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Abstract. Continuing the study of the relationship between T'C°, AC°
and arithmetic circuits, started by Agrawal et al. [1], we answer a few
questions left open in this paper. Our main result is that the classes
DiffAC® and GapAC® coincide, under poly-time, log-space, or log-time
uniformity. From that we can derive that under logspace uniformity, the
following equalities hold:

C=AC’ = PAC® =TC".

1 Introduction

The study of counting complexity classes was started by the pioneering work
of Valiant [16] on the class #P. Tt consists of functions which associate to a
string  the number of accepting computations of an N P-machine on z. A well-
known complete problem for this class is the computing of the permanent of
an integer matrix. The class #7 was defined later analogously with respect to
N L-computation [3,18,14]. Each of these classes can be defined equivalently
either by counting the number of accepting subtrees of the corresponding class
of uniform circuits, or by computing functions via the arithmetized versions of
these circuit classes [17, 18, 14].

These counting classes contain functions which take only natural numbers
as values. Counting classes computing functions which might also take negative
values were introduced via the so-called Gap-classes. The class Gap P was defined
by Fenner, Fortnow and Kurtz [8], and the class GapL was introduced by analogy
in [18]. For both classes there are two equivalent definitions. They can either be
defined as the set of functions computable as the difference of two functions
from the corresponding counting class, or as functions which are computed by
the corresponding arithmetic circuits augmented by the constant -1.

Recently, counting classes related to circuit model based language classes
were also defined. The class #NC' was introduced by Caussinus et al. in [7],
and the class #AC? by Agrawal et al. in [1]. The corresponding Gap-classes
were also defined in these papers. The two definitions for GapNC?! are again
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easily seen to be equivalent, the principal reason for this being the fact that
the PARITY language is in NC'. The same argument fails to work for the two
definitions of GapAC? since PARITY can not be computed in AC?. In fact, one
of the problems left open in [1] was the exact relationship between these two
classes (GapAC? and DiffAC? in the notation of the paper).

The main result of our paper is that GapAC? and DiffAC? actually coincide.
We will prove this in the log-time uniform setting, thus showing that it also holds
in the log-space uniform and P-uniform settings. As a consequence of this result,
we can simplify the relationships among the various boolean complexity classes
defined in terms of these arithmetic classes, resolving several open problems of
[1]. For example, under log-space uniformity the classes TC?, C= AC® and PAC®
are all equal. (This result was proven in [1] only under P-uniformity.) Under
log-time uniformity, we have the new series of containments TC® C C_AC® C

PAC.

2 Preliminaries

Following [1], we will consider three notions of uniformity for circuit families.
A family {Cp}p>1 of circuits is said to be P uniform if there exist a Turing
machine M and a polynomial T'(n) such that M, given n in unary, produces a
description of the circuit C),, within time T'(n). Similarly, a family is log-space
uniform if there exists a Turing machine that produces a description of C), using
space O(logn).

The definition of log-time uniformity [5] is a bit more complicated. A family
{Cy} of circuits is said to be log-time uniform if there is a Turing machine that
can answer queries in its direct connection language in time O(logn). The direct
connection language consists of all tuples (i, j,¢,y) where 7 is the number of a
gate of Cy,, j is the number of one of its children (or the number of the referenced
input z;, if gate i is an input gate), ¢ gives the type of gate i, and y is any string
of length n. The log-time Turing machine has a read-only random-access input
tape, so that it can, for example, determine the length of its input by binary
search. As shown in [5] and [4], log-time uniform circuits are equivalent in power
to circuits given by first-order formulas with variables for input positions and
atomic predicates for order, equality, and binary arithmetic on these variables.

By De Morgan’s law, it is sufficient to consider circuits in which negations
occur only on the input level, and all the other gates are OR-gates or AND-
gates. For such circuits the notion of subtree was introduced in [17]. Let C be a
Boolean circuit and let T(C') be the circuit obtained from C by duplicating all
gates whose fan-out is greater than one, until the underlying graph of T(C) is a
tree. Let 2 be an input of C'. A subtree H of C on input x is a subtree of T(C)
defined as follows:

— The output gate of the circuit T(C) belongs to H.

— For each non-input gate g already belonging to H, if g 1s an AND-gate then
all its input gates belong to H, and if g i1s an OR-gate then exactly one of
its input gates belongs to H.



