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Abstract

We show that the perfect matching problem is in the complexity class SPL (in the
nonuniform setting). This provides a better upper bound on the complezity of the
matching problem, as well as providing motivation for studying the complexity
class SPL.

Using similar techniques, we show that the complezity class LogFew (defined
and studied in [BDHMY2] coincides with NL in the nonuniform setting. Finally,
we also provide evidence that our results also hold in the uniform setting.

1 Introduction

In [RA97], the authors presented new results concerning NL, UL, and #L. The
current paper builds on this earlier work, in an attempt to better understand
these complexity classes, as well as some related classes. In the process, we
present a new upper bound on some problems related to matchings in graphs.

The perfect matching problem is one of the best-studied graph problems
in theoretical computer science. (For definitions, see Section 2.) It is known
to have polynomial-time algorithms [Edm65], and it is known to be in RNC
[KUW86, MVV87], although at present no deterministic NC algorithm is known.
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Our new upper bound for matching builds on the RNC algorithm. Before we
can explain the nature of our bound, we need some definitions.

In [FFK94], Fenner, Fortnow, and Kurtz defined the complexity class SPP
to be {4 : x4 € GapP}. They also showed that this same class of languages
can be defined equivalently as {4 : GapP# = GapP}.

The analogous class SPL (namely, the set: {4 : xa € GapL}) has not
received very much attention. In this work, we show that SPL can be used to
provide a better classification of the complexity of some important and natural
problems, whose exact complexity remains unknown. In particular, we show
that the following problems are in the non-uniform version of SPL:

o perfect matching (i.e., does a perfect matching exist).

e maximum matching (i.e., constructing a matching of maximum possible
size)

e maximum flow with unary weights

All of these problems were previously known to be hard for NL, and were known
to be (nonuniformly) reducible to the determinant [KUW86, MVV87].

It was observed in [BGW] that the perfect matching problem is in (nonuni-
form) Mod,, L for every m, and as reported in [ABO97], Vinay has pointed out
that a similar argument shows that the matching problem is in (nonuniform)
co-C=L. A different argument seems to be necessary to show that the matching
problem is itself in (nonuniform) C=L. Since SPL is contained in C=LNco-C-L,
this follows from our new bound on matching.

Under a natural hypothesis (that DSPACE(n) has problems of “hardness”
2¢"), all of our results hold in the uniform setting, as well. (See Theorem 5.1.)

Most natural computational problems turn out to be complete for some nat-
ural complexity class. The perfect matching problem is one of the conspicuous
examples of a natural problem that has, thus far, resisted classification by means
of completeness. Our results place the matching problem between NL and SPL.

There are many complexity classes related to counting the number of accept-
ing paths of an NL machine. As examples we mention L#L, PL, C_L, Mod,,L,
SPL, and NL. We think that existing techniques may suffice to find new relation-
ships among these classes (at least in the nonuniform setting). As a start in this
direction, we present some some new results concerning #L functions in Section
4, and we use these results to show that the complexity classes LogFewNL and
LogFew (introduced in [BDHM92]) coincide with NL in the nonuniform setting.

2 Preliminaries

A maiching in a graph is a set of edges, such that no two of these edges share
a vertex. A matching is perfect if every vertex is adjacent to an edge in the
matching.

#L (first studied by [AJ93]) is the class of functions of the form #acepr(2z) :

Y* — N (counting the number of accepting computations of an NL machine
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Figure 1: Previously-known inclusions among some logspace-counting problems
and classes

M). GapL consists of functions that are the difference of two #L functions.
Alternatively, GapL is the class of all functions that are logspace many-one
reducible to computing the determinant of integer matrices. (See, e.g. [AO96,
MV97].)

By analogy with the class GapP [FFK94], one may define a number of lan-
guage classes by means of GapL functions. We mention in particular the follow-
ing three complexity classes, of which the first two have been studied previously.

o PL = {A:3f € GapL,z € A & f(z) > 0} (See, e.g., [Gil77, RSTS84,
BCP83, 0gi96, BF97].)

e C_L={A:3f € GapL,z € A < f(z) = 0} [AO96, ABO97, ST94].
e SPL = {A: x4 € GapL}.

