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Abstract

We consider the existence of pairs of probability ensembles which may be efficiently distin-
guished given k samples but cannot be efficiently distinguished given k' < k samples. It is well
known that in any such pair of ensembles it cannot be that both are efficiently computable (and
that such phenomena cannot exist for non-uniform classes of distinguishers, say, polynomial-size
circuits). It was also known that there exist pairs of ensembles which may be efficiently distin-
guished based on two samples but cannot be efficiently distinguished based on a single sample.
In contrast, it was not known whether the distinguishing power increases when one moves from
two samples to polynomially-many samples.

We show the existence of pairs of ensembles which may be efficiently distinguished given k+1
samples but cannot be efficiently distinguished given k samples, where k can be any function
bounded above by a polynomial in the security parameter.

In course of establishing the above result, we prove several technical lemmas regarding poly-
nomials and graphs. We believe that these may be of independent interest.
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1 Introduction

Computational indistinguishability, introduced by Goldwasser and Micali [7] and defined in full
generality by Yao [11], is a central concept of complexity theory. Two probability ensembles,

{ X, }nen and {Y, }oeny, where both X, and Y, range over {0,1}", are said to be indistinguishable

by a complexity class if for every machine M in the class the difference dy(n) % [Pr(M(X,) =

1) = Pr(M(Y,)=1)| is a negligible function in n (i.e., decreases faster than 1/p(n) for any positive
polynomial p).

We stress that, in the definition recalled above, the distinguishing machine (i.e., M) obtains
a single sample (from either distributions), and casts its “verdict” based on this sample. An im-
portant and natural question is what happens when the distinguishing machine is given several
samples. It is well known that in several cases (see below), computational indistinguishability is
preserved also when many samples are given to the distinguisher. That is, in these cases, if two
ensembles are computationally indistinguishable by a single sample then they are also computation-
ally indistinguishable by (polynomially) many samples. Two important cases where this happens
are:

1. When the two probability ensembles are polynomial-time computable, and one considers
probabilistic polynomial-time distinguishers. (An ensemble {Z,},cn is polynomial-time com-
putable if there exists a probabilistic polynomial-time sampling algorithm, S, such that S(17)
and Z, are identically distributed.)

2. When one considers computational indistinguishability with respect to the class of non-
uniform polynomial-size circuits.

In both cases the proof amounts to using the multi-sample distinguisher to derive a single-sample
distinguisher, by incorporating copies of the two ensembles into the single-sample distinguisher (cf.,
[5, 4]). This is possible using the fact that the class of distinguishers is able to generate samples
from each of the two ensembles.

However, it has been shown that the above may fail in certain other cases (cf., [3, 8, 6]).
Specifically, there exists a pair of (non-efficiently computable) ensembles which, on one hand,
are computationally indistinguishable by (uniform) probabilistic polynomial-time algorithms which
take a single sample, while on the other hand, can be distinguished in polynomial-time given two
samples.

It has been unknown whether separations as above may exists between distinguishability based
on, say, 2 samples and 3 samples. Furthermore, it was not known if there is a separation between
2 samples and polynomially many samples.

We show a separation between k samples and &k + 1, for any polynomially-bounded function
k : N +— N. That is, there exist a pair of probability ensembles which are (polynomial-time)
indistinguishable based on k samples and yet can be distinguished (in polynomial-time) given k+ 1
samples.

2 Formal Setting

In this paper we call P = { P, },cn a probability ensemble if, for some polynomially-bounded length
function £ : NN, P, is a distribution on the set of strings of length ¢(n). The corresponding (to
the length function ¢) uniform ensemble, denoted U = {U, },.¢n, has each U, uniformly distributed
over {0, 1}¥"), A function, u :Nw— [0, 1], is called negligible if for every positive polynomial p and all



sufficiently large n’s, u(n) < 1/p(n). The latter definition is naturally coupled with the association
of efficient computation with polynomial-time algorithms: An event “occurs negligibly” if it cannot
be observed after a feasible (i.e., expected polynomial) number of trials.

Definition 2.1 (indistinguishability by & samples): Let k: N—N be any polynomially bounded
function, and P = { P, },,evy and Q = {Qn }nen be a pair of probability ensembles. The ensembles P
and Q are said to be indistinguishable by k samples if for every probabilistic polynomial-time machine
M the function

-k (n) Ak(n)

dur(0) < Pr(M(PE) = 1) = PrOU@) = 1)
is negligible, where F:(n) (resp., @:(n)) represents k(n) independent copies of P, (resp., Q,).

