Electronic Colloquium on Computational Complexity, Comment 1 on Report No. 018 (1998) b rar

Correction to “Randomness and Nondeterminism are
Incomparable for Read-Once Branching Programs”

Martin Sauerhoff
FB Informatik, L.S TI, Univ. Dortmund, 44221 Dortmund, Germany

Abstract

The proof of Theorem 1 in the paper contains an error and the presented tech-
nique for proving lower bounds on the size of randomized read-once branching
programs does not work. We show that one of the functions considered in the
paper, the “addressing function” of Jukna, is computable in polynomial size
by a randomized read-once branching program with zero error.

The reduction applied in the proof of Theorem 1 does not work, at least not for general
randomized read-once branching programs. Using the ideas in the paper, it can only be
shown that “k-stable functions” for sufficiently large k cannot be computed by polynomial
size randomized OBDDs with two-sided error.

Hence, we do no longer have a proof that the functions considered in Section 4 are not
contained in BPP-BP1, i.e., have super-polynomial size for randomized read-once branch-
ing programs with two-sided error. It turns out that the function ADDR(}), introduced
by Jukna [1] (see also the paper of Jukna, Razborov, Savicky and Wegener [2] for two
similar functions) indeed has polynomial size in this model. We even can compute this
function by a “Las Vegas” (error-free) algorithm.

For notational convenience we consider the function ADDR(X),, only for input sizes where
we can do without floors or ceilings.

Definition: Let n = 2' and [= 2!. Define m := n/l = 2!-1,

For the definition of ADDR(}),,, we use the variables zq,...,z,_;. We arrange the vari-
ables into an [x m-matrix. For i = 0,...,1 — 1 let ' 1= (zipm, .. <y Z(i+1)m—1) be the ith
row of this matrix.
Let A: {0,1}™ — {0, 1} be an arbitrary function which can be computed by a determinis-
tic read-once branching program in polynomial size. Define ADDR(X),,: {0,1}" — {0,1}
by

ADDR(A)n(20, .+ Tnei) i= @0, a:= |(A(2°),..., A("™"))]2.

ISSN 1433-8092

For an arbitrary vector = (zq,...,zs-1) € {0,1}® we define

s—1
|($0’ s 7~rs—1)|2 = Z 2" - x;.
=0

Theorem: ADDR(A), can be represented by a randomized read-once branching program
of polynomial size which computes the output ¢ € {0, 1} with probability 1/2 on inputs
z with ADDR(X),(z) = ¢, and outputs “?” (don’t know) otherwise.

Proof: We call the bits A\(z°),..., A(z'~") “address bits” and the bit z, “output bit”. The
algorithm implemented by the randomized read-once branching program for ADDR(A),
will consist of two phases. In the first phase, we read some rows of the input matrix and
compute the respective address bits. After that, only a small set A of possible output
bits will be left. The second phase consists of evaluating all remaining address bits and
“storing” the values of all variables in A in the branching program. Finally, we have
determined the complete address. With probability at least 1/2, the addressed bit will
belong to the stored values.

By v = (vo,...,v—1) € {0,1,%}' we describe the address bits computed so far in the
algorithm, let v; = * if the ith bit is not yet known. The lower [— [bits of v determine
the column where the output bit is found, we call these bits the “column address bits”.

Accordingly, the upper [bits, v,_7,...,vi_1, determine the row of the output bit and are
called “row address bits”.

For an arbitrary vector v let C'(v) C {0,...,m — 1} be the set of columns which are
addressed by vectors v’ which are obtained from v by assigning constant values to the
-bits. Likewise, let R(v) C {0,...,] — 1} the set of rows addressed in this way. Define

A(w):={im+j|i€ R(v),j € C(v)}

as the set of indices of addressed output bits.

Now we describe our randomized algorithm for the computation of ADDR(}),.
Algorithm:

(0) Initialize v: For 1 =0,...,0 =1 let v; := *.

(1) Choose z € {0, 1} uniformly at random.

(2) Case z =0:
Phase 1: For1 € {Z—ZN, ..., [—1} (the indices of the row address bits) read the row z' of
the input matrix and compute v; := A(z"). Let r := |(v,_5, ..., vi=1)]2 € {0,..., 1 — 1},

i.e., r is the row within which the output bit lies, and we have that R(v) = {r}. If

r > 1 — 1, we have “lost” and output “7”.