It seems that this is the first time that SPL has been singled out for study. In
the remainder of this section, we state some of the basic properties of SPL.

Proposition 2.1 UL C SPL C C_LnNco-C_L.

(The second inclusion holds because SPL is easily seen to be closed under com-
plement.)

Proposition 2.2 SPL = {4 : GapL® = GapL} (using the Ruzzo-Simon-
Tompa notion of space-bounded Turing reducibility for nondeterministic ma-

chines [RST8]).

(This is proved very similarly to the analogous result in [FFK94]. In showing
that GapL® C GaplL if A € SPP, we need only to observe that in the simulation
of an oracle Turing machine given in [FFK94], it is not necessary to guess all of
the oracle queries and answers at the start of the computation, but that instead
these can be guessed one-by-one as needed.)
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Since UL/poly = NL/poly [RA97], it follows that, in the nonuniform setting,
NL is contained in SPL. However, it needs to be noted at this point that it is
not quite clear what the “nonuniform version of SPL” should be. Here are two
natural candidates:

e SPL/poly = {4 : 3B € SPL 3k3(a)|an| < n*F and z € A & (=, ) € B}.
e nonuniform SPL = {4 : x4 € GapL/poly}.

It is easy to verify that SPL/poly is contained in nonuniform SPL. Containment
in the other direction remains an open question. We will use the second class
as the nonuniform version of SPL for the following reasons:

e The study of nonuniform complexity classes is motivated by questions
of circuit complexity. GapL/poly has a natural definition in terms of
skew arithmetic circuits. (See [All97] for a survey and discussion. Skew
circuits were defined in [Ven91] and have received study in [Tod92].) Thus
a natural definition of SPL is in terms of skew arithmetic circuits over
the integers, which produce an output value in {0,1}. If the circuits are
nonuniform, then this corresponds to the definition of nonuniform SPL
given above.

e We are not able to show that the matching problem is in SPL/poly; we
show only that it is in nonuniform SPL. (However, note that Theorem
5.1 shows that, under a plausible complexity-theoretic hypothesis, the
matching problem is in uniform SPL.)

In addition to proving new results about the matching problem, we also prove
new inclusions for the complexity class LogFew, which was originally defined and
studied in [BDHM92]. We defer the definition of this class until Section 4, but
we note here that it is immediate from the definitions that LogFew is closed
under complement, and it was observed in [AO96] that LogFew is contained in

C-L.

3 Matching

We will find it very helpful to make use of the GapL algorithm of [MV97] for
computing the determinant of a matrix. (For our purposes, it is sufficient to
consider only matrices with entries in {0, 1}.) The following definitions are from

[MV97]:

A clow (clow for clo-sed w-alk) is a walk (wq,...,w;) starting from
vertex w; and ending at the same vertex, where any (w;, w;41) is
an edge in the graph. w; is the least numbered vertex in the clow,
and is called the head of the clow. We also require that the head
occurs only once in the clow. This means that there is exactly one
incoming edge ({wr, w1)) and one outgoing edge ({wy,ws)) at w;y in
the clow.



A clow sequence is a sequence of clows (C4, ..., Cy) with two prop-
erties.

The sequence is ordered: head(C7) < head(C3) < ... < head(Cy).
The total number of edges (counted with multiplicity) adds to ex-
actly n.

The main result of [MV97] is that the determinant of a matrix 4 is equal
to the number of accepting computations of M minus the number of rejecting
computations of M, where M is the nondeterministic logspace-bounded Turing
machine that, when given a matrix 4, tries to guess a clow sequence C1, ..., Ck.
(If M fails in this task, then M flips a coin and accepts/rejects with probability
one-half.) Otherwise, M does find a clow sequence Cy,...,Cy. If k is odd, M
rejects, and otherwise M accepts.