A “strong” negation of the notion of indistinguishability is presented by the notion of distinguisha-
bility. A function, g : N[0, 1], is called noticeable if there exists a positive polynomial p so that
for all sufficiently large n’s, u(n) > 1/p(n). We stress that the two notions do not complement one
another, but rather leave a gap in-between, since the underlying notions of negligible and notice-
able are not complementary. Clearly, a negligible function is not noticeable, but there are functions
g : N[0, 1] which are neither negligible nor noticeable (e.g., u(n) = 1if n is even and 0 otherwise).

Definition 2.2 (distinguishability by k& samples): Let k:N—N, P = {P,},cy and Q = {Q, } e
be as in Definition 2.1 above. The ensembles P and Q are said lo be distinguishable by k samples if
there exists a probabilistic polynomial-time machine M so that the functlion dy, defined as above,
s noticeable.

Theorem 2.3 (main result): Let k : N—N be any polynomially bounded function. Then, there
exists a probability ensemble, P = {P,},cn, where P, ranges over strings of length 2n, so that

1. Indistinguishability by & samples: The ensemble {P,}, ¢ is indistinguishable from the uniform
ensemble, U = {U,},cn, by k samples. Furthermore, for any probabilistic Turing machine
M which takes k samples, and for all sufficiently large n’s,

Pe(M(P ™Y = 1) = Pe(M(T ™) = 1)] < 27900

where F:(n) (resp., U:(n)) represents k(n) independent copies of P, (resp., Uy,).

2. Polynomial-time distinguishability by & 4+ 1 samples: The ensemble {P,},.n is distinguishable
from the uniform ensemble U by k + 1 samples. Furthermore, there exists a deterministic
polynomial-time machine M such that for all sufficiently large n’s,

e it 1
1Pr(M(P Yy = 1) — ProM (T = 1)) > 3

n

where F:(H)H (resp., U:(H)H) represents k(n) + 1 independent copies of P, (resp., U,).

Furthermore, P, can be generated by a probabilistic circuit of size polynomial in n. In case one
only wishes to fool probabilistic polynomial-time distinguishers (in item 1), the n'™ circuit can be
constructed in time e(n), where e : NN is any function which grows faster than 2"°, for every
c> 0.



Thus, with respect to uniform computations (and general ensembles which may not be polynomial-
time computable), the “sample hierarchy” is strict. We comment that one may also construct a
pair of probability ensembles, P = {P,},cy and Q = {Q,},en such that both satisfy the above
theorem and furthermore

IPr(M(P2Y) = 1) — Pr(M(QE™ T

n

y=1)] > 1 —27%)

where M is as in Item 2 above.

3 Proof of Main Result

We prove Theorem 2.3 by first studying a problem concerning polynomials of low degree over a big
finite field.

3.1 Typical Polynomials

Standard Notations: Let F be a finite field. Denote by F; the set of polynomials of degree at

most d over F.

Less Standard Notations: For T = (z,...,2;) € F* (i.e., each z; in F), we extend the definition
of polynomials so that, for any polynomial p, we have p(Z) = (p(z1), ..., p(zr)).

Motivating Discussion. Clearly, for every f : (F¥)? — [0, 1],

Ezerr peri, (f(Z,0(7))) = Fzger(f(Z,7))

Equality would hold if # was uniformly selected among the set of k-sequences consisting of k
distinct elements of F. For such Z’s, the sequence p(T) is uniformly selected over F*, given that p is
uniformly distributed in F;_;. It is appealing to conjecture that there exists a polynomial p € F;_;
so that

Ezer (f(Z,p(7))) = Ezger(f(7,7))

However, as shown below (see Proposition 3.5), this is false. Instead, we consider degree k polyno-
mials which are examined at k arguments (rather than at k& 4+ 1 arguments). In this case, we show
that for every f: (F*)? — [0, 1] most polynomials p € F} satisfy

Ezere (f(Z,p(7))) ~ Ezger(f(Z,7))
We call such polynomials ( f, k)-typical. More generally,

Definition 3.1 (typical functions): Let k € N, € € [0,1] and f : F¥ x F¥ — [0,1]. A function
g:F— F is called (f,k,€)-typical if

[Ezer(f(T,9(2))) — Ezger(f(Z,7))] < €

Following the above discussion we will consider an arbitrary f : (F*)? — [0, 1] and prove

1. For some absolute constant ¢ > 0 the following holds. For every finite field F, & < |F|'/¢

and every f:(F¥)?— [0,1] all but at most an |F|~¢ fraction of the degree k& polynomials are
(f, k,|F|~¢)-typical. (See Lemma 3.2.)



2. For every finite field F and every k£ < /|F|/10 there exists a (polynomial-time computable)
function f : (F¥)? — [0,1] so that no degree k — 1 polynomial is (f,%,0.4)-typical. (See
Proposition 3.5.)

