Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 21 (1998)

On the Existence of Optimal Propositional Proof
Systems

and Oracle-Relativized Propositional Logic

Shai Ben-David * Anna Gringauze'

Abstract

We investigate sufficient conditions for the existence of optimal propo-
sitional proof systems. We concentrate on conditions of the form CoNF =
NZF. We introduce a purely combinatorial property of complexity classes
- the notions of slim vs. fat classes. These notions partition the collection
of all previously studied time-complexity classes into two complementary
sets. We show that for every slim class an appropriate collapse entails the
existence of an optimal propositional proof system. On the other hand,
we introduce a notion of a propositional proof system relative to an oracle
and show that for every fat class there exists an oracle relative to which
such an entailment fails.

As the classes P (polynomial functions), & (2°(") functions) and £
(20(2n) functions) are slim, this result includes all the previously known
sufficiency conditions for the existence of optimal propositional proof sys-
tems.

On the other hand, the classes NEXP, QP (the class of quasi-

polynomial functions) and £EE (20(22n) functions), as well as any other
natural time-complexity class which is not covered by our sufficiency result,
are fat classes.

As the proofs of all the known sufficiency conditions for the existence
of optimal propositional proof systems carry over to the corresponding
oracle-relativized notions, our oracle result shows that no extension of our
sufficiency condition to non-slim classes can be obtained by the type of
reasoning used so far in proofs on these issues.

*CS Dept., Technion, Haifa 32000, Israel, and SysEng Dept., RSISE, ANU, Canberra 0200,
Australia, email: shai@syseng.anu.edu.au, shai@cs.technion.ac.il
'"IBM Haifa Research Center, Haifa, Israel, email: vanna@vnet.ibm.com

ISSN 1433-8092

1 Introduction

The questions concerning the relationships between the classes P, NP and CoNP
are of the most important open problems in computational complexity. It turns
out that the proof theory of propositional calculus provides a framework in which
some of these questions can be reformulated and analyzed from a somewhat
different perspective.

The first step in this direction is due to Cook and Reckhow [CRT79] who have

posed the following proof-theoretic question:

“Does there exist a propositional proof system in which every tautol-
ogy has a short proof (of size polynomial in the size of the tautology)?”

To formulate this question precisely Cook and Reckhow in [CR79] introduced a
following abstract definition of a propositional proof system:

Definition 1 A propositional proof system is a polynomial time computable func-

tion f:4{0,1}* P Taut.

A propositional proof system that allows short proofs to all tautologies is
called a super propositional proof system. More formally,
Let the size of a formula or a proof be the total number of symbols in it.

Definition 2 A propositional proof system [is called super if there evists a
polynomial p : N — N s.t. for every a € Taut there exists w € {0,1}* of size

< p(lal) s.t. fw) = a.

In the same paper, Cook and Reckhow show that the existence of a super
propositional proof system is equivalent to the assertion NP = CoNP.

A mnatural step in the analysis of such a problem is to introduce a relevant
partial order, in our case, a partial order reflecting the relative strength of propo-
sitional proof systems.

Definition 3 Let f, g be propositional proof systems.

o [simulates g if there exists a polynomial p s.l for every w € {0,1}*, there
exists w' € {0,1}* of length < p(Jw]) s.t. f(w') = g(w).

o We say that [p-simulates g if such a w' can be found efficiently, that is,
if there exists a poly-time computable function h :{0,1}* — {0,1}* s.t. for
all 0, gfw) = f(h(w))

A “strongest” propositional proof system is called optimal.

o A propositional proof system is called optimal if it simulales every other
propositional proof system.

o A propositional proof system is called p-optimal if it p-simulates every
other propositional proof system.

Here again, the existence of a propositional proof system having such a prop-
erty is unknown. Moreover, no natural open problems in computational com-
plexity theory are known to be equivalent to the existence of such a propositional
proof system. The strongest result on this topic is due to Kobler and Mefiner
[KMO9§|:

Theorem [Kobler and Mefiner [KM98]]:

o [f TallyCoNEE C NEE then there exisls a optimal propositional proof
system.

o If TallyCoNEE C EE then there exisls a p-optimal propositional proof
system.

This improves an earlier result of Pudldk [Pu84] and of MeBner and Tordn
[MT97] deriving the existence of an optimal propositional proof system from the
assumption N'E = CoN'E, and Sparse CoNEE C N EE, respectively.

