1/6 (a)] § (a) + 1).

According to the definition of § (a) above, there are no z,y € {0, 1}" for which a”z # a"y,
and such that ¢’z and oy fall into the same cell. Therefore KPg can be solved by the dynamic
programming algorithm with time complexity and memory space O (rn/d (a)).

Consider now the general case when the value of § (a) is unknown. Initially we set § = 1,
so that at the beginning we have two cells Cy = [0,1) and C; = [1,2). Then we start the
dynamic programming algorithm. At the first step, the variable z; is included. We obtain the
values 0 (for z; = 0) and a; (for z; = 1). We change the value of § to a; and then continue
with the next step of the algorithm.

After performing the jth step, for a current  and a corresponding set of cells, we have a
set V' of different values of the form
(1) Zk:aiwi, where z; € {0,1}, 1 <k <,

i=1
obtained at steps number 1,2,...,7. If all of these values belong to different cells, then we
proceed with the next step of dynamic programming algorithm. Otherwise, there is at least
one cell C' which contains two or three different values from V. This may happen in the following
two cases.

(a) A new value v = Zgzl a;x;, where z; =1, falls into a cell C' which already contains a

value of the form (1) for some k& < j — 1.

b) Two new values v’ = > 7_; a;2! with 2" = 1 and 0" = 37_, ;2" with 2 = 1, fall into
1=1 % 7 1=1 % 7 ?

the same cell C'. Clearly, this can happen only if v" and v” originate from two values lying in
neighbouring cells. Note that if C' also contains a value obtained at a prior step, then after the
jth step C' may contain three different values.

After we identify a cell wich has been established as having more than one value, we
recompute §. To this end, we compute the minimal difference between values of the form (1),
corresponding to pairs of neighbouring points in the interval [0,1]. The minimum is taken
over all such pairs. Then we assign the obtained minimum as a new value of §, next partition
the interval [0, 1] into a set of cells according to this value, and then perform the next step of
dynamic programming algorithm.

Clearly, each of the cells of this new cell partition will contain not more than one value

from the set V. Keeping in mind the definition of §(a), it is obvious that throughout the work

6



of the algorithm the value of § is maintained as greater than d(a). It is also easy to realize
that a new value of § and a corresponding new cell partition of the interval [0, 1] can be found
in time O(1/6) = O(1/6(a)). Thus, the overall time complexity of the algorithm is O(n/d(a)).

Moreover, it can be seen as using the same order of memory space. a

It is not difficult to see that the described algorithm is pseudopolynomial according to the

Ty = b with integer coefficients.

T

classical complexity theory, when it is applied to the equation a
In this case the above equation can be represented in the form a'z = 1 with a = %a, for which
the algorithm applies. Clearly, for such an input, the last value of § will satisfy the condition
§ > 6(a) > 1/b. Hence, in the extreme (worst) case when § = §(a) = 1/b, the complexity of our
algorithm will equal the complexity of the dynamic programming algorithm for the Boolean
Knapsack problem. Otherwise, it will be superior to the latter algorithm.

A similar situation takes place if we consider KPg with rational coefficients a; = p;/qg;,
pi,qi € Zy. This problem can be directly solved by using the algorithm of Theorem 2 in
time O(n/d(a)). In order to apply the classical dynamic programming algorithm, we first
obtain an equivalent formulation > | ¢;z; = M with integer coefficients ¢; = a;M, where
M = LCM(q1,qz,--.,qy) is the least common multiple of the integers ¢1,¢a, ..., q,. Then this
problem can be solved by the dynamic programming algorithm in time O(nM). It is easy to see
that the last value of § satisfies the condition § > 6(a) > 1/M. Therefore, our algorithm will

be faster than the dynamic programmic algorithm, except in the case where § = §(a) = 1/M,

when both algorithms have the same time complexity.

4.2 Approximation Algorithms

Let us consider the following optimization version of KPg.
Given a € R}, find 29 € {0,1}" that minimizes ‘CLT.'L' — 1‘ .

Our goal is to find approximation algorithms which solve this problem within a given error €.
In other words, we look for a solution to the following approximation Knapsack problem.
(e—KPg) Given a € R} and ¢ € Ry, find y € {0,1}"
such that ‘aTy —1 + e.