Using the above, Theorem 2.3 is proven by standard diagonalization. The high level plan is as
follows. Using parameter n, we consider F' = GF(2"), and wish to fool the first {(n) (e.g., t(n) = n)
probabilistic machines which takes k(n) samples. These machines give rise to {(n) functions f; as
above, and by Item 1 there exists a degree k(n) polynomial, denoted p, which is (f;, k(n), 2 U")-
typical for all i’s. Using p, we define the n™ distribution, denoted P,, as (z,p(z)) where = is
uniformly distributed over F, and infer that none of the above machines can distinguish k(n)
samples taken from P, from k(n) samples taken from the uniform distribution over pairs F x F. On
the other hand, by Item 2 (substituting & for k(n) + 1), there exists a polynomial-time algorithm
which distinguishes k(n) 4+ 1 samples from P, from k(n) + 1 samples taken from the uniform
distribution. For details see Section 3.4.

3.2 Almost all degree k& polynomials are k-typical

The most involved technical part of this work is proving that for any f : (F*)? — [0, 1] most degree
k polynomials are (f, k, |F|~1)-typical. That is,

Lemma 3.2 There exists a constant ¢ > 0 so that for every f : (F*)? — [0,1], setting p =

Ezger (f(Z,7)) and € def f|1F/|cc the following holds

Proer, (|Bzerx (f(Z,p(T))) —ul > €) < e

The lemma is proven in the next section. As a warm-up we prove that for any such f most
degree 2k — 1 polynomials are (f, k, |F|~%))-typical. This suffices to establish a weaker version of
Theorem 2.3 (i.e., separating distinguishability by k& samples from distinguishability by 2k samples).

Lemma 3.3 Let [ :(F*)? — [0,1], and p Lt Ez gerx(f(Z,7)). Then, for any € > 0

k,Z
Pryer,_, (|Ezerr (f(Z,p(T))) —p| > €) < €2—|F|

Proof: Consider the probability space of all possible choices of p € Fq;_; with uniform distribution.

Define random variables (over this probability space) so that (z Lt (@, p(T)), for every T € F*.

The claim of the lemma can be rephrased as

PTPEsz—1 (

This will be established by applying Chebyshev’s inequality to the (,’s. Specifically, we will show
that the expected value of the sum of the ('s is approximately |F|*-u, and that with high probability
the sum of the (,’s is close to its expected value. In showing the latter we will use the fact that
the (,’s are “almost pairwise independent” (as in [1, Sec. 4.3]).

Fact 3.3.1: [ [F* -yt — Yoer B(G) | < 52

2:[F|

Z == [F["-u

TeFk

k k*?
>e-|F|) < e (1)



Proof: For every T = (z1,...,x;) € F* with |[{zy,...,2,}| = k, we have

E(Gz) = Epera_,(f(F,p(7T)))
= Eyer(f(7,7))

since for such an 7 = (21,...,2;) the values p(z,),...,p(z;) are uniformly and independently dis-
tributed in F. Observe that the fraction of Z’s consisting of k distinct z;’s is at least 1 — (;) R,
and so

Ejﬂﬁ)zlﬂb&mwﬁﬁm)i(g-mhl

TEFk
k
s (9 )
2
k,Z
- k
( > m) R

Proof: We first observe that for every 7 € F*, for all but at most a (£)/|F| fraction of the 7’s in
F*, the random variables (z and (7 are independent. This follows since these random variables are

as claimed. O

Fact 3.3.2:

Y. G&- Y EG)

zeFk zeFk

independent whenever the sequences 7 and 7 have no common element. (Here we use the hypothesis
that the probability space is uniform over the set of polynomials of degree 2k — 1 over F. For such
a random polynomial, p, the sequence p(z1), ..., p(zt), p(¥1), --., P(yx) is uniformly distributed over
F?*.) Now applying Chebyshev’s inequality (cf., [1]), we have

(Z@ > >>—W)<Yﬂ&ﬂ@

TCFk FEFk (6/2)2 ' |F|2k
o LEVARG) | 4 Tey cov((z Gz)
2 - [F[?* 2 - [F[?*
Now, as usual, the first term is upper bounded by 4-|F|*- LTL T As for the second

= = A S E
term, let Iz denote the set of s for which (z and (7 are stochastically independent. By the above
observation we have J—k% >1-— and by definition cov((z, () = 0 for every ¥ € Iz. Thus, the

|F
second term is bounded by

Ccov CE)C cov vac
Py <y Y e

IFI ’

TAY TeFk yeF*
PPN\ I - (1/4)
4 - L B S S A
<l
k-1
- |F|

The claimed bound follows by combining the bounds for the two terms. O

We may assume that - < 1 and € < 1 (or else the lemma holds vacuously). It follows that

IFI
21“;' < % < 3. Thus, combining the two facts, the lemma follows. Specifically, by Fact 3.3.1

[[F|* i — Yger B(GF) | < §, and using Fact 3.3.2 - Eq. (1) follows.