The crucial insight that makes the construction of [MV97] work correctly
is this: If C4,...,Ck is not a cycle cover (that is, a collection of disjoint cy-
cles covering all of the vertices of M), then there is a “twin” clow sequence
Dy, ..., Dy +, using exactly the same multiset of edges. (Note that the “sign” of

this “twin” clow sequence is the opposite of that of Cy,..., Cy, and thus their
contributions cancel each other. The only clow sequences that survive this can-
cellation are the cycle covers. Since cycle covers correspond to permutations,
this yields exactly the determinant of A.)

Here is an algorithm showing that the perfect matching problem is in SPL
(nonuniformly). For simplicity, we consider only the bipartite case here. The
general case follows as in [MVV87].

First, note that there is a sequence

(w1, wa, ... wy)

having length n°) with the property that, for every bipartite graph G on 2n
vertices, either G has no perfect matching, or there is some i and some j < n®
such that, under weight function w;, the minimum-weight matching in G is
unique and has weight j. (To see this, note that [MVV87] shows that if a weight
function is chosen at random, giving each edge a weight in the range [1,4n?],
then with probability at least % there is at most one minimum-weight matching.
Now pick a sequence of n? such weight functions independently at random. The
probability that (w1, wa,...wy2) is “bad” for all G is < (i)“2 27" < 1. Thus
some sequence does satisfy the required property.)
Thus there is a function f in GapL/poly with the following properties:

o If G has a perfect matching, then for some i, 7 |f(G,4,7)] = 1.
e If G has no perfect matching, then for all 4, j, f(G,4,7) = 0.

To see this, consider the machine that, on input G, i, j, attempts to find a clow
sequence in G having weight j under weight function w;. (The weight function
w; is given as “advice” to the machine.) If there is no perfect matching, then the
only clow sequences that the machine finds will be cancelled by their “twins”,
and the value of f(G,4,j) will be zero. If there is a unique perfect matching



having weight 7, then only one computation path will remain uncanceled (and
thus f(G,1,7) will be either 1 or —1).

Now consider the function g(G) = Hm.(l —(f(G,4,7))?). This function is in
GapL/poly. If G has a perfect matching, then g(G) = 0. Otherwise, ¢(G) = 1.
This completes the proof of the following theorem.

Theorem 3.1 The perfect matching problem is in nonuniform SPL.

3.1 Construction algorithm

So far we have described the decision algorithm for the existence of a perfect
matching. As shown in [KUWS86], there is a function that finds a perfect match-
ing (if it exists) in Random-NC. We will now show that this can be done in SPL.
However, first, we must define what it means for a function to be in SPL.

One natural way to define a class of functions computable in SPL is to first
consider FLSPL, which is the set of functions calculated by a logspace machine
with an SPL oracle. This class of functions can be defined equivalently as the
set of all functions where |f(z)| = |£|°(") and the language {(z,4,b) : the ith
bit of f(z) is b} is in LSPL, However, by Proposition 2.2, LSPL — SPL, so
there is no need to consider logspace-reductions at all (although this turns out
to be a convenient way to present the algorithms). An equivalent definition can
be formulated in terms of arithmetic circuits, or using NC! reductions to SPL.
Since all of these definitions are equivalent, we feel justified in denoting this
class of functions by FSPL.

In order to build a perfect matching, we will construct an oracle machine
that finds an (4, j) such that |f(G,4,7)| = 1 (which means that there is a unique
matching with minimum-weight j under the weight function w;). If we can find
such an (4, 7), then the machine can output all edges e with |f(G~¢,4,j)| = 0,
where G~¢ is the result of deleting e from G. (We know that |f(G™¢,4,7)| =1
if e does belong to the perfect matching.) The obvious approach would be to
ask the oracle the value of f(G, 4, j) for each value of ¢ and j — but the problem
is that, for some “bad” values of + and j, the value of f would not be zero-one
valued and thus the oracle would not be in SPL. The proof consists of avoiding
this problem.

Theorem 3.2 Constructing a perfect matching is in nonuniform FSPL.

