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Abstract
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1 Introduction

In this paper we show that approximating the shortest vector in a lattice
within any constant factor less than /2 is NP-hard for randomized reduc-
tions. We also give a deterministic reduction based on a reasonable number
theoretic conjecture.

The first intractability results for lattice problems date back to [11] where
van Emde Boas proved that the closest vector problem (CVP) is NP-hard
and conjectured that the shortest vector problem (SVP) was also NP-hard.

Since then, the hardness result for CVP was considerably strenghtned:
CVP was proved NP-hard to approximate within any constant factor in [3]
and within a factor 28" 7" in [6]. Despite the similarities between the two
problems, progress in proving the hardness of SVP has been much slower.
Even for the exact version of this problem, proving the conjectured NP-
hardness remained an open problem for a long time. Finally, Ajtai [2] proved
that the SVP is NP-hard for randomized reductions. In the same paper it is
shown that approximating the length of the shortest vector within a factor
1+ 217 is also NP-hard for some constant ¢. In [5] the inapproximability
factor is improved to 1+ #, but still a factor that rapidly approachs 1 as the
dimention of the lattice grows.

In this paper we prove the first inapproximability result for the shortest
vector problem within some constant factor greater than 1. This result is
achieved by reducing the approximate SVP from a variant of the CVP which
was shown NP-hard to approximate in [3]. The techniques to reduce CVP
to SVP are similar to those used in [2] where the problem is reduced from
a variant of subset sum. However the similarities between the CVP and the
SVP leads both to a simpler proof and a stronger result.

The rest of the paper is organized as follows. In section 2 we formally
define the approximation problems associated to SVP, CVP and a variant of
the latter. In section 3 we prove that the SVP is NP-hard to approximate by
reduction from the modified CVP using a technical lemma which is proved
in sections 4 and 5. The proof in section 4 results in a randomized reduc-
tion. The proof in section 5 uses a number theoretic conjecture, but gives a
deterministic reduction.



2 Definitions

Let ® be a vector in R". For any p > 1 let ||%||, = (X 2%)"/? be the p-norm
of X. The results in this paper hold, with the obvious modifications, for
any p-norm. However, for notational convenience we will concentrate on the
euclidean norm || - ||z which we will abbreviate with || - ||. Moreover, in most
of the proofs it will be more convenient to work with the squared norm || - [|.
In order to maintain the notation uniform throughout the paper and avoid
possible confusions, we will always use the squared norm ||X||* to measure
the length of a vector X.

We formalize the approximation problems associated to the shortest vec-
tor problem and the closest vector problem in terms of the following promise
problems, as done in [7].

Definition 1 (Approximate SVP) The promise problem GapSVPg, where
g (the gap function) is a function of the dimension, is defined as follows:

e YES instances are pairs (V,d) where V is a basis for a lattice in R,

d € R and ||VZ||* < d for some Z € Z™\ {6}

e NO instances are pairs (V,d) where V is a basis for a lattice in R,

d € R and ||VZ||* > gd for all Z € 7™\ {6}

Definition 2 (Approximate CVP) The promise problem GapCVPg, where
g (the gap function) is a function of the dimension, is defined as follows:

e YES instances are triples (V,y,d) where V € Z¥" vy € 7% d € R and
\VZ —§||* < d for some Z € Z".

e NO instances are triples (V,¥,d) where V € Z¥" § € Z* d € R and
IVZ —§)|> > gd for all Z € Z7.

We also define a variant of CVP, which will be used as an intermediate
step in proving the hardness of approximating the shortest vector in a lat-
tice. The difference is that the YES instances are required to have a boolean
solution, and in the NO instances the target vector can be multiplied by any
non-zero integer.

Definition 3 (Modified CVP) The promise problem GapCVPy, where g (the
gap function) is a function of the dimension, is defined as follows:



e YES instances are triples (V,¥,d) where V € Z¥*" y € 7% d € R and
IVZ —§||2 < d for some Z € {0,1}".

e NO instances are triples (V,y,d) where V € Z¥" y € Z* d € R and
|VZ — wy||* > gd for all Z € Z™ and all w € Z.

