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Abstract

We extend the tools for proving lower bounds for randomized branching programs
by presenting a new technique for the read-once case which is applicable to a large
class of functions. This technique fills the gap between simple methods only appli-
cable for OBDDs and the well-known “rectangle technique” of Borodin, Razborov
and Smolensky which works for the quite general models of nondeterministic and
randomized read-

�
-times branching programs, but which has the drawback that it

could only be applied to very special functions so far.

By an application of the new method, we resolve the remaining open problems
concerning the relations of the most important probabilistic complexity classes for
read-once branchings programs. We obtain that the analogues of the classes BPP
and NP for read-once branching programs are incomparable and that RP is a proper
subclass of NP.
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1 Introduction

Branching programs, read-
�

-times branching programs and OBDDs (ordered binary decision
diagrams) are formally defined in Section 2. For a history of complexity theoretical results for
the deterministic and nondeterministic case we refer to [7], [19], [22] and [25].

Randomized branching programs are defined in analogy to probabilistic Turing machines. In
spite of the fact that the complexity theoretical results for probabilistic Turing machines are
still quite unsatisfactory, there has been considerable success in the analysis of combinatorially
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simpler computation models like, e. g., communication protocols. Since there are also several
restricted branching program models for which a good collection of proof techniques is avail-
able, it is natural to ask what can be done for randomized versions of these models.

The complexity theoretical analysis of randomized variants of branching programs has been
launched by Ablayev and Karpinski in 1996 [2]. Since then, we can note a remarkable progress
in the understanding of the randomized variants of OBDDs and of (syntactic) read-

�
-times

branching programs. Meanwhile, there are several upper and lower bound results for random-
ized OBDDs, and we know the relations between most of the important complexity classes, like
RP, BPP and NP (see [1], [3], [4], [20]). Agrawal and Thierauf [5] have presented results on
the satisfiability problem for randomized OBDDs.

Of course, proving lower bounds for randomized read-once or even for read-
�

-times branching
programs has turned out to be much harder than for randomized OBDDs. In [20] a lower
bound technique for randomized read-

�
-times branching programs based on the well-known

“rectangle technique” of Borodin, Razborov and Smolensky [8] for nondeterministic read-
�

-
times branching programs has been presented.

The first applications of this technique have yielded an exponential lower bound for randomized
read-

�
-times branching programs (also in [20]) and the result that the analogues of the classes

NP and BPP for read-once branching programs are not comparable if the error allowed for the
randomized model is restricted to ����� (see [21] and [22]).

Thathachar [24] has managed to separate the syntactic read-
�

-times hierarchy by the same proof
technique. He has proved an exponential gap between the size of nondeterministic or random-
ized read-

�
-times branching programs and deterministic read- � ��� ��� -times branching programs

(where
�
	�� ��
�������������� ) for a generalized variant of the function considered in [21]. To prove

such a result had been an open problem for 14 years, stated already in the seminal work of
Wegener [26] on lower bounds for read-once branching programs (see also [25]).

Borodin, Razborov and Smolensky’s “rectangle technique” has thus turned out to be especially
fruitful in yielding results for quite general branching program models. Nevertheless, one draw-
back of this technique is that it only works for very special, elaborately constructed functions. In
a superficial way one can say that the idea of all these constructions is to exploit the fact that the
inner-product function from communication complexity theory (or some of its generalizations)
is hard to compute for all important types of communication protocols.

On the other hand, we have the nice “reduction technique” for OBDDs which allows to reduce
communication complexity to OBDD size directly and which has yielded the large pool of
results mentioned above (see, e. g., [20] for a description of the technique for the randomized
setting). But this technique does not work even for read-once branching programs, since it relies
on the fixed variable ordering of the OBDD.

The intention of the present paper is to supply a new part of the overall puzzle lying in the
gap between the two mentioned techniques. We extend the “reduction technique” by ideas
from the technique of Borodin, Razborov and Smolensky such that it also works for read-
once branching programs. As an application, we present a class of Boolean functions with
the property that a certain communication problem which is proved to be hard for one-way
communication protocols can be “reduced” to each member of the class by the new technique.
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As a consequence, all these functions are hard for randomized read-once branching programs
with arbitrary two-sided error � , ��� � ��� . The considered functions are the so-called “

�
-stable”

functions which have already been studied in the literature on read-once branching programs
for a long time (see [9], [14], [15], [25]). As concrete examples, we prove that two functions
considered by Jukna, Razborov, Savický and Wegener [13] have only randomized read-once
branching programs of exponential size and thus affirmatively answer their question whether
these functions separate the classes BPP and NP � coNP for read-once branching programs.

The rest of the paper is organized as follows. In Section 2, we introduce the notions which are
important for the following. In Section 3 we present the lower bound technique and in Section 4
its applications.

2 Preliminaries

We briefly repeat the definitions of some of the usual types of branching programs considered
in the following.