Proof: By analogy to the proof of the previous theorem, note that there is a
sequence
! 1 I3
(wla Wa, - - 'wr’)

having length n%1) with the property that, for every i < 7/ and j < n® and

every bipartite graph G on 2n vertices, either G has no perfect matching with
weight j under the weight function w;, or there is some i’ and some j' < n®
such that, among those matchings having weight j under the weight function
w;, under weight function w},, the minimum-weight matching in G is unique
and has weight j'.



(Randomly choose each weight between 0 and 4n®. For fixed G,i,7, the
probability of 2 minimal matchings (one of them using e) is < 3°_1/(4n?) < 1/4.
For fixed G, i, 7, the probability that all w}, are “bad” is < (1/4)TI = 22" The
probability that (wf, w},...w.) is “bad” for all G,4,j is < 2= on® b < 1
for 7' = n? +logr + 6logn.)

By using a machine that, on input G,%,7,7,j’, looks for a clow sequence
having weight j under w; end simultaneously having weight j under wj,, we
obtain a function in GapL/poly with the following properties:

o If G has a perfect matching with weight ;7 under the weight function w;,
then for some (¢, j"), |f(G,1i,7,7,5")] = 1.

o If G has no perfect matching with weight j under the weight function w;,
then for all (¢, j'), f(G,4,37,7,3") =0.

Here again if there is no perfect matching with weight j under the weight
function w;, then the only clow sequences that the machine finds will be can-
celled by their “twins”, and the value of f(G,1,7,4,J') will be zero. If there
is a unique perfect matching having weight j under w; and simultaneously j’
under w},, then only one computation path will remain uncanceled (and thus
f(G,i,3,4,7") will be either 1 or —1).

If G has a perfect matching with weight 7 under the weight function w;, then
9(G,4,j) = Hi,ﬂ-,(l — (f(G,4,3,i,3"))?) = 0. Otherwise, g(G,1,5) = 1.

If g(G,4,5) = 0, this does not necessarily mean that there is a unique
matching with minimum weight 7, and thus we still need to check that the
set {e:¢(G™%,1,7) = 1} really is a perfect matching (meaning that each vertex
is adjacent to exactly one edge). However, the logspace oracle machine can
easily check this condition until a good pair (4, j) is found.

To ensure keeping to the same advice string (consisting of 7(|G|) weight
functions and weights) for all calculations of the oracle answers, the encoding of
the oracle question is chosen in a way such that the length of an oracle question
stays always the same for a given graph G. ]

By adding an increasing number of vertices having edges to every vertex
until a perfect matching is found (and eliminating these vertices afterwards),
we get:

Corollary 3.3 Constructing a mazimum maiching is in nonuniform FSPL.

Since by [KUWS86], constructing a maximum flow in a graph with unary
weights can be reduced to constructing a maximum matching, we get:

Corollary 3.4 Constructing a mazimum flow in a graph with unary weights is
in nonuniform FSPL.

Corollary 3.5 Deciding the existence of flow > k in a graph with unary weights
is in nonuniform SPL.

(As Steven Rudich has pointed out (personal communication), a standard
reduction shows that this problem is in fact equivalent to testing for the existence
of a matching of size > k in a bipartite graph, under AC® many-one reducibility.)



4 Machines with Few Accepting Computations

The main result of this section can be stated as follows:

Theorem 4.1 Let f be in #L. Then the language {(z,0%) : f(z) = i} is in
NL /poly.

In particular, if f is a #L function such that f(z) is bounded by a polynomial
in |z|, then in the nonuniform setting, computing f is no harder than NL.

Theorem 4.1 has the following consequences. In [BDHM92], the complex-
ity classes LogFewNL and LogFew were defined. (In [BDHM92], these classes
were defined using “weakly unambiguous machines”; for our results we do not
need this additional complication. Our results hold even in the stronger set-
ting using the definitions as we present them here.) LogFewNL consists of
languages accepted by NL machines having the property that the number of
accepting computations is bounded by a polynomial. LogFew is also defined
in terms of NL machines M such that #accp(2z) is bounded by a polynomial;
but now there is also a logspace-computable predicate R such that z is in 4 if
and only if R(z,#acepr(z)) is true. From the definitions, it is immediate that
UL C LogFewNL C NL, and LogFewNL C LogFew. Thus it is immediate from
[RA97] that in the nonuniform setting LogFewNL and NL coincide with UL. It
remained open whether LogFew is contained in NL in the nonuniform setting.
An affirmative answer follows from Theorem 4.1.