Here V'€ and NEE are the complexity classes of all languages recognized by
nondeterministic Turing machines running in 2°(" and 2°") time respectively.
(where n denotes the size of an input), and £€ and CoNEE denote the corre-
sponding deterministic time and co-nondeterministic time classes. Tally stands
for the restriction of a class to its unary langages.

Krajicek and Pudldk, [KP89] present several proof theoretic statements which
are equivalent to the existence of an optimal propositional proof system.

The only known necessary condition for existence of optimal propositional
proof system (relating it to a natural computational complexity issue) was shown
(implicitly) by Razborov [Ra94]:

Theorem [Razborov [Ra94]]: If there exists a optimal propositional proof sys-

tem, then there is a complete (under polynomial reduction) problem is DisN'P.
Where DisNP is defined as follows:

Definition 4 For every pair of languages Ly, Ly, such that Ly N Ly, = (0, define
a problem Dy, 1,: given an inpul z, find an i € {1,2} s.t. x ¢ L;.

DZSNP déf {DLl,Lz : L17L2 c N,P,Ll N L2 = @}

It is an open question whether the existence of optimal propositional proof
systems implies the existence of complete problems for either NP N CoN'P or
DisN'P (or for any other complexity class for which the existence of a complete
language is an open question).

In this paper we take one more step towards clarifying the relationship be-
tween the collapse of complexity classes and the existence of optimal proposi-
tional proof systems. We introduce a purely combinatorial property of complexity

classes - the notions of slim vs. fat classes. These notions partition the collection
of all previously studied time-complexity classes into two complementary sets.
We show that for every class in one of these sets an appropriate collapse entails
the existence of an optimal propositional proof system, while, for every class in
the other set there exists an oracle relative to which such an entailment fails.
More precisely; On one hand we generalize the Kobler - Mefiner sufficiency con-
dition and show:

Theorem 1: For every slim class F, TallyCoNF C NF implies the existence of
optimal propositional proof systems, and TallyCoNJF C DF implies the existence
of p-optimal propositional proof systems.

(DF stands for the class of languages computable in deterministic time be-
longing to F, NF and C'oNF stand for the corresponding non-deterministic and
co-non-deterministic classes). As the classes P (polynomial functions), £ (20(”)
functions) and £€ (2°2") functions) are slim, this result includes all the previ-
ously know sufficiency conditions for the existence of an optimal propositional
proof system.

On the other hand, we introduce a notion of a propositional proof system
relative to an oracle, and show:

Theorem 2: For every fat class F, there exists an oracle relative to which
CoNF = DF and yet there is no optimal propositional proof system.

The classes NEXP, QP (the class of quasi-polynomial functions) and £EE
(20(22n) functions),as well as any other natural time-complexity class which is not
covered by Theorem 1, are fat classes.

As the proofs of all the known sufficiency conditions for the existence of op-
timal pps’s (including Theorem 1 here) carry over to the corresponding oracle-
relativized notions, this result shows that the reason that Theorem 1 does not
extend to non-slim classes is deeper than just a technicality in the existing proof.

Of independent interest is the following result, showing that the common
knowledge rule of thumb, stating that a collapse of low-level complexity classes
can be shown, by padding tricks, to imply a collapse of any higher complexity
class, 1s not always true.

Corollary 1: For every fat class of functions, F, there exists an oracle relative
to which NF = DJF and yet relative to the same oracle, for every slim class
F'. TallyCoNF'" ¢ NF'. (In particular, there is an oracle relative to which
NEEE = DEEE and yet there are Tally languages in CoN EE which are not in
NEE).

2 Definitions and Notation

We say that a function f is super-polynomial if VEV*n f(n) > n* (where V*n means
‘for all but finitely many r’s’). We say that f is non-polynomial if Vk—(V*n f(n) <
n*), that is, f exceeds every polynomial infinitely often.

Definition 5 Let F be a class of functions (from the set of natural numbers to

itself).
o F isslim if
df e FVgeF deV'n gln+1) < (f(n))

o For a function H : N — N, F is H-fat if
VieF Jge F V'n gln+1)> H(f(n))

o We say that F is fat if there exists some super-polynomial H such that F
is H-fat.