In [3] is it proved that GapCVP. and its variant GapCVP, are NP-hard for
any constant c.

3 Hardness of approximating SVP

In this section we use the hardness of approximating the closest vector in a
lattice to show that the shortest vector problem is also hard to approximate
within some constant factor. The proof uses the following technical lemma.

Lemma 1 For any constant € > 0 there exists a (probabilistic) polynomial
time algorithm that on input 1¥ computes a lattice L € RUDX™ ¢ vector
s € R and a matriz C € ZF*™ such that with probability arbitrarily close

to one,
e For every non-zero Z € 7™, ||LZ||* > 2.

o For all X € {0,1}* there exists a Z € Z™ such that CZ = X and
ILZ —§|* <1 +e.

The proof of the above lemma will be given in the next section. We can
now prove the main theorem.

Theorem 1 The shortest vector in a lattice is NP-hard to approximate within
any constant factor less than /2.

Proof: We will show that for any € > 0 the squared norm of the shortest
vector is NP-hard to approximate within a factor 2/(1 4+ 2¢). The proof is
by reduction from the modified closest vector problem. Formally, we give a
reduction from GapCVP, to GapSVPg with ¢ = 2/¢ and g = 2/(1 + 2¢).

Let (N,¥,d) be an instance of GapCVP.. We define an instance (V,t) of
GapSVPg such that if (IV,¥,d) is a YES instance of GapCVP; then (V,1) is a



YES instance of GapSVPg, and if (N,¥,d) is a NO instance of GapCVP then
(V,t) is a NO instance of GapSVPg.
Let L,s and C be as defined in lemma 1. Let t = 1 + 2¢ and let V' be the

matrix
L —s
V= l,B-NoC‘—,B-y’]
where = y/¢/d.

e Assume that (N,¥,d) is a YES instance, i.e., there exists a vector X €
{0,1}* such that ||[NX — ¥||* < d. From lemma 1 there exists a vector
Z € Z™ such that CZ = X and ||[LZ — §]|* < 1 + e. Define the vector
W = lf] We have

VW2 = |LZ — §|] + BY|NR — §||> < 1 + 2 =t

i.e., (V,t) is a YES instance of GapSVPg.

e Now assume that (N,¥,d) is a NO instance and let w = LZU S AGE

be a non-zero vector. We want to prove that ||[VW|* > ¢g-¢ = 2. Notice
that ||[VW|?* = ||LZ — ws||* + B?||NX — wy|*>. We prove that either
|LZ — ws]|* or B*||NX — wy||* is greater than 2. If w = 0 then Z # 0
and || LZ—wy¥||* = ||LZ||* > 2. If w # 0 then B%| NX—w¥|* > 3?%cd = 2.

4 Proof of the Technical Lemma

To prove lemma 1 we need a result from [2] and three other lemmas. Lemma
2 and Lemma 3 will also be used in the next section.

Lemma 2 For all € > 0, for all sufficiently large integers b, the following
holds. Let py,...,p, be m relatively prime positive integers. Let P € R™



be the vector P; = log, p; and let D € R™*™ be the diagonal matriz D;; =

\/logy pi. Define the matrix
[ \/1og, p1 0 |

D 0 - :
L= 0 1/CL = lo
/ / \/ 8 Pm 0
BP B/blnb 0 0 /a
| Blogypr -+ Plogypm, | B/bInb |

where a = %65/2 and 3 > /2blnb. Then for all non-zero integer vectors
ze Z™ || LZ))* > (2 —¢).