Instantiating the above lemma (using € = |F|~'/3), we have



Corollary 3.4 Let f be as above, and k < </|F|. Then for all but a |F|~*/% fraction of p’s in Foy_,

|Bzer (f(7,p(T))) — Ezger (f(7,7))] < |F|7'/3

That is, all but a |F|~*/% fraction of the degree 2k — 1 polynomials over ¥ are (f, k,|F|~*/3)-typical.

3.3 No degree k£ — 1 polynomial is k-typical

In contrast to Lemma 3.2 (as well as to the weaker Lemma 3.3), we have

Proposition 3.5 There exists an (efficiently computable) function f so that for any polynomial
pe

2

Eaers(J(F,p(E))) — 0.5] > 0.5—|’}—| )

Ezger:(f(Z,7)) = 0.5 (3)

Proof: Consider any easily recognizable set, S, containing exactly half the elements of F. Consider
the algorithm f, which given k pairs, denoted (z1,¥1), ..., (Zk, ¥ ), finds a (typically unique) degree
k —1 polynomial p’ satisfying p'(z;) = y;, for i = 1, ..., k. (In case there are several possibilities, the
algorithm selects p’ uniformly among them.) The algorithm outputs 1 if p’(0) € S and 0 otherwise.
(Here is where we use the hypothesis that S is an easily recognizable set.)

Cousider any p € Fy_1, and suppose that the algorithm is given & random pairs with y; = p(x;).
With probability greater than 1 — k2 - |F|=!, we have |{z,...,2;}| = k and so the extrapolated
polynomial (i.e., p’) equals p. In such a case the algorithm’s output is determined by the predicate
p(0) € S and so is identically zero or identically one. Thus, Eq. (2) follows.

However, when the y;’s are uniformly selected, the value of the extrapolated degree k — 1
polynomial p’ at any fixed point (e.g., p'(0)) is uniformly distributed. Thus the algorithm’s output
is uniformly distributed in {0,1}, and Eq. (3) follows. W

3.4 Using Typical Polynomials

Using Lemma 3.3 and Proposition 3.5, we can prove the existence of probability ensembles which
are indistinguishable from the uniform ensemble by k samples but distinguishable from it by 2k
samples. More generally, we have the following lemma.

Lemma 3.6 Lel i : N—N be any non-decreasing and unbounded function, and k, k' : N—N be
two polynomially-bounded functions so that k(n) < k'(n) for every n. Suppose that for some ¢ > 0
and any function [ : (GF(27)*)2 s [0, 1] all but at most a 1/2t(n) fraction of the degree k'(n) —1
polynomials over GF(2") are (f, k(n),2™°")-typical. Then, there exists probability ensembles, P =
{P.}neny and Q = {Q,}nen, where P, (resp. (),) ranges over strings of length 2n and can be
generated by a probabilistic circuit of size poly(n), so that

1. The ensemble P is indistinguishable from the uniform ensemble, U = {U,},cn, by k samples.
Furthermore, for any probabilistic Turing machine M which takes k samples,

—=k(n)

Pr(M(PE™) = 1) - Po(M(T"™) = 1)| < 2790

n

where Fi(n) (resp., U:(n)) are as in Theorem 2.3. Same for Q.



2. The ensemble P is distinguishable from the uniform ensemble U by k' samples. Furthermore,
there exists a deterministic polynomial-ttme machine M such that

' i 1
Pr(M(P "y = 1) = PeMT ™) = 1)) > = — 27
n 2

n

Same for Q. Furthermore,

k' (n)

Pr(M(PE ™) = 1) = Pr(M(@. ) = 1)] > 1— 27

Theorem 2.3 follows by combining the above lemma (using k'(n) = k(n) 4+ 1) with Lemma 3.2,
whereas a weaker statement with £'(n) = 2k(n) follows by combining the above lemma with Corol-
lary 3.4. In both cases we may set ¢ : N— N to be any non-decreasing and unbounded function
so that {(n) < 27/ (e.g., t(n) = n or {(n) = logn will do, alas the hypothesis holds even for
t(n) = 27/00),