Note that the notions of slim and fat classes of functions are almost comple-
mentary; Every non-slim class is H-fat for some non-polynomial function H, and
every class of functions used to bound some complexity measure in the definition
of ‘natural’ complexity classes is either slim or fat.

Example 1:

o The classes & = {f : IV nf(n) < 2}, E€ = {f : FV*nf(n) < 27"} and
P ={f:3cV*nf(n) < n°} are slim classes.

o The classes EXP = {f : Jes.t. Vn f(n) <27}, QP = {f : Jes.t.¥n f(n) <
2108 "as well as E€€ = {f : Jc s.t. Yn f(n) < 2022n} are all fat classes.

Notation: For a class of functions F,

o DF denotes the complexity class of all languages accepted by deterministic
algorithms whose running time is a function in F.

o NF denotes the complexity class of all languages accepted by non-deterministic
algorithms whose running time is a function in F.

o CoNF denotes the complexity class of all languages accepted by co-non-
deterministic algorithms whose running time is a function in F.

e A language L C {0,1}* is Tally if it is a subset of {0}*. TallyNF is the
class of all tally languages in NF. We define the classes T'allyCoNF and
TallyDF similarly

3 A General Sufficient Condition

The following theorem is a straightforward generalization of the Kobler and

MeBner [KM98] sufficiency theorem.

Theorem 1 Let F be a slim class of functions then

1. TallyCoN'F C NF implies the existence of an oplimal pps.

2. TallyCoN'F C DF implies the exislence of a p- opltimal pps.

Proof: We concentrate on the first claim of the theorem. The proof of the
second claim is just a variation on this. We shall comment below on the changes
needed to obtain that claim.

Let (S; : 4 € N) be a recursive enumeration of all Turing machines mapping
binary strings to binary strings and running in time < n* on input of size n.
Assume further that, on input (¢, z,0") the first & steps of the run of S; on input
x can be efficiently simulated. Say that a machine S is an n-sound pps if for
every o € {0,1}=", S(o) is a propositional tautology.

Given a function f: N +— N, define the language Sound; by

Soundy = {0" : Sy is f(n)-sound}

where i(n) is max{i : 2 divides n}.
It is easy to see that given a class of functions F, a function f € F and an
enumeration (5; : 1 € N) as above, Sound; is in Tally CoN F.

Assuming TallyCoN'F C NF, there exists a polytime-computable relation R
and a function g € F so that

Sounds = {0™ : dy < g(n) R(0™,y)}

Let f be a function that demonstrates the slimness of F, that is, for every
g € F there is some constant ¢ such that for all n, g(n+1) < f(n)°. Let us define
a proof system S* by having

Si(w) if jw| < s and, for some odd k, s = f(k2Y), y < g(k2")
S*(0%,w,y) = and R(0*?y) holds.
AV A otherwise

Let us show that S* is indeed an optimal pps; Clearly S* is a sound (that
is, for every o, S*(o) is a tautology). Note also that, as g(n) < f(n)° for some
constant ¢, S* is efficiently computable.

Now, given any proof system S;, for every string w, let k,, be the minimal
odd k s.t. |w| < f(k2"), and let y < g(k,2') be an R-witness to the f(k,2")-
soundness of S;. We readily get S*(0/(52) w, y) = Si(w). All that is needed to

6

complete the proof is to show that, for some polynomial p;, for every w, k,, satisfies
9(kw2') + f(ky2') + |w| < p(Jw]). By the minimallity of &y, f((k, —1)2") < |w].
Let ¢ be such that for all n, f(n 4 1)+ g(n+ 1) < f(n)°. It follows that for all n

and 1, g(n+2i) -|—f(n-|—2’) < f(n)c2 By substituting n = (k,, — I)Qi we conclude
that, g(kw2') + f(ke2') < w]®

To prove part 2 of the theorem, just note that under the assumption of that
claim Sound; € DF so one can repeat the above construction without the ‘wit-
ness’ strings y and get an effective construction of the 5* proof from the given S;

proof, w. L]

4 Oracle-Relativized Propositional Calculus

We wish to have a class of languages that are parametrized by oracles {T'aut*}, so
that for every oracle A, the language Taut? is CoNP# -complete. Furthermore,
we wish to define a notion of a relativized proof system, such that all the previous
results concerning proof systems lift up to these relativized notions.