Now assume that r € {0,...,! Sy 1}. Fori € {0,...,l— = 1}\{r} read the row
z' and compute v; = A(z'). After this we have also determined all bits of the column
address except one. Hence, |C'(v)] = 2 and thus also |A(v)| = 2.

2

Phase 2: As the final step, we evaluate the last missing address bit v, = A(z"). While
we compute v, we store the values of the two variables z; with 7 € A(v) (these
variables lie within row r). Afterwards, we know the complete address of the output
bit, a = |(vo,...,vi=1)|2. Since we have stored both possible output bits, we can
output the correct value.

(3) Case z = 1:

Phase 1: For 1 € {0,...,]— (= 1} (the indices of the column address bits) read the
row 7 of the input matrix and compute v; := A(z'). After this, we have C(v) = {c},
where ¢ = |(vo,...,v,_7_,)|2, and hence, A(v) = {im+c | —1<i<Il—1}. Notice
that [A(v)| = I= log log n.

Phase 2: Now read all remaining rows z* with i € {l — er, ..., — 1}, but again store
all values of variables z; with 7 € A(v) (i.e., the variables in column ¢). Finally, we
know the complete address a = |(vo,...,v;_1)]2 of the output bit. If it holds that
la/m| <1 — I—1,i.e., the row where the output bit is found has already been read
in Phase 1, output “?”. Otherwise, we can output the stored value of z,.

Let us analyse the error made by the above algorithm. Let r be the index of the row
within which the addressed output bit for a given input z lies, i.e., r = [a/m], a =
|(A(2°), ..., M(z'""))|2. The algorithm outputs “?” only in the following two cases.

e If z =0 and Part (2) is executed, then “?” is output only if r € {/ — er, co =1}

e If z =1 and Part (3) is executed, then “?” is output only if r € {0,...,1 — 1 — 1}.

We make sure that the algorithm works correct if none of the above cases occurs. In
the first phases of Part (2) and Part (3), we do not read the row r of the output bit if
the above cases do not occur. In Phase 2 of both parts, the algorithm reads the rows
left over, but simultaneously stores all variables with index in A(v), hence, none of the
possibly addressed output bits is “forgotten”.

For each row r the probability that it is read at the beginning of Part (2) or (3) is 1/2.
Hence, “?” is only output with probability 1/2, and if the computation yields a value
from {0,1}, it is guaranteed to be correct.

It remains to code the above algorithm into a randomized read-once branching program.
This can be done by the standard construction techniques for branching programs. We
have ensured already in the description of the algorithm that each variable is only read
once. For the evaluation of the bits v; we use polynomial size branching programs for A
as sub-modules. We can at any time store the parts of the vector v computed so far since
the whole vector only has length [. The second phases can be represented in polynomial
size since always |A(v)| < loglogn and hence, we need only to enlarge the width of the
branching program by a logarithmic factor in order to store all the needed values. O

Of course, we can also construct an RP- or coRP-algorithm with error 1/2 for ADDR(A),,
by replacing the “?”-output of the above algorithm by 0 or 1, respectively. By a modified
algorithm based on the same ideas as above, it is possible to improve the probability of
correct computations even to 2/3.

We have thus obtained an exponential gap between “Las Vegas” and deterministic algo-
rithms for the read-once branching program model. But the function ADDR(A), does
not separate BPP from NP N coNP as Jukna, Razborov, Savicky and Wegener (and the
author) hoped. The question remains if this can be done by choosing other functions and
perhaps new lower bound techniques.

References

[1] S. Jukna. Entropy of contact circuits and lower bounds on their complexity. Theoretical

Computer Science, 57:113 — 129, 1988.
[2] S. Jukna, A. Razborov, P. Savicky, and I. Wegener. On P versus NP N co-NP for

decision trees and read-once branching programs. In Proc. of the 22th International
Symposium on Mathematical Foundations of Computer Science, LNCS 1295, 319-326.
Springer-Verlag, 1997. Accepted for publication in Computational Complexity.

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC ISSN 1433-8092
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