Proof: We construct P, by considering the first {(n) machines in an enumeration of probabilistic
Turing machines. For each such machine, M, we define fy(a, () = Pr(M(a,3)=1)." By the
hypothesis, for each such M, all but at most 1/2¢(n) of the polynomials, p, of degree k'(n) — 1 over
F = GF(2") satisfy

|[Ezerron (fu (T, p(T))) = Ezgerron (fu (T, 7)) < 277 (4)

Thus, for more than half of the polynomials, p, of degree k'(n) — 1 over F it holds that for each of
the first ¢(n) machines, M,

|Ezerren (Pr(M(Z, p(T))=1)) — Bz gepren (Pr(M(Z,7)=1))| < 9-n/3 (5)

In particular, let fix an arbitrary polynomial p € Fyi,)_1 satisfying Eq. (5) (for all these M’s) so
that p(0) is one of the first 2"~! elements of F (by some standard enumeration). Such a polynomial
does exist since exactly half of the polynomials satisfy the latter condition and less than half do
not satisfy the former. Similarly, we fix ¢ € Fy(,)_1 satisfying Eq. (5) so that ¢(0) is one of the last
27=1 elements of F.

Using this polynomial p, we define P, to be uniformly distributed over {(z,p(z)): z € GF(2")}.
Similarly, @,, is defined to be uniformly distributed over {(z,q(z)): z € GF(2")}.

By Eq. (5), Item 1 of the lemma holds. To establish Item 2, we use the algorithm of Proposi-
tion 3.5: We extrapolate a degree k'(n) — 1 polynomial, based on the given £’(n) samples, and test
whether its free term is one of the first 2"~ elements of F. Clearly, the answer is almost always YES
when given k'(n) samples from P,, whereas it is almost always NO when given k/(n) samples from
Q... (Here “almost always” means with probability 1 —27%")) The answer is YES with probability
1

5 when given k’(n) samples from the uniform distribution over {0,1}**. The lemma follows. |l

4 Proof of Lemma 3.2

Our proof consists of the following four steps:

! We slightly abuse notation here. The input to M is a sequence of k pairs, (a1, f1), ..., (@k, Bx), and so we actually
have far(ai,...,ax, f1,..., Bx) = Pr(M ((a1, $1), ..., (ak, Bx))=1).



1. We consider a bipartite graph in which edges link left-side vertices of the form (7,7) € (F*)?
with right-side vertices p € Fy, iff p(Z) = . We claim that for any f : (F*)? — [0, 1], for
almost all p € F the average of f over the neighbors of p approximates the average of f over

all (F*)2

2. We consider an auxiliary multi-graph (having parallel edges and self-loops) over the vertex
set Fy, with edges representing paths of length 2 in the former graph. We show that a good
upper bound on the second eigenvalue of the auxiliary graph implies the former claim.

3. Reversing the well-known connection between eigenvalues and rapid-mixing, we show that
the rapid-mixing of a random walk on a graph implies a good upper bound on the second
eigenvalue of the graph. (This part has appeared implicitly in many works.)

4. Finally, we show that a random walk on the auxiliary graph is sufficiently rapidly mixing (to
yield a good enough bound on the second eigenvalue).

Initial simplification. We assume throughout that £ < |F| (as otherwise Lemma 3.2 holds
vacuously). Recall that Lemma 3.2 asserts that for some €y, § = O(kY-|F|=¢), all but at most an
€o fraction of the k degree polynomials are (f,k,dp)-typical. This statement refers to expectation
taken over all Z’s in F*. As we have seen in the previous section, it is more convenient to consider
only T = (21, ...,2)’s consisting of distinct 2;’s. Let F*) denote the set of such sequences, that is

FOE (o) a) € Fr s ooy # o (Vi 4)) (6)

Then, Lemma 3.2 would follow if we establish, for ¢, = ¢; and é; = 6q — %, that all but at most a
€; fraction of the k degree polynomials satisfy

|Ezero (f(Z, (7)) = Ezeros gerr (f(Z,7))| < & (7)

(Lemma 3.2 follows since the difference between expectation taken over 7 € F* and expectation
taken over 7 € F™®) is at most (’2“) -|F|~'.) From this point on, we consider probability spaces where
7 is uniformly distributed over F(*),

The bipartite graph Gr ;. We consider a bipartite graph, denoted Gp j, with vertex set Up 5 U
def def

Vi, where Up, = F®) x F¥ and Vg, = Fj. The edge set of the graph, denoted & C Up, X
Vi 1, consists of pairs ((Z,7),p) where p(Z) = 7. Clearly, each vertex p € Vp; has exactly |[F(*)]
neighbours; specifically, its neighbour set, denoted I'(p), equals {(Z,p(Z)) : 7 € F®}. Using the
fact that T consists of distinct elements, we know that each vertex (Z,7) € Up has exactly |F|
neighbours, corresponding to the |F| degree k& polynomials p’s which satisfy p(Z) = . Thus, Eq. (7)
can be rephrased as asserting that all but at most an €, fraction of v € Vg, satisfy

1 1
(o] > f(“)—m > fw)] < 6 (8)

u€el'(v) F, uEUF

Thus, our aim is to establish Eq. (8).