It turns out that this can be achieved by extending propositional calculus to
allow an extra connective, a connective whose semantics depends upon the oracle
relative to which our complexity notions are defined.

Definition 6 The set of X-well-formed formulas (X — WFFs) are defined in-
ductively:

a) Every propositional variable is an X — WFF.
b) If « and B are X — WEFF's, then so are (—a), (e A3), (aV), (a—).
¢) Forne N, if ay,ag,...,a, are X — WFFs, then so is X(ay,az,...,0,).

Definition 7 Let A be an oracle (that is, A C {0,1}*), v - a truth assignment
to propositional variables. The truth value v of X — W F F's is defined inductively:

a) If A is a propositional variable then v(A) = v(A).

b) If a,8 are X —WFFs, o€ {AV,—} then v(aof)=TTs(v(a),v(3));
o(na) = TT.(v(a)). (Where, TT, stands for the usual truth-table of the

conneclive o).

¢) Let us interpret truth values as binary bits (so True becomes I and False be-

comes (). Forn € N, ifar,az,...,a, are X—WFFs, then 5(X (a1, az,...,a,))

Uil ((8(e)), (8(02). .. (3(0))) € A.

Definition 8 Let A be an oracle. SAT 4 ts the set of all A-satisfiable X —W F F's.
Taut 4 is the set of all X — W FF's which are tautologies with respect to A.

Definition 9 Let A be an oracle. A propositional proof system w.r.t. A is
a function f : {0,1}* 2 Tauty such that f € FPA (the class of functions
computable by polynomial Turing machines with oracle A).

Lemma 1 For every oracle A, SATy is NPA-complete for polynomial time re-
ductions.

Proof: Slightly modified Cook’s proof of “SAT is N'P-complete”.]

Corollary 2: [A Relativised Cook-Reckhow Theorem| For every oracle A, there
exists an A-relativized super propositional proof system iff NP4 = CoNPA.

It is also straight-forward to check the the sufficiency results for the existence
of optimal propositional proof systems (in particular, Theorem 1 above) and
Razborov’s necessary condition carry over to the relativized notions.

5 An Oracle-Relativized Insufficiency Condition

Definition 10 A class F is reasonable if

o For ecvery [€ F and every k € N, the function f(n)* is also in F.

e For every pair of functions, f,g, if f € F and {n: f(n) # g(n)} is finite,
then g € F.

o For every f,g € F the function max(f,g), defined by
max(f,g)(n) = max{f(:),g(z) : i <n}, is also in F.

Theorem 2 Let F be a reasonable class of functions. [If F is fat then there
exists an oracle A relative to which CoNF = DJF and yetl there is no optimal
propositional proof system.

Proof: We shall construct the oracle A inductively. At each stage ¢ we handle
some task by adding a finite number of strings of length < i to A. Let A; denote
the set of strings defined to be in A in stages < 1, A will be defined as U;A;.
The tasks are of two types; Making CoNFA = DF# and making sure that no
optimal A-propositional proof system exists. There will be a function Pl that
will map tasks to numbers, determining which task will be taken care of at which
stage of the construction.

Tasks of the first type. Let {M,; : i € N} enumerate all nondeterministic ora-
cle machines, and let I; denote the C'oNF language defined by M;. So, for
some g; € F and some poly-time computable relation R;, L; = {z : Vy <
gi(|z]) Ri(z,y)}. Let r; € N be such that n" dominates the running time
of R;.

For every pair (k,n) € N x N, the task T{;,) is to guarantee that, relative
to constructed oracle, some DJF machine for the language Lj; computes the
correct outputs for input strings of length n. We carry out this task by
defining, at stage Pl(k,n), the strings of length Pl(k,n) in A to be exactly
{020P!Em =+ ¢ |zl = n and z € L'

Claim 1 If for every k, the function Pl(k,) is a member of F, and for
all but finitely many of the pairs {(k,n) : n € N}, the membership of
strings of length n in L' is delermined by the membership of sirings of
length < PIl(k,n) in A, then, carrying out T(y,y for all but finitely many
n’s guarantees that L{ € DFA.