A subtree on input z is said to be an accepting subtree if all its leaves evaluate
to 1.

We now define how to arithmetize a Boolean circuit. The input variables
Z1,Za,..., T, take as values the natural numbers 0 or 1, and the negated input
variables #; take the values 1 — z;. Each OR-gate is replaced by a +-gate and
each AND-gate by a x-gate. It was shown in [17] that the number of accepting
subtrees of the circuit C' on input (z1,21,...,2Zn, Z,) is equal to the output of
its arithmetized circuit on the same input.

Note that the output of such an arithmetic circuit is always non-negative. If
the constant —1 1s allowed in the circuit, functions with negative values can also
be computed.

Let #C be a class of functions from {0, 1}* to N. By definition, #C — #C is

the class of functions expressible as the difference between two functions from

#C.

Definition 1 [1] Let U be any of our three uniformity definitions: P, log-space,
or log-time. For any k > 0, U-uniform #ACY (GapAC}) is the class of functions
computed by depth k, polynomual size, U-uniform circuits with +,x-gates having
unbounded fan-in, where inputs of the circuits are from {0,1,2;,1 — 2;} (from

{0,1,—1,2;,1 —2;}) and z; € {0, 1} for alli=0,... n. Let

#4C° = | #ACE,

k>0
DiffAC® = #AC® — #AC°,

GapAC® = | ] GapACY.
k>0

It is easy to see that under all three uniformity conditions, DiffAC? C
GapACP. A very natural question, left open by Agrawal et al. [1], is whether
Diff AC°=GapAC®.

Let PARITY denote the usual 0-1 parity function which computes the sum
of its inputs modulo 2, and let F-PARITY be its Fourier representation, that is
F-PARITY (z1,...,2,) = [[:=;(1 —22;). Note that the range of this function is
{1,=1}. Tt is clear that F-PARITY is in GapAC?. Another open question was
whether this function belongs to DiffAC®.

In the next sections we will give a positive answer to both questions. By a
#ACP circuit we mean an arithmetized AC? circuit in the above sense. Through-
out this paper we will need the following fact.

Fact 1 For each integer N of m bits there exists a #AC° circuit with O(m?)
gates, which on input 1™ computes N. This circuit is log-time uniform if the
binary representation of N is given as input.



Proof. We use the circuit C, introduced in [1] to denote the #AC? circuit of
depth 2 and size (37 + 1), whose number of accepting subtrees on input 17" is
2". Observing that

2= (141 (4141,

r times

C, will contain at the input level 2r constants 1, » OR-gates of depth 1 and

fan-in 2, and one AND-gate of depth 2, whose inputs are all the OR-gates. Note

that the family of circuits {C)},>1 is both P-uniform and Logspace-uniform.

Let N = Np_1Np—o ... N1 Ny be the binary representation of N. The formula
m—1

N = Z N; - 2' will give a ##AC? circuit of depth 3 and size O(m?) computing
i=0

N. (Note that a log-time Turing machine can use its random access input tape

to reference the single bit of N needed to answer any particular query.) O

3 DiffAC® = GapAC®

Theorem 1 DiffAC® = GapAC® for log-time uniform circuits (and hence for
P uniform and log-space uniform circuits as well).

Proof. Tt is enough to show that GapAC? C DiffAC? under each uniformity
condition. We will first describe our general construction, and then show that
it can be carried out preserving log-time uniformity (and hence the other two
conditions as well). Given an arithmetic circuit C' for the inputs of length n,
using the constant —1, we will construct two other arithmetic circuits A and
B, each with only positive constants, such that for all input z of length n,
we have C'(z) = A(z) — B(x). We will show, by induction on the depth of C,
that for each gate g, we can build two #AC? circuits A9 and BY such that
g(z) = A9(z) — BI(x).