4.1 Tt suffices to show that Gp; is a good extractor

Following Zuckerman [12], we observe that the above holds (i.e., at most an ¢; fraction of v € Vp
violate Eq. (8)) in case Gr j is an (€2, 0;)-extractor, with ¢; = €,/2 and 65 = 6;.

Definition 4.1 (extractor): The regular bipartite graph with edge set E C U xV is called an (¢, §)-
extractor if for every set V' C V' of cardinality € - |V|, the distribution induced on U by uniformly
selecting v € V' and u € I'(v) is 6-close (in variation distance) to the uniform distribution on U.

Lemma 4.2 [12]: Suppose that a regular bipartite graph with edge set E C U x V is an (¢,6)-
extractor. Then, for every f: Uw[0,1], for all but at most a 2¢ fraction of v € V

o 2 0= g7 S

uEF(U uelU

Proof: Assuming on the contrary that the conclusion does not hold, we let V' be a set of ¢ - |V
vertices v’s for which, without loss of generality,

|(|Zf S LG

u€el'(v) uelU

This implies that E,crq)(f(u)) — Eyer(f(u)) > 6 holds for every v € V'. Thus,

Euev’,uer(v)(f(u)) - EuEU(f(u)) > 6

Letting X denote the distribution induced on U by uniformly selecting v € V'’ and u € I'(v), and
by Y the uniform distribution on U, we have E(f(X)) — E(f(Y)) > 6. Defining S C U so that
z € S iff Pr(X =z) > Pr(Y = z), and using the fact that f ranges over [0, 1], we have

Pr(X e S)-Pr(Y €S5) = > (Pr(X =a)— Pr(Y =2))

> E (Pr(X =2)—-Pr(Y =2))- f(z)

zelU

= BU/(X)-E(f(Y)) > &

However, this contradicts the lemma’s hypothesis, which asserts that the distribution X (i.e.,
uniformly selecting v € V' and u € I'(v)) is 6-close to Y (i.e., the uniform distribution on U). W

Corollary 4.3 Let ¢, 0, def

Lemma 3.2 follows.

e TF and suppose ¢ < 1/2. If Gpy is an (e, 8,)-extractor then

Proof: By Lemma 4.2 and the setting of the parameters, the hypothesis implies Eq. (8), which
in turn (by the above discussion) implies Lemma 3.2. (Note, ¢ = ¢, = 2¢, < k'/°. |F~¢|/c and

So= 6+ k2 |F["Y < kYo [F|/c) N



4.2 The auxiliary graph Arp; and the relevance of its eigenvalues

In order to show that Gy, is a good extractor, we consider an auxiliary multi-graph with vertex set
V and edge set corresponding to all possible paths of length 2 in Gp ;. That is, for every v,u € V
and every path of length 2 in G ; between v and u (passing through a vertex in U ), we introduce
an edge in the auxiliary multi-graph. We stress that this multi-graph, denoted Ay ;, has [F*)|
self-loops per each vertex, and that it is regular (with degree |[F(*)| . |F]).

Let A denote the normalized adjacency matrix of Ap; (i.e., Ap;’s adjacency matrix divided
by its degree), and let Ap ; denote the second largest (in absolute value) eigenvalue of A. Then we
have

Lemma 4.4 Let \ % Ar be as above. Then Gpj is an ()\1/3, Al/s)-extmctor.

Proof: Let ¢ ™ A3 and suppose for contradiction that Gg ; is not an (e, €)-extractor. Then, there
exists a set V' C Vg, of cardinality at least € - |V ;| so that the distribution induced on Up j by
uniformly selecting v € V' and u € I'(v) is e-far (in variation distance) to the uniform distribution
on U. Denoting by p, the probability assigned to vertex u € Up i, the contradiction hypothesis
yields

Z |pu — [Up ™ > 2€ (9)

u€EUR x

On the other hand, denoting by I'(z) the neighbor set of any vertex z in Gp j, we have

IT(v)N {U}| [T(u) N V|
Pu 10
|V’ g\; |F (v) VI (U k| - [T ()] /[ Ve k]) (10)

Considering a random walk of length 2 in Gg j, starting at a uniformly selected vertex v € V', we
have