Corollary 4.2 LogFew/poly = UL /poly

Proof: It suffices to show that LogFew is contained in NL/poly. Let A €
LogFew. Let f € #L, R € L, and polynomial p be such that z € A if and only if
R(z, f(z)), where for all z, f(z) < p(]z|). The NL/poly algorithm merely needs
to check, for all i < p(|z|), if f(z) = i A R(z, 7). That this is in NL/poly follows
from Theorem 4.1. ]

We remark that it has recently been shown that LogFew is contained in NL
N SPL also in the uniform setting [AZ98]. In contrast, we still do not know how
to “derandomize” any of the other constructions in this section.

Proof: (of Theorem 4.1)

First we use the Isolation Lemma of [MVV87] to show that, if we choose a
weight function w : (V x V) — [1..4p(n)?n?] at random, then with probability
> %, any graph with at most p(n) accepting paths will have no two accepting
paths with the same weight. To see this, note that this property fails to hold if
and only if there exist some 4, j and (v, w) such that the i-th accepting path (in
lexicographic order) has the same weight as the j-th accepting path, and (v, w)
is on the é-th path and not on the j-th path. Call this event BaAD(4, j, v, w).
Thus it suffices to bound

Z Z z Z Prob(BaD(4, j, v, w)).



Now just as in [MVV87] (or as in our application of the Isolation Lemma in
[RA97]), Prob(BAD(i, j, v, w)) is at most 1/(4p(n)?n?), which completes the
proof.

Thus, just as in [RA97], there must exist some sequence (wy, w2, ..., Wy2) of
weight functions such that, for all graphs G on n vertices, if G has at most p(n)
accepting paths, then there is some 2 such that, when w; is used as the weight
function, then G will not have two accepting paths with the same weight.

Now it is easy to see that the language {(z,07) : f(z) > j} is in NL/poly.
On input z, for each 4, for each ¢ < 4p(n)n3, try to guess an accepting path
having weight ¢ using weight function w;, and remember the number of #’s for
which such a path can be found. If there is some % for which this number is at
least 7, then halt and accept.

The theorem now follows by closure of NL /poly under complement [Imma88,
Sze88]. [ |

This is also an appropriate place to present two results that improve on a
lemma of [BDHM92] in the nonuniform setting. Lemma 12 of [BDHM92] states
that, if M is a “weakly unambiguous” logspace machine with f(z) = #acenm(z),
and g is computable in logspace, then the function ({]E;;) is in #L.

(Although we will not need the definition of a “weakly unambiguous ma-
chine” here, we note that as a consequence, f(z) is bounded by a polynomial in
|z|.) Below, we remove the restriction that M be weakly unambiguous, and we
relax the restriction on g, allowing g to be any function in #L — but we obtain
only a nonuniform result.

Theorem 4.3 Let f and g be in #L, where f(z) is bounded by a polynomial in
|z|. Then (;g;%) 18 in #L/poly.

Proof: Use Theorem 4.1 to find the number i = |2|°(}) such that f(z) = i.
If, for all j < i,g(z) # j, then output zero. Otherwise, let j = g(z). Using the
fact that NL/poly = UL/poly [RA97], we may assume that there is a unique
path that determines the correct values of 2 and j.

As in the proof of Theorem 4.1, we may assume that our nonuniform advice
consists of a sequence of weight functions, and our algorithm can find one of
these weight functions such that each of the ¢ paths of the machine realizing
f(z) have distinct weights. Our #L/poly machine will pick j of these weights
t1,...,t; and attempt to guess j paths of f(z) having these weights. [ ]

The preceding can be improved even to FNL/poly.

Theorem 4.4 Let f and g be in #L, where f(z) is bounded by a polynomial in
|z|. Then (;g;%) 18 in FNL /poly.