Proof: Let Z € Z™*! be a non-zero vector. Define the vector Z’ = [21,. .., z,]".
Notice that

122" = || DZ'||* + (—ZmH)Q + 32 (pz' = Zm“>2.
a ' blnb

We want to prove that ||LZ||? > 2 — .
If Z =0, then z,,41 # 0 and

/ 2 , 2
I1LZ]* > p? <PZ’ + Zm—“>2 Y A T L
- blnb blnb mH = A\blnb) ~

So, assume Z' # 0. Let Z¥,Z~ € Z™ be the vectors defined by z =
max{z/,0} and z; = max{—=z/,0}. Define the integers g* = VP2 = Mp;
and ¢g- = bPZ" = TI,p;' . Notice that Z' # 0 implies Z* # Z~ and since
the p;’s are relatively prime, ¢ # ¢g~. We observe that for any posi-
tive integers = # vy, |log, z — log, y| > m (proof: |log, x — log,y| =
logy(max{z, y} min{z, y}) = log, (1+lz—l/ min{z,y}) > log,(1+1/,/75)
log,2/\/zy = 1/(\/xylgd).) In particular, |PZ'| = |log, gt — log, g7 |
(VgTg=1gb)™', and since log, gT¢g~ = PZt + PZ~ < |DZ*|* + | DZ"|)?

| DZ'||* we have

v Iv

1

IDZ7)
2

|PZ'| >



Now assume for contradiction that ||LZ||* < 2 —e. We have ||[DZ'||* < 2 — ¢
and |zp41| < av/2. It follows

— > — Zm+1
17 = g|P7+
> = Zm-l—l )
= (lPZ| blnb

> 3 ! _av2
= P\p-721g6 ~ bInb

3
/ /219 _ f
> (—blnb) (62102 — av/2)
> V26 (In2 —V2/3) > V2

d

Lemma 3 Let L be the matriz defined in lemma 2 and assume 3 < b*~°.
Define the vector § = [0,...,0,58]T € R™"*2. For every vector Z' € {0,1}™,
let ¢ = W pf and Z = [(Z)7,b — g]T. For every positive § < 1/2, if

|2my1| = |0 — g| < ba, then ||LZ —§||* <14 6.
Proof: Notice that

IDZ| = P7 = log, g = logy(b— zp1) = 1 + log, (1 - Zmb“) .

Therefore, using the inequality |In(1 + z) — z| < z? valid for all |z| < 1/2,
we have

lz-s = g+ () s g (P )
a ' blnb

2
C g (1 2 4 ()

a
) (1) ey
‘|‘(m In({1 — b + b
2
Z'm—l—l Zm—l—l 2 ,8 (Zm+1>4
1 — L
blnb+( a ) +<lnb) b

a ,  af d*B ?
1+5<—)+5 +5 <14
binb

IN

IN




Lemma 4 For all0 <y < 1, A > 0 and all large enough n, if b is chosen at
random from the set T of all products of n distinct primes less than n2+¥»™"
then with probability exponentially close to 1 there are at least n™ elements
g € ' such that |b— g| < \b.

Proof: Let m be the number of primes less than n**7" . From the prime

number theorem we have m > n2t27 =7/ for all large enough n, and
n 2 —

IT'| = (Z) > (%) > n(1+3-3)" Notice that T C [0, 3+ 1)”]. Divide

[0, n2+7)7] into k = n(G=3)" intervals each of size n(** %), Let I, the

interval containing b. We will prove that with probability exponentially close
to one |g — b] < AbY for all g € I, and [, NT| > n". Let g € I,. We have
lg — b < |I,| and

4 < Ak

Pr(| > A7) = Pr(b< A7 |1 T

[N

4 ()
< Ao Ty
n(l—}- —g)n
To bound the size of I, N T, observe that each interval I, is chosen with
probability |7, N T'|/|T'|. Therefore we have

2=
=

|
—
-
wl |
=2
N—
3

20

Pr(|,nT| <n") = Pr (Pr(]b) < "—) —

T T
14222,
= n"- n(%_?)nﬂﬂ < - o n=(3)n
- n 1+%—%)n

d

Lemma 5 For all ay,az > 0, there exists 61,062,063 € (0,1) so that for all
sufficiently large n the following holds: Assume that (S, X) is an n-uniform
hypergraph, n? < |S| < n®, |X| > 202nlen k= p% and Cy,...,C} is a
random sequence of pairwise disjoint subsets each with exactly |S|n=(+%)
elements, with uniform distribution on the set of all sequences with these
properties. Then, with probability of at least 1 —n=% the following holds: for
each f € {0,1}* there is a T € X so that f(5) = |C;NT| for all 5.