Definition 1: A branching program (BP) on the variable set ��� �
	�������	 ��
�� is a directed acyclic
graph with one source and two sinks, the latter labelled by the constants � and � . Each non-sink
node is labelled by a variable ��� and has exactly two outgoing edges labelled by � or � . This
graph represents a Boolean function ������� 	 ���


�� ��� 	 ��� in the following way. To compute
� ��� � for some input ������� 	 ���


 , start at the source node. For a non-sink node labelled by � � ,
check the value of this variable and follow the edge which is labelled by this value (this is called
a “test of variable � � ”). Iterate this until a sink node is reached. The value of � on input � is
the value of the reached sink. For a fixed input � , the sequence of nodes visited in this way is
uniquely determined and is called the computation path for � . The size of a branching program 

is the number of its non-sink nodes and is denoted by !  ! .
A read-

�
-times branching program is a branching program where on each path from the source

to one of the sinks, each variable is allowed to be tested at most
�

times. For the case
�
	 � in

this definition we use the name read-once branching program.

An OBDD (ordered binary decision diagram) is a read-once branching program with an addi-
tional ordering of the variables. On each path from the source to one of the sinks, the order of
the tests of variables has to be consistent with the prescribed variable ordering.

We now give the definitions of nondeterministic and randomized variants of general branching
programs. It is easy to derive appropriate variants for the restricted branching program models.

Definition 2: A randomized branching program
 

syntactically is a branching program with
two disjoint sets of variables � � 	����"�#	 � 
 and $ � 	�������	 $&% . We will call the latter “probabilistic”
variables. By the usual semantics for deterministic branching programs defined above,

 
rep-

resents a function ' on � �)(
variables.

Now we introduce an additional probabilistic semantics for
 

. We say that
 

as a randomized
branching program represents a function ���*��� 	 ���


+� ��� 	 ��� with
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� one-sided error at most � , � � � � � , if for all � � ��� 	 ���

 it holds that

Pr ��' � � 	 $ �
	 ��� 	 � 	 if � � � � 	 � ;

Pr ��' � � 	 $ �
	 ����� ����� 	 if � � � � 	 � ;

� two-sided error at most � , � � � � ����� , if for all � � ��� 	 ���

 it holds that

Pr ��' � � 	 $ �
	 � � � � ��� ����� .

In these expressions, $ is an assignment to the probabilistic variables which is chosen according
to the uniform distribution from ��� 	 ���

% .
A randomized read-

�
-times BP is a randomized branching program with the restriction that on

each path from the source to a sink, each variable � � and each variable $&� is tested at most
�

times. For a randomized OBDD, an ordering on the variables � � 	����"�#	 � 
 and $ � 	��"����	 $ % is given.

Definition 3: A nondeterministic branching program
 

has the same syntax as described for
randomized branching programs in the previous definition. Again, let ' be the function on
� � (

variables computed by
 

as a deterministic branching program. Then we say that
 

as a nondeterministic branching program computes a function � � ��� 	 ���

�� ��� 	 ��� if for all

� � ��� 	 ���



Pr ��' ��� 	 $ �
	 ��� 	 � 	 if � ��� � 	 � ;

Pr ��' ��� 	 $ �
	 ����� � 	 if � ��� � 	 � ;

where $ is an assignment to the probabilistic variables chosen according to the uniform distri-
bution from ��� 	 ���

% .
This is equivalent to other definitions of nondeterministic branching programs, e. g., that of
Borodin, Razborov and Smolensky [8] and Meinel [18]. Definitions for nondeterministic read-

�
-times BPs and nondeterministic OBDDs are derived from this definition in the same way as

done for the randomized types above.

In analogy to the well-known complexity classes for Turing machines, let RP 	 -BP
�

be the class
of sequences of functions computable by polynomial size randomized read-

�
-times branching

programs with one-sided error at most � , � � � . Let BPP 	 -BP
�

be the class of sequences of
functions computable by polynomial size randomized read-

�
-times branching programs with

two-sided error at most � , � � ���&� . Furthermore, let

RP-BP
� � 	 


	���
 ��� ���
RP 	 -BP

�

	 and BPP-BP
� � 	 


	���
 ������ �
BPP 	 -BP

�

�

In these definitions, � is a constant with respect to the input size. Analogous classes can be
defined for randomized OBDDs. Finally, for each of the considered complexity classes � let
co-� be the class of sequences of functions � � 
 � for which ��� � 
 � ��� .

In the following, we comment on the more or less obvious relations between the complexity
classes defined above. As for Turing machines, it holds that RP-BP

���
NP-BP

�
for arbitrary

� � � . We can also adapt the well-known technique of iterating probabilistic computations
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(called “probability amplification”) to improve the error probability of randomized branching
programs and randomized OBDDs. We obtain, e. g. , that for all constant � and ��� with � ��� �
� � � � it holds that

RP 	 -BP
	

RP 	�� -BP and RP 	 -OBDD
	

RP 	�� -OBDD �
This has been proved in [20] and independently by Agrawal and Thierauf [5]. An analogous
assertion for read-once branching programs does not hold [22]. Hence, it is not obvious that RP
is a subclass of BPP for read-

�
-times branching programs. We prove this below.

Proposition 1: For arbitrary
� � � it holds that RP-BP

� �
BPP-BP

�
.