Proof: Compute ¢+ = f(z) and j = g(z) as in the preceding proof. Now
note that (;) can be computed using a polynomial number of multiplications
and one division, and thus has P-uniform NC? circuits [BCH86]. The resulting
algorithm is NC?! reducible to NL, and thus is in FNL/poly. [ |

10



(Note that, in contrast to Theorem 4.3, Theorem 4.4 cannot be derandomized
using Theorem 5.1, since the construction in [BCH86] does not use a probabilis-
tic argument.)

5 Derandomizing the Constructions

It is natural to wonder if our constructions hold also in the uniform setting. In
this section, we present reasons to believe that they probably do.

Nisan and Wigderson [NW94] defined a notion of “hardness” of languages.
A language A has hardness h(n) if there is no circuit family {C,} of size less
than h(n) with the property that, for all input lengths n, Cy,(z) agrees with
X4(z) on more than (1 + Zh](-n))2n strings.

The results of Nisan and Wigderson can be used to show that if there is a set
A in DSPACE(n) having hardness 2¢, then there is a pseudorandom generator
g computable in space logn with the property that no statistical test of size n
can distinguish pseudorandom input from truly random strings. That is, there
is a function g : {0, 1}*¥1°8% — 10,1}V computable in space O(log N) with the
property that, for all circuits C of size N, the following two probabilities differ
by at most 1/N:

Prob(C(z) accepts), where z is a random input of size N.
Prob(C(z) accepts), where z = f(y) for a random y of size klog N.

The desired function g is defined as follows. We need that there is a function
h computable in space log N with the following property: h(N) is a binary
matrix with N rows and | = klog N columns, where each row has m = k'logn
1’s (we’ll be more specific about the exact values of [ and m later on, but clearly
k' < k), and any two distinct rows (viewed as subsets of {1,...,1}) intersect in
at most log N points. The construction of a function h meeting these parameters
is not explicit in [NW94], but we will use a construction communicated to us
by Avi Wigderson [Wig97]. Assume for now that we have the function h.

Here is how to compute ¢g: On input y of length I = klog N, produce a
sequence of N output bits, where the sth bit is produced as follows. Let A be
the subset of {1,...,1} given by the ith row of the matrix h(N). Let z be the
string of length m corresponding to the bits of y in the positions in A. Output
A(z) as the ith bit.

For completeness, we need to specify how to compute the function h. We
shall present a probabilistic logspace algorithm, and then derandomize it. We
will need a function seT: GF(2!') — {4 C {1,...,1} : |4] = m} so that each
m-set A has a preimage of approximately the same size. A simple way to do
this is to view a string a of length ! as a number, and merely cycle through all
possible m-sets in some standard order, until the ath item in this sequence is
found. To simplify the subsequent analysis, we shall assume that the preimage
of each set A has ezactly the same size. It is straightforward to modify the proof
to handle the necessary approximations.

11



Here is the probabilistic algorithm. Pick elements a and b from GF(2')
uniformly at random. Let ij,4,...,4, be the n first elements of GF(2!) in
some standard enumeration. Let S be the set {a +4; xb:1 < j < n}, and let
S" = {sET(c) : ¢ € S}. Output the N-by-I matrix whose rows encode the sets
in 8.

Claim 1 Prob(no two sets in S’ intersect in more than log N positions) > 0.

Proof: For 1 < j <m, let r; be the random variable with value SET(a + ¢; * b).
As in [CG88][Section 3] (see also [Wig95]), for each pair of m-sets 4 and B,
the events r; = A and r; = B are independent (so Prob(r; = AAr; = b) =
Prob(r; = A)Prob(r; = B)). Thus