= Z Pu - Prvler(u)['l]/ € ‘//]

uellp’k

Pryeviuer)vermwlv’ € V']

- Y T (w)n V7|
wellp [T (w)|
oy Vel

[VE

uellp’k

Looking at the same walk as a random edge in Ap , and denoting by I''(v) the neighbor multiset
of a vertex v in Ap j, we have

\%
PTUEVF,k,v’EF’(v)[U7UI c ‘//] |LF i| . PTUEV’,U'EF’(U)[UI c {//]
|‘/7/|2 L s
= e Meel s 2 (Ueel™ 4 (= e 7)
F.k uEUR x
Ve 1y
= AT ekl Y (pu — Uil
Ve |2 et
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Thus, using Eq. (9) and setting N o \Ur 1|, we have

V/ 2 . N
Proeve , weriwlv, v € V'] > IL ||z ' (1 +N.  min {E :c2}>
F.k >2¢
V|
[VE x|

However, as we shall shortly see, this contradicts the Fzpander Mizing Lemma (cf., Corollary 2.5
in [1, Chap. 9])?, by which

>

V'|? V|
< .
Ve i |? Ve i|

, and so € - (2¢)? < A. This, however, contradicts our

PI‘UEVF,;:,U’EF’(U)[U7’U/ € V/] _

Specifically, we obtain IL‘;,LP (26)7 <A |1|2‘;,;|:|

setting of € = A'/3. The lemma follows. W

£3/°
(2¢|F|°)® "

Corollary 4.5 Suppose that for some constant ¢, A\pj; < Then Lemma 3.2 holds with

constant c.

4.3 Reversing the eigenvalue connection

It is well-known that good upper bounds on the second eigenvalue of a (regular) graph yield rapid
mixing (i.e., fast convergence of a random walk to the uniform distribution). The converse is less
known, holds as well and has been used in various papers. In particular, the fact that the trace
of the ¢™ power of the (normalized) adjacency matrix is the sum of the eigenvalues {™ powers [2],
can be used to derive such a bound (Noga Alon, priv. comm.).? For sake of selfcontainment, we
provide a proof of the desired result.

Lemma 4.6 Consider a regular connected graph on N vertices, let A be ils normalized adjacency
matriz and A\, denote the absolute value of the second eigenvalue of A. Lett be an integer and A;
denote an upper bound on the maximum, taken over all possible start vertices v, of the difference

in Norm?2 between the distribution induced by a t-step random walk starting at v and the uniform
distribution. Then Ay < (N - A;)Y/1.

Proof: Under the hypothesis all eigenvectors and eigenvalues are reals, and €] ! N(N-' .., N7
is the (normalized) eigenvector corresponding to the eigenvalue 1. Let ¢ be the (normalized)
eigenvector corresponding to A5, and consider the probability vector ﬁdéf (N"',.,N"H)+ N6
(The latter is a probability vector since the absolute value of any entry in € is bounded by 1.)
Since p'is in the convex hull of the probability vectors referred to in the hypothesis, the distance
|A*p — (N~ ..., N71)|| is bounded above by A,. On the other hand,

HAtﬁ_ (1/N771/JV)” —_ ’Ate_éH

! |
N
1

4

®The Expander Mixing Lemma refers to arbitrary sets A, B of vertices in a regular graph G = (V, E) of normalized

eigenvalue A. It asserts that the absolute difference between KA_xlglnﬂ and % . % is at most A - ¥ llAlellBl.
*In this case one may use a upper bound on the t-step “return probability” of random walks. Thus, an upper
bound on the max-norm deviation of a t-step random walk from any start vertex implies an upper bound on the

second eigenvalue. The hypothesis is thus weaker than the one we use below.
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and so % < A,. The lemma follows. [

Corollary 4.7 Suppose that for any vertex v in Apy, the difference in Norm?2 between the distri-
bution induced by a O(k)-step random walk starting at v and the uniform distribution is at most
O(k)P®) . |F|=Ck+1) Then, Lemma 3.2 follows.