Proof: Let
 

be a randomized read-
�

-times BP for a function � with one-sided error at most � ,
� � � . We construct a randomized read-

�
-times BP

 � for � with two-sided error as follows.
Introduce new probabilistic variables $ � 	������"	 $�% which are tested in a sub-program

���
at the

top of
 � , where � � �
	�� ��
 % ! ����	 � � % � . This program has two sinks labelled by � and

� ��� reached with the respective probabilities. It is easy to see how such a program can be
constructed for arbitrary values � of the given type. The � -sink of the program

���
is identified

with the � -sink of
 

, and the � ����� � -sink of
���

is identified with the source node of
 

.

We compute the worst-case error probability of
 � as a randomized branching program for � .

First, let � � ��
 � � � � . Then it holds that
 � computes the correct output “0” with probability

����� , since
 

has one-sided error. For �)� ��
 � � ��� ,  � computes the correct output “1” with
probability at least � � � � ��� � � ����� � .
The error of

 � is minimized by choosing a � as close as possible to ������� � 	 � � � � � � � . Since
we can construct a program

���
for all � � �
	�� ��
 % ! � ��	 � ��
 % � , we can ensure that

! � �!�"����� ! � ��
 % . The resulting randomized read-
�

-times branching program
 � for this value

of � has error at most � � � � � � � � �#
 % . Since � � � , we can ensure that this error is still at most
a constant smaller than ����� by choosing

(
large enough. $

It has already been shown in [22] that BPP-BP1 %� NP-BP1 & coNP-BP1 and that BPP 	 -BP1 %'
NP-BP1 for all � � ����� . In Section 3, we complete these results by showing that BPP-BP1 %'
NP-BP1 � coNP-BP1 and RP-BP1 ( NP-BP1.

We mention some of the notions from communication complexity theory which will turn up in
the sequel (for an introduction to this field, see, e. g., the monographs of Hromkovič [12] or
Kushilevitz and Nisan [17]).

The main object of communication complexity theory is a communication problem described
by a function � �*) +�, � ��� 	 ��� , where ) and , are finite sets. This function has to be
evaluated by two cooperating players, traditionally called Alice and Bob. Alice obtains an input
� ��) and Bob an input -��., , and their goal is to determine � ��� 	 - � by sending messages
to each other describing their input. Each player is assumed to have unlimited computational
power to compute his messages. An algorithm specifying which player is the next to communi-
cate and determining the message which this player will send given his input and the messages
exchanged so far is called a communication protocol. The (deterministic) communication com-
plexity of � is the minimal number of bits exchanged by a communication protocol by which
Alice and Bob compute � ��� 	 - � for each input ��� 	 - � �/) +0, .
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Many variations of this model, among them different kinds of probabilistic communication
protocols, are considered in communication complexity theory. For this paper, the following
probabilistic complexity measure is important.

Definition 4: The � -distributional complexity of � ( � as above), denoted by � 	���� � , is defined
as the minimum number of bits exchanged by a deterministic protocol � for � which computes
the correct output only for at least an � � ��� � -fraction of all inputs from ) + , , i. e.,

�
! ) ! ! , ! � ! � ��� 	 - � �/)�+0, !�� ��� 	 - �

	 � � � 	 -�� � ! � � ��� 	
where � � � 	 -�� is the output of � for � � 	 -�� �/) + , .

Finally, we will restrict ourselves to so-called one-way communication protocols. In this model,
Alice sends a single message to Bob who has to output the result of the protocol, which may
depend on his input and the message he has obtained. We use �������	 ��� � to denote the � -
distributional one-way complexity of � , which is the minimum number of bits exchanged by a
one-way protocol with the error-restriction of Definition 4.

We conclude this section by introducing some notation concerning assignments.

Definition 5: For a set of variables ) (an arbitrary finite set), let �
	 � 	 ��� � ) � ��� 	 �����
denote the set of assignments to ) . Let ) � 	 ) �

� ) with ) � ��) �
	 �

. For � ��) � ,� � ) � let � �
� denote the concatenation of the assignments � and
�

which is the assignment
� � ) � & ) �

� ��� 	 ��� with � ��� � � 	 � ��� � if � � ) � and � ��� � � 	�� ��� � if � � ) � . For � � � 	 � ,� � � 	 � , define
� � � � 	 ��� ��� ! � � � 	 � 	

� � � 	 � � � � 	 ��� 	 � �
We do not distinguish between assignments and Boolean vectors (and write, e. g., ��� 	 ���


 in-
stead of ��	 with ! )�! 	 � ) if it is clear from the context which variables are concerned or if this
does not matter.

3 The Lower Bound Technique

In this section, we describe the new lower bound technique. As already said in the introduction,
our approach will extend the well-known “reduction technique” for proving lower bounds on
the size of various OBDD variants.

The main idea of this technique is to reduce a communication problem which is known to be
hard for a certain type of communication protocols to the function to be represented by the
branching program (i. e., one has to show that the communication problem can be solved by
using the branching program as an “oracle”). This approach has appeared in several papers in
different disguises. It is used, e. g., by Babai, Nisan, and Szegedy [6] to prove time-space trade-
offs for oblivious branching programs, by Bollig, Sauerhoff, Sieling, and Wegener [7] to prove
lower bounds for deterministic

�
-OBDDs and

�
-IBDDs and finally also by Ablayev [1],[4] and
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the author [20] to prove lower bounds for randomized OBDDs. The respective technique for
deterministic OBDDs is also described in the monograph of Kushilevitz and Nisan [17].