Proof: See Theorem 2.2 in [2]. O



We can now prove lemma 1. Let € be a positive constant less than 1/2 and
let k£ be a sufficiently large integer. Let 61, 6,, 65 be the constant defined in
lemma 5 with a; = 2+ 4¢™! and ay = 1. Let n = k1%, Let L be the matrix
defined in lemma 2 with py, ..., p, the set of all primes less than n2t4”"
b chosen at random among the products of n distinct such primes.

From lemma 2 we know that ||LZ||? > 2 — € for all non-zero Z € Z™**.

Let C' € {0,1}*("+1) be the matrix defined by C;; = 1 iff j € C;, where
C1,...,Cy are the sets defined in lemma 5 with S = {py,...,pn}.

For every X € {0,1}*, let f(j) be the function f(j) = x;. Define X to
be the set of all T C S such that |T| = n and |b — ert| < 56;/2. From
lemma 4 (with v = ¢/2 and A\ = ¢/3) we have |X| > n" = 278" and from
lemma 5 there exists a T € X such that |C; N T| = f(j) for all j. Let
Z' € {0,1}™ be the indicator vector of the set T', g = Il;ezt and define the
vector Z = [(Z')T|b — g]T. Notice that |z,,41| < 5b;/2. We have CZ = X, and
from lemma 2, ||LZ]|*> < 1+ e.

and

5 A Deterministic Reduction

In this section we show how the proof of the technical lemma can be made
deterministic using a number theoretic conjecture. The conjecture is the
following.

Conjecture 1 For any e > 0 there exists a d such that for all large enough ~,
there exists an integer in [,y +~°] which is square-free and (log® n)-smooth,
i.e., all of its prime factor have exponent 1 and are less than log n.

We remark that altough the above conjecture is a plausible one, proving
it is probably beyond the the possibilities of current mathematics.

We now show that if the above conjecture is true, then there exists a
deterministic algorithm satisfying the requirements of Lemma 1. Let € be
a positive real between 0 and 1. Let d be such that for all large enough ~
there exists a (log? 7)-smooth square-free integer in the interval [,y +~/3].

2 6/6
Let I € Rm+2)x(m+1) he the matrix defined in Lemma 2 with b = <%) ,

m = k + log?b, p,...py distinct prime numbers of size between k and 2k,
and pri1,...,pn the first m — k prime numbers. Let § € R™? be the



vector defined in Lemma 3. Finally, let C' € {0,1}¥*("+1) be the matrix
C = [1i|Okx (mt1—k))-
From Lemma 2 we know that for all non-zero Z € Z™% ||LZ||* > (2 — ¢).
It remains to prove that for all X € {0,1}* there exists a Z € Z™*! such
that CZ = X and ||[LZ — §||> < 1 +¢. Fix some X € {0,1}* and define
o = T5 pf and v = |b/a]. Notice that a < 4¥* and v > 4°%°. Therefore,
for all sufficiently large k, the interval [, v +~¢3] must contain a square-free
(m — k)-smooth integer, i.e., there exists a vector y € {0,1}™% such that
;’;kpz;i =~ + & for some § < y/2 < b3, Let g = T2 p? = a(y + §) and
define the vector

CZ = X is obviously true. To prove ||[LZ — s||* < 1 + ¢, notice that
b b
a a

Theorem 2 If Conjecture 1 holds true, than there exists a deterministic
algorithm satisfying the conditions of Lemma 1.

b 2 |
Ib—g| = a < ab < 4F b3 = (¢/3)b/*

«

W+5ﬂ=a

and apply Lemma 3.

Corollary 1 If Congecture 1 holds true, than GapSVP. is NP-hard for any
c < 2.
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