< min ‘aTx—l
ze{0,1}"

Our strategy is to reduce this problem defined over the real numbers to an equivalent integer
programming problem, which can be solved by applying a known integer algorithm. We notice
that in the first algorithm we follow the idea of Ibarra and Kim [7] for scaling the equation

coeflicients.



Theorem 3 There exist O ("5—2) and O ( - ) time algorithms for e—KPR.

€ Omin

Proof Let g € Argmin,cg 1y ale — 1‘ and y € Argmingg gy bl 2 — 1‘ for some b € Q™.

We have

‘(J,Ty—l‘ < ‘bTy—1|—|—‘(a—b)Ty‘ < ‘bTmo—l‘—l—‘(a,—b)Ty‘ <
‘aT:vo— 1‘ + ‘(b—a)Txo‘ + ‘(a—b)Ty‘.

We shall consider two ways to choose b.

1. b= U\](I/[a], where M = [21, and | Ma| denotes the vector whose components are the
£

closest integers to the corresponding components of Ma. For arbitrary = € {0,1}" we have

1

‘(a—b)T;c‘zﬁ‘(Ma—LMCL")T‘;US 171 =

e
5

N | —

€

n

Here 17 denotes the n-dimensional vector with all components equal to 1.) Then it follows
p q

that
‘(J,Ty—l‘ < ‘(J,TJJO— 1‘ + &.

The problem of finding min,eggo 1y bTa — 1‘ is equivalent to the problem of finding
\_Ma-‘T;v — M| We have that if y € Argmin, gy bla — 1‘ then b7y < 2. Then

the latter optimization problem can be solved in 2Mn steps and memory space by using dynamic

MiNge{o,1}"

programming. Thus, we obtain that the complexity of this algorithm is O (”6—2)
2. b= %—{ﬂ, where M = {*1, 0= min{], %} We have

Qmin s

be fa—sigat o] € o—2ptiat 2 Cfa(1-5),a (143)].

If o € Argmin,egoqyn aTxz — 1|, then aTxo < 2, so that

) €
‘(b— a)T xo‘ < §aTxo <6< 3

If y € Argmin, oy bz — 1], then (1 — %) aly < bTy <2, so that
) § e/3 2

—b) "yl < za'y < <=

(= )" | < 5 Y152 =127 3

Thus
‘aTy — 1‘ < ‘aT:vo — 1‘ + &.

As in Case 1, the problem of finding min,c o1y
\_McﬂT x—M

using dynamic programming. Hence the complexity of this algorithm is O (E . ) O

b — 1‘ is equivalent to the problem of

finding mingeo1y7 , which can be solved in 2Mn steps and memory space by

8



5 Concluding Remarks

In this paper we have presented some results related to the Boolean Knapsack problem with
real coefficients; in particular, we have obtained a lower bound Q (nlogn)- f(1/amin) for KPg.
Bearing in mind the other lower bound Q(nr?), we can ask the question: is there an algorithm
for KPR with time complexity O(n?=° f(1/amin)), § > 0?

We have suggested a definition for pseudopolynomial algorithm and have designed such
an algorithm for KPr. We think that this definition could be a starting point for defining this
theoretical construct for larger classes of numerical problems.

We notice also that all the obtained results can be adapted for the case of an integer
Knapsack problem with real coefficients (IKPg), when looking for a vector x € Z7 such that
alz = 1. Tt is easy to see that the lower bound of Theorem 1 is still valid in this case. Note
that another lower bound for the complexity of IKPg is Q(g(n)), where g(n) is an arbitrary

Ty = b with integer coefficients we get a

function [5]. For the classical Knapsack problem a
lower bound Q (nlogn) - f(b/dmin). Additionally, the result of Theorem 2 holds, provided that
the parameter §(a) in the definition of a pseudopolynomial algorithm is determined as § (a) =
Inin{|aTz| ca'z#0, z €27,z € [—[1/a;], Ll/azj]} The two approximation algorithms of
Theorem 3 can be straightforwardly modified for solving the corresponding approximation
version of IKPgr. The complexity of the first algorithm becomes O(n?(—log amin)?/c), while

the complexity of the second algorithm remains the same.
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