In the following, we formally describe the considered type of reductions.

Definition 6 (CC-BP1 Reduction): Let � 	
�

be finite sets and let a function � ��� + � �
��� 	 ��� be given ( � describes a “communication problem”). Furthermore, let ) be a set of
variables, � ) � 	 ) � � a partition of ) and ' � � 	 � ��� 	 ��� .
We call a pair of functions � � ���

� � 	 � , � � �
� � � 	 � a CC-BP1 reduction from � to ' , if for

all ��� 	 � � ��� + �
it holds that

� �	� 	 � �
	 ' �	� � �	� �

� � � � � � � �
Such reductions can directly yield lower bound results for OBDDs. For the convenience of the
reader, we describe the well-known construction for the deterministic case here. Let

 
be a

deterministic OBDD with variable ordering 
 representing a function ' ( ' as in Definition 6).
Set ) � �

	 ������
 � � 	"����� 	 ����
�� � � and ) � �
	 ������
���� ��� 	������"	 ����
 
 � � for a

� ��� � 	"������	 � � ��� chosen
appropriately. Then each computation path in the graph can be split into an “upper” and a
“lower” part correspoding to an assignment from � 	 � and � 	 � , respectively. We describe a one-
way protocol which solves the communication problem � for an input �	� 	 � � ��� + �

. Both
players use the graph

 
and “their” respective function � � or � � from the CC-BP1 reduction.

The first player (Alice) computes � � 	 � � ��� � � � 	 � , follows the computation path for � in 
starting at the source and sends the reached node $ to the second player. The second player

(Bob) computes
� � 	 � � � � � � ��	

�
, follows the computation path for

�
from $ to one of the sinks

of
 

and outputs its value. Obviously, the length of the messages exchanged by this protocol
is at most � 
 � � !  !�� . Hence, we can transform lower bound results for one-way protocols into
lower bounds for OBDDs.

This simple approach of directly reducing communication complexity to branching program
size does not work, though, for read-once branching programs, since it is not clear how the
computation paths in the graph can be partitioned between the two players. But we will show
that we can at least construct a reduction from some weaker kind of communication complexity
measure defined below.

Definition 7: Let � 	
�

be finite sets and let � ��� + � � ��� 	 ��� be given. For a set � � � ,
� %	 �

, let ��� be the restriction of � to ��+ �
, i. e., ��� � � + � � ��� 	 ��� , ������� 	 � � �

	 � ��� 	 � �
for �	� 	 � � � �!+ �

.

For � ��� � !�� ! and � with � � ��� ���&� define the
�
-restricted � -distributional one-way

communication complexity of � as

��� � �����	 � ��� � 	  "!$#
�&%(' �*) � ) + �

� � ���	 ��� � � �
Now we have all the required notions to state the main theorem describing our proof technique
for randomized read-once branching programs.
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Theorem 1: Let
 

be a randomized read-once branching program representing the function
' � ��	 � ��� 	 ��� , ! ) ! 	 � , with two-sided error at most � , � � ��� ���&� . Let

� � � � 	��"����	 � � ���
(the “partition parameter”).

Assume that there is a function � ��� + � � ��� 	 ��� (a “communication problem”), � 	
�

finite
sets and !�� ! 	 � � , such that for an arbitrary partition � ) � 	 ) � � of ) with ! ) � !

	 �
and

! ) � !
	 ��� �

there is a CC-BP1 reduction �	� � 	 � � � from � to ' (which may depend on the
partition ) � 	 ) � ) with the property that � � ���

� � 	 � is one-to-one and onto.

Then it holds for arbitrary �
� , � ��� � � ����� , and
� � 	�� ��� !  ! � 
 � � ����� �"��� � ��� ��� that

� � � �����	�� � ��� 	 � �
Informally, we reduce a restricted version of the communication problem � to ' , where in the
restricted version some inputs for the first player are forbidden. Yet the number of allowed
inputs is � ��� � � � � !  ! � � and thus still “almost” the maximal number of � � if � !  ! is at most
polynomially large in

�
. If we can show that the communication problem only becomes trivial

if “many” inputs for the first player are forbidden, than we get a good bound on the size of !  ! .
We prepare the proof of Theorem 1 by two definitions and a lemma which will be used to de-
scribe the essential sub-structures in the considered randomized read-once branching program.

Definition 8: A partial read-once branching program
 

is a read-once branching program with
up to three sinks labelled by values from ��� 	 � 	�� � . Let ) be the variable set of

 
. The graph

 
represents an incompletely specified function � ��� � ��� 	 ��� , for a set � � � 	 , in the following
way. For all � �	� the computation path for � in

 
reaches the sink with value � � ��� , and for all

� � � 	�
 � the computation path for � reaches the sink with value “ � ”.

The following notion has been introduced by Ablayev [1].

Definition 9: Let
 

be a read-once branching program with variables from ) , and let � ) � 	 ) � �
be a partition of ) .

 
is called weakly-ordered with respect to � ) � 	 ) � � if all computation paths

in
 

leading from the source to a sink can be decomposed into two parts, where on the first part
only variables from ) � are tested and on the second part only variables from ) � . The set which
consists of the first nodes on each computation path in

 
starting in the source where a variable

from ) � is tested is called the cut of
 

.