Proof: By Lemma 4.6, we have Ap , < (|[F|7%)Y/9() and by Corollary 4.5 we are done. Wl

4.4 Showing that the auxiliary graph is rapid-mixing

We conclude the proof of Lemma 3.2 by establishing the hypothesis of Corollary 4.7. That is, we
consider an arbitrary fixed polynomial py € F, = Vg and a random walk of length ¢ ot O(k) on
Ap  starting at po, and prove that such a walk converges to the uniform distribution. That is,

Lemma 4.8 Let p, € Fy be any vertex in Apy, and t = 3k + 1. Then, the Norm2 difference
between the distribution induced by a t-step random walk starting at v and the uniform distribution
is at most O(k)°O®) . |F|~(2k+1),

Proof: For ¢ = 1,...,1, we denote by p; a random variable representing the distribution after ¢
steps of this walk. Note that p; is derived from p;_; by the following two step random process:

1. Uniformly select @; = (@1, ..., ;1) € F*),
2. Uniformly select a polynomial p; among the |F| polynomials p satisfying p(@;) = pi—1(@;).
Expressing these degree k polynomials as polynomials in a formal variable z, we have
k

pi(z) = pica(z)+ i [[(z —aiy)

i=1
where r; is uniformly selected in F (11)

Using the symmetric functions
def ;
oi(z1, ) = (=17 > [] =
SCk], |S|=j i€S

we have

pi(z) = pici(z)+ 72 Y o(@) - o (12)

j=0

Switching to vector notation, we write each p; as a (k4 1)-dimensional vector of random variables,
denoted p;, and so have

Pi = Picit+ i (oo(@), ou(a;), ...,ak(ai))T (13)

Denoting 73 Lt (00(B),01(B), ..., ox(B))T, we have p; = Pizy + 1 - Tg,, and so

1
Pi = Do+ Y ri-0s, (14)
i=1
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Finally, we move to matrix notation: Letting M (@, ..., @;) denote the (k + 1)-by-¢ matrix in which

Tz, is the i*" column, and 7 def (r1,...,7;)", we have
ZTt = 1)_0+ LM(617 ...,Et) F (15)

Since t > k+1 and 7 is uniformly distributed in F*, the random variable p; is uniformly distributed
in F; provided that the matrix M (@, ...,@;) has full rank. Thus, the Norm2 (as well as any other
norm) distance of p; from the uniform probability distribution (over F}) is bounded above by twice
the probability that M(@j, ..., @) is not of full rank, where the probability is taken over the choices
of the @;’s. Thus,

Fact 4.8.1: The lemma follows if the probability, over &;’s chosen uniformly and independently from
F*) that the matrix M(@y,...,@;) does not have full rank is bounded above by (2k)°*) . |F|~(2k+1),

On the other hand, the hypothesis of Fact 4.8.1 follows by establishing that with high probability,
as long as the matrix does not have full rank, its rank increases with any additional column. Let
us establish the latter fact first. That is,

Fact 4.8.2: Let @,...,a; € F*) be fixed so that the matrix M(@j,...,@) does not have full
rank. Then, for uniformly chosen 3 € F*), with probability at least 1 — 2k - |F|~!, the matrix
M (@, ..., @, 3) has higher rank than the matrix M (@, ..., ).

Proof: We use the well know fact by which the rank of a matrix is » if and only if it contains
an r-by-r sub-matrix having a non-zero determinant. Suppose that M(@,,...,@) has rank r < k,
and let A denote a corresponding r-by-r (non-singular) sub-matrix. Let j be an arbitrary row not

included in A (such a row exists as r < k 4 1), and using the formal variables Z = (zy, ..., z;) (with

each z, ranging over F), consider the formal matrix F(z,...,2;) o M(ay,...,@,z). Actually, we

consider the (7 4+ 1)-by-(r + 1) sub-matrix, denoted F'(z, ..., 2;), of F(z1,...,z;) encompassing the
sub-matrix A, the j® row and the last column (of F). Recall that the first r columns of F’(z) are
elements of F, whereas the last column contains r 4+ 1 distinct symmetric functions o,(%)’s. That
is, the elements of the last column are homogeneous polynomials in distinct degrees in the range
{0,1, ..., k}. Developing the determinant of F'(z,..., z) according to the last column we have

1. The determinant of F'(z,..., 2;) is a polynomial in zy, ..., z; of total degree at most k.
2. The determinant of F'(z, ..., z;) is not zero. This follows by noting that

(a) the expression obtained for the determinant contains the term det(A) - 0;(Z), where

det(A) € F\ {0} denotes the determinant of A);

(b) whereas the term above is of degree j no other term in the expression has degree j.

Thus, by Schwartz’s Lemma [10], the probability that for uniformly chosen 8 € F*, the determinant
of F'(j3) is zero is bounded above by k/|F|. However, in our case 3 is uniformly chosen in F(*)| and
so the bad event occurs with probability at most 1/Prg g [3 € F*)] < 2 times bigger. The current
fact follows. O

Using Fact 4.8.2, the probability that the matrix M (@, ..., ) does not have full rank is bounded
above by

k
[2 )
> () Ok FY T < 2 (2 B
i=0 t

25k+2 i k2k+1 i |F|—(2k+1)

Using Fact 4.8.1, the lemma follows. [l
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