The construction is trivial for gates of depth 0. Consider now a gate g of depth
d > 1 having as input gates g1,92,...,gm. Suppose that for each i = 1,...,m,
we have already constructed two #AC? circuits AY and BY satisfying g;(z) =
Al (z)— B (z).1f g is a +-gate, the construction of A9 and B is straightforward.
The interesting case is when g is a x-gate. For ease of notation we set a; = AY(z)

and b; = B (z).

m
Without any negative constants, we can compute the product H(ai + b;),

i=1
m
which is of no immediate help in getting ]:[((1Z — b;). The key idea is to notice

i=1
that we can also compute some other products of positive linear combinations

of the a;’s and b;’s as well, such as H(ai + 2b;), and use linear algebra to solve

i=1
for the combination we want.



Specifically, we will find a sequence of integers ¢1(m), ca(m), ..., cmy1(m),
each of which depends only on m and has O(m) bits, such that the following
equalities hold:

[I(ai —b:) (1)

i=1
m+1 m

= m) - [J(ai + k- bi) (2)
k=1 i=1

= > ck(m)~H(ai+k-bi)— (—ck Haz—i—k b;). (3)
kick(m)>0 i=1 k:ick(m)<0 i=1

We must show that this sequence of integers exists, and that each cg(m) is com-
putable by a log-time uniform # AC? circuit. Then the log-time uniform circuits
A9 and BY can easily be constructed to calculate the two sums in expression (3),
and the difference will be the value of ¢ as desired.

Let us develop the product (1):

m+1 m
> ex(m) [ (ai + k- bi)
k=1 i=1
m+1 m
= Ck(m) E E k-]atl . .afm—j . bil .. bZJ
k=1 =0 ti, . tm_j,i1,...,05
m+1 m
= J. cbhe b
= E E K -ep(myag, - -ag,,_; by oo oby,
k=1 j=0 t17“A7tm_J‘7i17‘“7i]‘

I

<
1l
=)

m+1
Z (Z kj.ck(m)) py e, biy by
; \k=1

tr,tm—j,01,..0

Thus for each j and each m-tuple (ty,...,¢,,_;,41,...,4;), the coefficient
m+1

“bi, -+ -b;; in the expression (2) is Z kI cep(m

of the monomial a, - - a; ,

m—j

whereas the coefficient for the same term in the expression (1) is (¥l)j. There-
fore the values ¢ (m) are exactly the solutions of the following linear system of

equations:
m+1

STk en(m) = (-1),

for all j = 0,...,m. Call M9 the corresponding matrix of this linear system.
By Cramer’s rule its solutions ¢x(m) are:

det(M(k )

)
Ck (m) = d@t(M(O)) )



where M*) is the matrix obtained from M(®) by replacing the k-th column
of M(® by the column vector (1,=1,(=1)%...,(=1)™)T. For 0 < i < m, the
matrices M) are Vandermonde matrices, therefore the determinant of M (%) is
clearly different from 0, and a simple calculation gives:

k=1 m+1
([U4—0> IT G-

e
i) (10
i=1 j= k+1
[(-1)k-1.2.3.4. [(k+2)(k+3) - -(m+2)]

)
[(k—l)(k—?_)- ][1 2-3.--(m+1-k)]
_(_Dhykw+mw+m (m+2)
N (m+1-k)!

_ m+ 2
= (—l)k 1.k.<k+1>'

The last expression shows that the numbers ¢ (m) are indeed integers, and thus
that our desired circuits exist at least in a non-uniform setting. It remains to

show only that each number cx(m) can be computed by a log-time uniform
#AC? circuit. This follows immediately from the following:

Lemma 1 The binomual coefficient (Z) can be computed by a log-time uniform
#AC® circuit, whose inputs are the numbers n and k in unary.

Proof. If p is any boolean predicate in log-time uniform AC?, its characteristic
function [p] (equal to the integer 1 if p is true and the integer 0 otherwise) is in
log-time uniform #AC?. This is because, as observed in [1], AC? circuits can be
systematically transformed so they have either one accepting subtree or none at
all. By [5], then, any property of numbers, expressible in first-order logic over
positions in the input, also has a characteristic function in #AC°. Because we
can use constant-length tuples of positions to represent numbers, we can use
first-order logic on numbers that are polynomial in the input size. Among the
functions available to us on such numbers are [m is prime], [i divides m], and
so forth. Note that these same functions are not necessarily in #AC? on larger
numbers, such as (Z) itself.