The structural lemma below is the main step in the proof of our desired overall result.

Lemma 1: Let
 

be randomized read-once branching program which represents the function
� � � 	 � ��� 	 ��� , ! )�! 	 � , with two-sided error at most � , � � � � � ��� . Let

� � � � 	"������	 ��� ���
be arbitrarily chosen. Furthermore, let an arbitrary � � with � ��� � � ���&� be given.

Then there is a partial read-once branching program
 �

such that the following holds:

(1) !  � ! � � !  ! and the cut of
 �

has size � ;
(2)

 �
is weakly-ordered with respect to a partition � ) � 	 ) � � of ) with ! ) � !

	 �
and ! ) � !

	
� � �

and represents an incompletely specified function � � ��� � ��� 	 ��� , �
� � 	 , with

! ��� ��� ! � � � � ��%	 � � � � � ! � � � � ! � ! �
8



(3) It holds that � 	 ��� � � 	 � , where ��� � � 	 � and

! � � ! � �
!  � !

�
� � �

� ��� � � �
Proof: The proof is in part inspired by the ideas contained in the proof of the central “structural
theorem” of Borodin, Razborov and Smolensky’s “rectangle technique” (Theorem 1 in [8]).

Step 1: The first step of the proof is to get rid of the probabilistic variables of the given random-
ized read-once branching program

 
. By a simple counting argument (due to Yao [27]) one

can prove that there is a deterministic read-once branching program
 � with !  � ! � !  ! which

represents a function � � � � 	 � ��� 	 ��� with

! ��� � � 	 !�� � � � ��%	 � ��� � � ! � ����� 
 � ( � )

Step 2: Now we convert
 � into a uniform read-once branching program

 � � . A read-once
branching program is called uniform if for each node � on all paths from the source to � the
same set of variables is tested, and if on each path from the source to one of the sinks all
variables are tested. It is easy to see that the conversion can be done such that !  � � ! � � !  � ! and � � still represents � � (see, e. g., [23]).

Let � � 	��"���#	 ��� be the nodes in
 � � which are reached by paths from the source on which exactly

�
variables are tested. It holds that � � !  � � ! � � !  ! . Using the fact that

 � � is uniform, we
define for each � � the set ) � of variables tested on each path from the source to � � . Furthermore,
define

� � as the set of assignments in � 	�� for which the (partial) computation path starting at
the source reaches � � . Finally, define � � � 	 � � � ��	
	 	�� , for 	 	 � 	�������	 � . Observe that, by this
construction, the sets � � form a partition of the set of all inputs, i. e.,

� 	 	 � � & ����� & � � 	 � � � �
� 	 �
if 	�%	��

.

Step 3: We are now going to “restrict” the graph
 � � to one of the input sets � � constructed

above, say � ��� . We want a “large” � ��� which additionally has the property that the fraction of
inputs from � ��� for which the function � � makes an error in computing � is “not much larger”
than � .
Define the fraction of inputs from the set � � for which the wrong output is computed as

���*� 	 ! ��� ��� � !�� � ��� ��%	 � ��� � � !
! � � ! 	

for 	 	 � 	"������	 � .

Let � � , �+��� � � � ��� , be chosen as in the hypothesis of the lemma. By ( � ) it holds that��
� + �

! � � !
� 
 ����� � � �
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Furthermore, the � � form a partition of � 	 . It follows by Markov’s Inequality that

� 
 
 � ! �
	 ! � � 	 � � 	 ��� � � � � ! � �
� � 	

Hence, there is at least one 	 ��� � � 	����"��	 � � such that � ��� � � � and ! � ��� ! � � ��� � ��� ����� ��� � � � � 
 .
To complete the proof, we set � � 	 � ��� 	 � � � � 	
	 	�� � , where � � � 	 � ��� . Let

 �
be the graph

obtained from
 � � in the following way. Remove all nodes and edges not lying on computation

paths for inputs in � . For each node which has only one successor after this process, replace
the missing edge by an edge to a new sink with label “ � ”. This graph

 �
obviously is a partial

read-once branching program which computes � � on the inputs from � .
 �

is weakly-ordered
with respect to � ) ��� 	 ) 
 ) ��� � and the cut of

 �
consists only of the node � ��� . By our calculations

above, it holds that at least an � � � � � � -fraction of inputs from � are computed correctly by
 �

.
Furthermore, we also have shown that � � is of the required size. $
Proof of Theorem 1: We apply Lemma 1 to

 
. We obtain a partial read-once branching

program
 �

which is weakly-ordered with respect to a partition � ) � 	 ) � � of ) , ! ) � !
	 �

,
! ) � !

	 � � �
, and which represents an incompletely specified function � � ��� � ��� 	 ��� , where

� 	 � � � � 	 � , � � � � 	 � . Let � , � � and � � have the properties described in the lemma.