Prob(|r; N 7;| > log N)
= Y apProb(|rinrj| >logN |[r; = AAr; = B)
Prob(r; = AAr; = B)
= Y 4 pProb(|rinr;[>logN |r; = AAr; = B)
Prob(r; = A)Prob(r; = B)
> 4.5 Prob(|AN B| > log N)Prob(r; = 4)?
PI‘ObA’B(|A N B| > IOgN)

where the third equality holds since the events (r; = B) have uniform distribu-
tion, and the fourth equality holds since, for fixed A and B, Prob(|4 N B| >
log N) is either zero or one. Since, for randomly chosen m-sets A and B, the
expected size of the intersection is m?/l = (k'?/k)log N, by use of the Chernoff
bounds (see, e.g. [AS92][Corollary A.14]) the probability that this intersection
is greater than log N can be made less than 1/n2 by choosing k to be about
4k,

Let C be a random variable counting the number of pairs (4, j) (with ¢ # j)
such that |r; N rj| > log N. Thus C is the sum of the random variables C; ;
taking value 1 if (4,7) is such a pair, and 0 otherwise. The expected value of
C is the sum of the expected values of the variables C; ;, and the preceding
paragraph shows that the expected value of each C; ; is at most 1/n?. Thus the
expected value of C is less than 1 (and in fact by appropriate choice of constants
can be made much less than 1). This suffices to prove the claim. [ |

It remains only to make the probabilistic algorithm deterministic. There
must be some choice of the random values ¢ and b for which the probabilistic
algorithm produces a good matrix. Thus we can simply cycle through all of
the choices for a and b, and check whether for each 1 < j; < j3 < N the sets
SET(a + ¢;, * b) and SET(a + i;, * b) intersect in more than log N places, until
a good pair (a,b) is found, and then simulate the probabilistic algorithm using
the pair (a,b). Clearly all of this computation can be done in logspace.

Theorem 5.1 If there is a set in DSPACE(n) with hardness 2™ for some e > 0,
then the nonuniform constructions in this paper (and in [RA97]) hold also in
the uniform setting.
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Proof:  We illustrate with Theorem 3.1. The other constructions can be
derandomized in a similar manner.

The argument in Theorem 3.1 uses a sequence of weight functions wy, ..., w,
with the property that, for each graph G, (G has a perfect matching) implies
(there is some 7 < 7 and some j < n® such that |f(G,4,7)| = 1), where f is
the GapL algorithm that uses weight function ¢, and looks for clow sequences
of weight j.

Under the hardness assumption about DSPACE(n), we may use the Nisan-
Wigderson pseudorandom generator (as described above), to produce N = n13
bits, and interpret these bits as n!® weight functions (where each weight function
can easily be described using n?® bits).

Assume, for the sake of a contradiction, that these pseudorandom bits do not
produce a correct algorithm. Thus there are infinitely many values n for which
there is a graph G, on n vertices for which the algorithm gives an incorrect
answer. This will give us the following statistical test of size N distinguishing
pseudorandom input from random input, in contradiction to [NW94]:

Given an input of length N = n'?, check if at least one of the first n* weight
functions works correctly for graph G,. That is, check if there is some i < n?
and j < nS such that |f(Gn,i,5)] = 1. The computation of each f(Gp,i,j)
can be done by doing a determinant calculation, and hence can be done in size
< n3. The total number of such tests is n°. Thus the total size of the circuit is
easily bounded by n'® = N.

By hypothesis, this statistical test will reject all of the pseudorandom strings.
However, the analysis of Theorem 3.1 easily can be used to show that truly
random strings are accepted with probability greater than 3/4 (and indeed,
with probability almost 1). [ ]

6 Open Problems

Our results sandwich the matching problem between two classes that are closed
under complement (NL and SPL). Is the perfect matching problem reducible to
its complement?

Is the matching problem in NL? Is it complete for SPL? (Does SPL even have
any complete problems?) Is the matching problem complete for some “natural”
class between NL and SPL?

As in [MVV87], our techniques apply equally well to both the perfect match-
ing problem and to the bipartite perfect matching problem. What is the true
relationship between these two problems? Is the perfect matching problem re-
ducible to the bipartite perfect matching problem?

Can more inclusions be shown among other logspace-counting classes (at
least in the nonuniform setting)? Is C=L contained in @L? Is LogCFL contained
in L#L? Can the equality LogFewNL = UL be shown also to hold in the uniform
setting?

13
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