To calculate (Z), we will determine its prime factorization. That is, for each
prime p < n, we will calculate the number Pow(p, n, k), the largest power of p
dividing (). Then we have

(:) - ﬁ ([p is composite] + [p is prime] - Pow(p, n, k),

p=2

which is clearly in log-time uniform #AC" as long as each Pow(p,n, k) is



Fixing a prime p, we can calculate the number of p’s occurring in each of the
n

two products H i and k! as follows. The top product has exactly |n/p| —
i=n—k+1

[(n — k)/p| terms divisible by p, exactly [n/p*| — [(n — k)/p?] divisible by p?,

and so on, so that the total number of p’s is

[log, n]

S (/P - Ln—k)/pP]).

j=1
Similarly, the number of p’s in k! is

[log, k]

> Lk

7j=1

For each j, the j’th terms of these sums differ by either one or zero. Thus, we can
calculate the number Pow(p, n, k) as a product of a number for each j, which is
either 1 or p:

[log,, n

IT {1+6-0- |15 > 155+ 150}

j=1

Since n, k, and p/ are each polynomial in the input size, this function is in log-
time uniform #ACO. O

We have now completed the proof of Theorem 1. O

4 A Few Consequences
Corollary 1 F-PARITY is in log-time uniform DiffAC°.
Corollary 2 PARITY is in log-time uniform DiffAC®.

Proof. Vinay pointed out [1] that PARITY is represented by the following poly-
nomial:

n i—1
Z ]:[(1 — 2;23]') ;.
i=1 \j=1
The corollary thus follows immediately from Theorem 1. O

Define LDIiffAC? to be the class of languages whose characteristic function
is in DiffAC®. Agrawal et al. proved in [1] that every language in AC® has its
characteristic function in #AC?, hence in DiffAC?. They left open the question
whether there exists a language in AC® whose characteristic function is not in



LDIffACO. Tt is well known that PARITY is not in AC?. Therefore with Corollary
2 we have separated AC? from LDifFACO.

In their paper [1], Agrawal et al. showed that the class AC?[2] is exactly the
class of languages whose characteristic function is in GapAC?. Combining this
result with our result will give AC°[2] = LDifFAC®. Because of the result in [12]
showing that the MAJORITY is not computable in ACY[2], we have:

AC® C AC°[2] = LDIfFAC® C TC".

Note that the modulus 2 is special. If p is any odd prime number, the MOD-p
function is provably not in GapAC?, because (as noted in [1]) the low-order bit
of any GapAC? function is in AC?[2] and it is known [13] that MOD-p is not in
ACP[2].

Also, our result DiIffAC®-GapAC? implies that all properties known for one
of these classes are true for the other too (like normal form or the closure under

the weak product defined in [1]).

For the next results we need some more definitions:

Definition 2 [1] The class C=AC° (C=ACY,.) consists of those languages I

for which there exists a function f in DiffAC® (GapAC®) such that for all bit
strings x the following holds:

rel < f(z)=0.

The class PAC°(PACY,.) is defined in a similar way where the condition f(z) =

cire

0 is replaced by f(z) > 0.

Corollary 3 Under the log-space or log-time uniform model the following equal-
ities hold:
C_AC?

cires

C=AC"
PAC® = PAC®

cire®

Proof. This follows immediately from Theorem 1. The corresponding equality
for P uniformity was shown in [1]. O

Corollary 4 For log-space uniform circuits :

C_AC® = PAC® = TC° = C_AC". . = PAC®

cire cire®

Proof. Tt was shown in [1] that in the log-space uniform setting we have:

C=AC" C PAC" CTC" = C2AC,, = PACG,..
The result thus follows immediately from Corollary 3. O

Corollary 5 For log-time uniform circuits:

TC® C C_AC® C PAC®



Proof. Again, this follows immediately from Corollary 3 and the corresponding
result in [1]. O

These three classes may be equal under log-time uniformity as well, but the
proof in [1], that PACY . C TC? in the log-space uniform setting, appears to
make essential use of techniques that are only known to be log-space uniform.

We can also answer another open question of Agrawal et al. [1]:

Corollary 6 Logspace-uniform PAC® is closed under union and intersection.
Logspace-uniform C=AC" is closed under complement.

Proof. TC" is clearly closed under union, intersection, and complement, so this
follows from Corollary 4. O

Do these closure properties hold under log-time uniformity as well? This
remains an open question.
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