Proof: Immediate from the construction. []

Tasks of the second type. Let (S; : i € N) be a recursive enumeration of

all Turing machines mapping binary strings to binary strings and running
in time < n? on input of size n (that is, an enumeration of all candidate
propositional proof systems). Furthermore, we require that for every i,
{7+ Si = 5} is an infinite set computable in polynomial time. For each
number ¢ the task R; is to guarantee that, relative to constructed oracle,
S is not an A-optimal propositional proof system.
For each n € N, let a,, denote =X (True,z1,...,2,). ap is an X —WFF
and, for every oracle A, it is an A-tautology iff A contains no strings of
length n 4+ 1 that have 1 as their first bit. We shall define below a super-
polynomial function h, satisfying Vn(h(n))? < 2", and a function [. At
stage PI(t) =1 we check whether, relative to A;, there exists some string w
of length < h(I(t)) such that S{Ai_l(w) = oqr). That is, whether relative to
the oracle at this stage, S; has a ‘short’ proof for ;. If no such w exist
we do nothing, that is, define A; = A;_;. However, if such a w exists, we
add to A some string of the form 1y of length [(¢) that was not queried by
S{Ai_l on its run on input w. As S; runs in time < n? for w < A(I(t)) its
running time is < (h(I(¢))* which, by the choice of h, is less than 211 5o
necessarily such a string y exists.

Claim 2 Let h be a super-polynomial function s.t. h(n)?> < H(n) for all

n, and let A be constructed according to the above recipe. If for every t no
strings of length < (h(I(t))? are added to A at stages later than stage PI(t),
then there are no optimal A-propositional proof system.

Proof: As mentioned above, the output of each of the machines S; on
input strings of length < A(I(¢)) is determined by A2+ Tt follows that

for w of length < h(t), StAPl(t)(w) = S#A(w). Thus, for every propositional
proof system S,

1. If there exists some ¢ s.t. S = S; and there exists a short (that is,
of length < h(I(t))) proof of aiy) in S7, then, by the construction,
there exists a word y of length {(7) s.t. 1y € A. (Recall that o) is a
tautology iff there is no word 1y in A, where |y| = [(s).) Thus, aq) is
not a tautology. Therefore, S* is not sound.

2. Otherwise, for every k s.t. S = S there exists no S*-proof of aygy of
size < h(I(k)). Tt follows that in S* there are no polynomial proofs of
the set of A-tautologies

RS = {al(k) . Sk - S}

Rs € P, so there exists the propositional proof system U which has
polynomial proofs for every a;;y € Rs. Thus SA does not simulate U.

Therefore, S# is not optimal. L]

Lemma 2 If

1. Pl is a one-to-one function mapping (N x N)YUN to N, and il is increasing
(that is, on the sub-domain N x N il is an increasing function whenever
one coordinate is fived, and it is also increasing on the sub-domain N).

For all i,n, Pl(i,n) > g;(n)".
h is super-polynomial and h(n)* < H(n) for all n.
Forall s, l(s+1) > (h([(s)))Q.

>

5. For every i, {n: 3s [gi(n)", Pl(1,n)] C [I(s),h(I(s))*] } is finite.
Then the oracle defined according to the above recipe witnesses the main theorem.

By Claims 1, 2 above, it suffices to show that for each of our tasks, once it is
taken care of, no later addition to the oracle will interfere with it. We establish
that by the following four simple claims.

Claim 3 If Pl(i,n) < Pl(r,s) then the machine M;, while computing member-
ship in L; of strings of size n, cannot read the oracle values of strings of length

> Pl(r,s).

Proof: On input of size n, M; computes a poly-time relation R; on strings of
length < ¢;(n). The computation time of R; on input of size m is bounded by
m”. So the requirement that Pl(i,n) > gi(n)" takes care of the claim. L]

Claim 4 If PI(t) < Pl(s) then the machine S;, while running on input of size
< A(l(t)) (which bounds the length of the proofs of the tautology ey that we killed
at stage Pl(t)) cannot read the oracle values for strings of length > I(s) (which
is where the task handled at stage Pl(s) may write).

10

Proof: As Pl is a monotone increasing function, { < s — 1. Recalling that, for
all n, I(n +1) > h(l(n))* and that (h(I(¢))* is an upper bound on the range that
St can access on h(l(t))-size proofs establishes the claim.]

Claim 5 If PI(t) < Pl(i,n) then the machine Sy, while running on input of size
< h(I(t)), cannot read the oracle values for strings of length > Pl(i,n).