Let �	� � 	 � � � be a CC-BP1 reduction as described in the assumption of the theorem. Define �)� 	
� 
 �� � � � � � � . Since � � is one-to-one and onto, it holds that ! � ! 	 ! � � ! � � � !  ! � 
 � � � � � ��� � � � � � .
In the same way as described for OBDDs above, we can use

 �
to construct a deterministic

one-way communication protocol for the restricted communication problem � � . It correctly
computes �&� on at least an � � ��� � � -fraction of the inputs from ��+ �

because ��� �
	 � � � is a CC-
BP1 reduction and

 �
correctly computes � � on at least an � � � �
� � -fraction of � . Since the cut

of
 �

consist only of a single node, there is exactly one message which Alice can send. Hence,
the protocol can be simplified such that it uses no communication at all, Bob can compute the
output only using his part of the input (the CC-BP1 reduction ensures that this protocol fulfils
the error-bound). $

4 Lower Bounds for
�
-Stable Functions

Now we apply the lower bound method introduced in the last section to a class of functions
which has been studied in the literature of lower bounds for read-once branching programs for
a long time, namely the so-called “

�
-stable” functions.

Definition 10: Let
� � � � 	������ 	 ��� ��� . A function � � � 	 � ��� 	 ��� , ! ) ! 	 � , is called

�
-stable

if the following holds. For an arbitrary set ) �
� ) , ! ) � !

	 �
, and each variable � � ) � there

is an assignment
� � � 	
	 	 � such that either � � � � � � 	 � ��� � for all � � � 	 � or � � � � � � 	 � � ��� �

for all � � � 	 � .
Lower bounds on the size of deterministic read-once branching program for

�
-stable functions

have been proved by several authors, e. g., Dunne [9], Jukna [14], Krause [15] and Jukna,
Razborov, Savický, and Wegener [13]. We list some examples from these papers.
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Examples:

(1) Define the function � 
 
 � � ����� 	 ��� � � ��� 	 ��� , where
� � 	 � 


�
�

and � � � � � , on the
Boolean variables ) � 	 � � � � � � ��� ��� � � 
 . Let

 � ) � be the undirected graph on the nodes from
� � 	��"����	 �*� described by ) , i. e., edge �
	 	

� � exists in
 � ) � iff � � � � 	 � . Let � 
 
 � � � ) � 	 �

iff the graph
 � ) � contains a

�
-clique.

It holds that � 
 
 � � is
�
-stable for

� � 	  "!$# � � � � � � � 	 � � � � � � � �&� � . (This can be proved
easily by using the ideas contained in the works of Jukna [14] and Wegener [26]. Jukna has
proved a similar result for the directed version of the clique-function, with the adjacency
matrix as the input. This function is

�
-stable for

� � 	  "! # � � � � � 	 � � � � � � .)
(2) Define 	�
 
 	
����� 
 � ��� 	 ��� 
 � � ��� 	 ��� on an � + � -matrix of Boolean variables ) � 	

� � � � � � ��� � � � � 
 by

	�
 
�� ) � � 	�� �
� � ��� � � � � 
 ��� � ����� ��� 
 � ��
 
 � � ��� 	 and

����� 
 � ) � � 	�� �
� � ��� � � ��������� 
 � � ��� � � ��
 ��� � ���"� ��� 
 � � 
 
 � %	 ��� 	

where the calculations within the brackets are done in � , � 
 is the permutation group of
order � and the expression “ � � � ” denotes the Boolean function which is equal to � iff the
predicate � is true. Krause [15] has proved that 	�
 
 and ����� 
 are both � � � � � -stable.

(3) Let � 	"! � �#!�� � . Let � 	 � � 	��"����	 �*� be the set of “points” of a projective plane of order!
and let $ � 	������ 	 $�
 � � be the “lines”. (Each such line contains exactly

! � � points, two
lines intersect in exactly one point and for each point there are exactly

! � � lines running
through this point.) A set � � � is called a blocking set if ���%$ � %	 �

for 	 	 � 	"������	 � .

Define & 
 � ��� 	 ��� 
 � ��� 	 ��� by

& 
 ��� � 	����"�#	 � 
 � � 	('*)
��� � � 
,+� ��- � � �/.10 � � 
2 ��� � � � � � 	��"����	 � 
 � 	

where
� � 	 � ! � ��� �&� if

!
is prime,

� � 	 �43 ! � otherwise, and
� 

� ��� � 	������"	 � 
 � is the

threshold function with output � iff � �
� � � � � � 
 � �

. It holds that & 
 � � � 	������ 	 � 
 � 	 � iff
�
	 !&� � 	 ��� is a blocking set of size at most

! � �
.

The proof of the lower bound for the deterministic read-once branching program size of & 

by Jukna, Razborov, Savický and Wegener in [13] shows that & 
 is

�
-stable.

(4) Let � 	 �65 , and define 7 � 	 8 � �:9<; . We are going to define a function on the variables
� � 	������ 	 � 
 
 � , where we imagine the first 9#�=7 of these variables to be arranged as an 9 +>7 -
matrix. For 	 	 � 	�������	 9 � � let � � � 	 � � �@? 	��"���#	 � 
 � � ��� ? 
 � � be the 	 th row of this matrix.

Let A � ��� 	 ��� ? � ��� 	 ��� be an arbitrary function with the property that any assignment of
constant values to at most

� � 7 � � variables does not make A a constant function. Define
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the function � � � � ��A�� 
 �*��� 	 ��� 
 � ��� 	 ��� by

� ��� � � A�� 
 � � � 	��"���#	 ��
 
 � � �
	 ��� 	 � � 	 ! � A ��� � � 	��"����	 A � � 5 
 � � �"! � 	

where ! � ! � denotes the value of a Boolean vector � interpreted as a binary representation.

It is easy to see that � ��� � � A�� 
 is
�

-stable. As a concrete example for a function A , we can
use the function A����	� defined as follows. Chop the input vector ��� 	 ���

? into
� � 	�8 3 7,;

blocks of size
�

each. A is defined as the disjunction of the conjunctions of all variables in
each of these blocks. Then it holds that � ��� � � A����	� � 
 is � � � ��� -stable. (See Jukna [14]
and Jukna, Razborov, Savický and Wegener [13].)

We show that all the above functions are hard for randomized read-once branching programs.
We are going to reduce an arbitrary

�
-stable function to the following well-known communica-

tion problem. Let � � 	 ��� 	 ���
? and

� � 	 � � 	����"�#	 7 � . Define 
�� ��� 
 ? ��� + � � ��� 	 ��� by

�� ��� 
 ? �	� 	 � � � 	 ��� for �	� 	 � � � � + �

. (This function describes a sort of “storage access”,
the input � ��� represents the “memory” and the input � � �

the “address” in this memory.)

Kremer, Nisan, and Ron [16] have shown that each randomized one-way protocol which com-
putes 
�� ��� 
 ? with two-sided error at most ����� needs � � 7 � bits of communication. In order
to be able to apply Theorem 1 from the last section, we improve this result to restricted com-
munication complexity. We prove a lower bound for the

�
-restricted, � -distributional one-way

communication complexity.

Lemma 2: For arbitrary � with � � � � � ��� and
� � � � 	��"����	 �

? � it holds that

� � � �����	 ��
�� ��� 
 ? � � 
 ��� � � 7 ��� � � � � 	
for arbitrary � � with � ��� � � � ��� and � ��� � � 	 � � � 
 ��� � � � ���)� � 
������ � � � � � , � � � � 	 � � .
Proof: This is a more elaborate version of the proof of Kremer, Nisan, and Ron for the “con-
ventional” randomized one-way model where all inputs for the first player are allowed. We also
use ideas from a lower bound method for one-way protocols developped by Halstenberg and
Reischuk [11].

Fix a set � � � , ! � ! 	 �
. We describe the communication problem 
�� ��� 
 by a � ) ' ) + � ) � ) -

Boolean communication matrix where all rows in � 
 � are marked as “undefined”. Call this
matrix ����������� in the following.

Consider a one-way communication protocol � for 
�� ��� 
 which computes the correct value
on at least an � � � � � -fraction of � + �

. This protocol � can be described by its computed
matrix �� , which is a � ) ' ) + � ) � ) -Boolean matrix with entry �! �	� 	 � �

	 � if � yields the
output � � ��� 	 ��� on ��� 	 � � � � + �

, and �" �	� 	 � � is “undefined” for all �	� 	 � � � � � 
 � ��+ �
.

The total error of � is�

$# � � � � �	% �

�����	�&��� �	� 	 � �(')�  �	� 	 � �
	 �
# � �

*�+ ��� 	 �  ��� � � � � ! �!+ � ! 	
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where
* +

denotes the Hamming-distance of two Boolean vectors and �  �	� � � ��� 	 ���
? the

row � of �� .

It is easy to see that � induces a partition of ��+ �
into disjoint sets

�
� 	����"��	

� % , where
� � � 	

� � + �
, � � � � , such that whithin each such set the rows of the computed matrix �  are

identical. Our goal is to show that, in order to compute 
 � ��� 
 on � within the required error-
bound, there has to be a “large” number of rows in � such that the relative error within these
rows is not much larger than � , i. e., can be bounded by some � � � � . After that, we show that
“many” sets

� � are needed to cover these special rows in order to fulfil the given error-bound.
For the rest of the proof fix � � somehow such that �+��� � � ���&� .
In the following, we again use Markov’s Inequality to get a set of rows with the properties
described above. For 	 	 � 	"������	

(
define

��� � 	 �
! � � !

�

 # � � � � � � � � �	�&� � �	� 	 � �(')�  �	� 	 � � 	

the relative error of the protocol on the set
� � . For an arbitrary � �

, � � � � � � � , define
� � 	

�
	 ! � � � � � � and � � � 	�� � ��� � � . Because of the error-bound of � and the definition of � �
it

follows that
� ! ��! � �

������ ��� ! � � ! � � � �#! ��! � ! � � ! � 	
hence,

! � � ! �
�
� � �

� � � ! � ! �
Now we apply the above trick for a second time. Let 	�� � �

. For � � � define

� �	� � � 	 �
! � !