Proof: On proofs of length < A(I(t)) the proof system S; cannot read beyond
length PI(1). 0

Claim 6 Under the assumption of Lemma 2, for every i, for all sufficiently large
n and for all t, if Pl(i,n) < Pl(t) then machine M;, while running on inpul of
size n, cannol read the oracle values of strings of length > [(t) (which is where
the task handles at stage PIl(t) may write).

Proof: Let n be large enough to make Vs [g;(n)", Pl(k,n)] € [I(s), h(I(s))?].
For such n’s, the assumption Pl(i,n) < PI(t) implies that g;(rn)" < (). and
gi(n)" is an upper bound on the length of strings that M; can access on input of
size < n. U]

Now the proof of our theorem boils down to the following purely combinatorial
problem of finding functions PI, h and [so that the assumptions of Lemma 2 are
met.

The existence of these functions follow easily from Lemma 3 and Lemma 5 of
the next section.

[

6 The Combinatorics

Lemma 3 Let F be an H-fat and reasonable class of functions. Let {g; : 1 €
N} CF, and {r; : i € N} a sequence of natural numbers. Then there exisls a
sequence of functions {fr: k€ N} CF s.t .:

1. Fvery function in the sequence is monolone increasing.
2. For every n € N, the sequence (fr(n): k € N) is increasing.

3. The ranges of the funclions fi, are mutually disjoint and are all contained
in the set of odd numbers.

4. For every k, for all n, fy(n) > gp(n)".

5. frwi(n 4+ 1) > H(fr(n)), for every k,n € N.

11

Proof: Define the sequence {f; : & € N'} by induction on k. At stage k + 1,
apply the H-fatness of F to find a function f” so that f'(n 4+ 1) > H(fx(n))
(for all n), and then apply the ‘reasonability’ property to find an increasing fi41
above fr, f" and ggy1(n)"++1.]

We shall also need the following lemma, that may be of independent interest.

Lemma 4 For every suer-polynomial functions H, there exists a super-polynomial
function h such that, for every k € N, for all sufficiently large n H(n) > h¥)(n).
(where ™) is the k’th iterate of h, that is, RV (n) = h(n) and K" (n) =
(R (n))).

Proof: For every n, let
odef . (K*)
r, = max{k : Vm >n, m'") < H(m)}

Note that, for all n, r,41 > r,, and, as H eventually exceeds every polynomial,
rp, goes to 0o as n does.
Define a function g by (strong) induction on n, as follows:

g(n) = min{g(|log(n)]) + 1,r.}
It is easy to see that,

1. lim, e g(n) = oo. (g is the minimum of two functions, both growing to
infinity).

2. For every polynomial p, ¥*n g(n?@™)) < g(n) + 1. (This follows from the
requirement g(n) < g(|log(n)]) + 1).

We now define & by
h(n) = A

As g increases to infinity, A is super-polynomial.

Let us now show that,

VEV*n 2k < r, = h®(n) < H(n)
As r, grows unboundedly with n, this will establish the lemma.
Claim 7 For all sufficiently large n, h'¥)(n) < n(e(m™)

Proof: [of the claim] By induction on £,

By the induction hypothesis, for all sufficiently large n,

B0 () < h(nl™" D)

h(n@ ¢y = (n(g(n)2<k—1>))g(n<g<n)2<k-1>))
By property 2 of g, for all sufficiently large n, this is

< (Rl yalm 41— (om0 o) 1)

Which, for sufficiently large n’s is < n(a(m*), L]

Having proved the claim, the proof of the lemma is now immediate; As g(n) < r,,
if 2k < r, we get, for sufficiently large n’s,

h(k)(n) < "

Which, by the definition of r, is < H(n). L]
Finally, the following Definition and Lemma will supply all the remaining
ingredients in the construction of our oracle.

Definition 11 A sequence of large intervals is a sequence of pairs of numbers
{(a;,b;) : i € N} such that, for some super-polynomial function F, for all i
F(az) < bz < Aj41-

Lemma 5 Let Q = {q;;;i,7 € N'} be an infinite matriz of numbers.

If 1. For every i, the sequence (q;;: j € N) is increasing.
2. For every j, the sequence (q;; : i € N') is increasing.

3. There exisls a super-polynomial function H such that giy1 j11 > H(q;i j),
for all 1, 7.

Then there exists a sequence of large intervals, {(a;,b;) : i € N} such that for
every k,

{n: 3i [qrn, Grt1,0] C [ai, b} is finite.

Proof: Applying Lemma 4, let F' be a super-polynomial function such that
for every k € N, for all sufficiently large n, H(n) > F(k)(n).

We shall actually prove a slightly stronger result; For every k£ there exists
some ny s.t. for all m > ny the interval [gr(m), gr41(m + 1)] contains an interval
of the form [n, F'(n)] that contains no interval of the form [g;(r), g;41(r)] for any
1 < k.

Fix k and m. Let I = [q«(r*), ¢i»41(r*+1)] be a containment- minimal interval
in the (finite) set {(¢,7) @ [¢;(r), i1 (r + 1)] C [ge(m), grs1(m + 1)]}. Note that
for every ¢ at most one interval of the form [g;(n),gi+1(n)] is contained in [.

13

Otherwise, if both [g;(n), ¢i+1(n)] and [gi(1), gi+1(I + 1)] are contained in [(for
some [> n) then, as git1(n + 1) < giy1 (L + 1), we'll have [g;(n), giti(n+1)] C I,
contradicting the of I.

Consider the sequence of intervals

S = ([ae (), Flie(r))]; . [F® qee (7)), P& (g (7))

There are k many disjoint (except for their endpoints) intervals in S. Recall that
Girpr (r* 1) > H(gee(r")) > FEFD (gan(r7))

(assuming r* is sufficiently large). It follows that all of these k intervals are
contained in I. As there are only k—1 many intervals in the set {[g;(n), gi+1(n)] C
I': 1 <k}, one of the intervals in S contains no interval of the form [¢;(r), ¢i+1(r)]
for any 1 < k. (]

Completing the proof of Theorem 2 — The definitions of the functions PI,
h and [:

Apply Lemma 3 (for the given class F and function H) with the g;’s being
the functions bounding the witness-length in the CoNF languages L; and the
r;’s being the exponents in the time bound for the computation of the relations
R; in the definitions of these languages (as detailed in the second paragraph of
the Proof of Thm. 2). Let {fr : & € N} be the sequence of functions whose
existence is guaranteed by the lemma.

Apply Lemma 5 to the matrix defined by ¢z, = fi(n), and let F' be the
‘largeness’ function of the sequence of large intervals whose existence is concluded.

e We shall define Pl separately for the domain N x N (for tasks of the first
type, indexed by a pair (k,n)) and for the domain V' (for tasks of the second
type, indexed by).

— For the sub-domain N'x NV, define Pl : N'x N +— N, define Pl(k.n) =
Jrr1(n).
— Let us define the missing part of Pl by Pl(s) = F(Il(s)),
o Let [be any increasing function whose range is contained in {a; : 1 € N}

where the a;’s are the left-most points in the intervals (a;, b;) whose existence
is concluded by Lemma 5.

e Finally, define h by h(n) = min{\/F(n),/H(n)}.

It is straightforward to verify that these functions, Pl, h and [satisfy the
requirements of Lemma 2. This completes the proof of Theorem 2.

14

Acknowledgements

We wish to thanks Jochen MeBner for suggesting the use of techniques from
[KM98] to obtain an improvement in our Theorem 1.

References

[CR79] Cook, S., A., and Reckhow, R., A., “The relative efficiency of Propositional
Proof Systems” Journal of Symbolic Logic 44: 36-50, 1979.

[KM98] Kaébler J., and Mefiner J., “Complete Problems for Promise Classes by Op-
timal Proof Systems for Test Sets” To appear in Proceedings of the Com-
putational Complexity Conference, 1998.

[KP89] Krajicek, J., and Pudldk, P., “Propositional Proof Systems, the Consistency
of First Order Theories and the Complexity of Computation” Journal of
Symbolic Logic, 54(3): 1063-1079, 1989.

[MT97] MeBner, J., and Toran, J., “Optimal Proof Systems for Propositional Logic
and Complete Sets” KCCC report series Technical Report, June 1997.

[Pud4] Pudlék, P.; “On the Length of Proofs of Finitistic Consistency Statements
in First Order Logic” Logic Colloguium ’84, pp 165-195.

[Ra94] Razborov, A., A., “On Provably Disjoint NP-pairs. Technical Report,

BRICS november, 1994.

15

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