�
�����

� ���	�&��� �	� 	 � �(')�� ��� 	 � � 	
the relative error made in row � of the computed matrix. Let 	 � 	 � � � � ��� !�� �	� � � � � � . Since
	 � � �

, we have
� � ! � ��� ! � �

# � � � � 	�
 � ��� � � � � �#! � ��� ! � !�	 ! � 	
and as above,

!�	 ! � 

��� � �

� ��� ! � ��� ! �
For 	 � �

let 	 � ��� � be the set 	 obtained in the above way and define � � 	 � � ��� 	�� � ��� . We
have shown that

! � ! 	 �
� ��� !�	�� � � ��! ��� ! � !

where � � 	


��� � �

� � � �
��� �

� � � � � �
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Finally, we argue that already a large number
(

of sets
� � is required in order to compute the

function 
�� ��� 
 exactly enough for the inputs in � + �
.

For
*

with � � * � 7 let
� � * � be the maximal number of vectors in ��� 	 ���

? with Hamming-
distance at most

*
from a fixed vector � ��� ��� 	 ���

? , i. e.,� � * � � 	  ����
� � ��� ��� � �	� ! �
- � ��� 	 ���

? ! *�+ � � � 	 -��
� * � ! 	


�
� + �


 7
� � �

To estimate the above sum, we can use the following result from [10]: For � ����� ����� it holds
that 
�� ?���

� + �

 7

� � 	 � ?�� 
 � � 
 
 ��� ��� � � � ? ��� 
 � � �
Since the relative error for each row � � � is restricted to at most � � , a fixed vector � � ��� 	 ���

?
can approximate only a “small” number of vectors within this error-bound, namely

� � � � 7 � .
Hence, also each set

� � can cover at most this many rows in the communication matrix � ���	�&��� ,
since all rows of the computed matrix �  have to be identical within

� � . We get

( � ! � !� � � � 7 � �
� ! � !

� ?�� 
 	�� � 
 
 ������� � � � ? ��� 	
for some constant � , and thus

( � ! ��! ��� ?�� 
 	 � � . $
Now we are ready to prove the main result of the paper.

Theorem 2: Let ) be a set of variables, ! ) ! 	 � , and let � ��� 	 � ��� 	 ��� be
�

-stable,
� � � � � � � . Let

 
be a randomized read-once branching program representing � with error

at most � , ��� ���&� . Then it holds for arbitrary � � with � �)� � � � ��� that

!  ! 	 �
�
� � 
 � 
 � 
 	 � � � 
 � � � 
 � �

Proof: We apply Theorem 1.

Let � ) � 	 ) � � be an arbitrary partition of the variables in ) with ! ) � !
	 �

and ! ) � !
	 ��� �

. We
construct a CC-BP1 reduction from 
 � ��� 
 � to the given function � with respect to � ) � 	 ) � �
as follows. Fix an arbitrary one-to-one and onto function 
 � � � 	������"	

� � � ) � . For � 	
�	� � 	��"���#	 � � � ��� 	 ��� 	 ���

� define � � ��� � �
	 � � � 	 � where ��� � � � 	 ����� � 
 � � for � � ) � .

The crucial part is the choice of � � . Since � is
�

-stable, we have for each � �/) � an assignment� � � � 	 � such that either � ��� � � � � 	 � ��� � for all � � � 	 � or � ��� � � � � 	 � � ��� � for all
�)� � 	 � . Let us first assume that only the first case occurs. For � � � 	 � � 	�������	

� � define
� � � � � �

	 � ��
 � � . By this construction, we have for arbitrary �	� 	 � � � � + �
that � ��� � ��� �

�
� � � � � �

	 
�� ��� 
 � ��� 	 � � and thus �	� � 	 � � � is a CC-BP1 reduction.

Fix � � arbitrarily such that � � � � � ���&� . Choose � �
such that � � � � � � � . By Theorem 1 we

get
� � � �����		� ��
�� � � 
 � � 	 �
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for
� � 	 � � � !  ! � 
 � � ����� �"� � � ��� � � . Applying Lemma 2 yields

� � 
 � � � � � � � � � � � � � ��� � � � � � � � 
 ����!  ! � 
 � � � � � 	
� some constant. Solving for !  ! we get the claimed lower bound.

It remains to handle the case that for some � �/) � , the assignment
� � � � 	 � yields � ��� � � � � 	

� � ��� � for all �)� � 	 � . Let � � ) �
� ��� 	 ��� be the Boolean function which outputs � iff the

above case occurs.

We slightly extend the notion of CC-BP1 reducibility as follows. To solve the given communi-
cation problem, the first player (Alice) still applies the transformation function � � as described
in the proof of Theorem 1. The second player (Bob) also applies � � as before, but after fol-
lowing the computation path to a sink with value � ����� 	 ��� he outputs � '�� �	
 � � � � instead of
� . Obviously, the output of the protocol is “corrected” in this way such that again the desired
function is computed. $
As a direct consequence, we obtain for the functions defined above:

Theorem 3: � 
 
 � 
 � � 	 	�
 
 	 ����� 
 	 & 
 	 � ��� � � A�������� 
 %� BPP-BP1.

The result for � ��� � � A&����� � 
 is especially interesting, since Jukna, Razborov, Savický and
Wegener [13] have shown that this function is contained in AC

� � NP-BP1 � coNP-BP1. Hence,
we also have that

BPP-BP1 %' AC � � NP-BP1 � coNP-BP1 �
Together with the earlier results we obtain that the classes BPP-BP1 and NP-BP1 are incompa-
rable and that RP-BP1 is a proper subset of NP-BP1.
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