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Abstract. We consider the problems of finding the lexicographically minimal (or max-
imal) satisfying assignment of propositional formulae for different restricted formula
classes. It turns out that for each class from our framework, the above problem is ei-
ther polynomial time solvable or complete for OptP. We also consider the problem of
deciding if in the optimal assignment the largest variable gets value 1. We show that
this problem is either in P or PF complete.
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1 Introduction

In 1978 Thomas J. Schaefer proved a remarkable result. He examined satisfiability of
propositional formulae for certain syntactically restricted formula classes. Each such
class is given by a set S of boolean relations allowed when constructing formulae.
An S-formula is a conjunction of clauses, where each clause consists out of a relation
from S applied to some propositional variables. SAT(S) now is the problem to decide
for a given S-formula if it is satisfiable. Schaefer showed that depending on S the
problem SAT(S) is either (1) efficiently (i.e. polynomial time) computable or (2)
NP-complete; and he gave a simple criterion that, given some S, allows to determine
whether (1) or (2) holds. Since (depending on S) the complexity of SAT(S) is either
easy or hard (and there is nothing in between), Schaefer called this a “dichotomy
theorem for satisfiability.”

In the last few years his result regained interest among complexity theorists. In
1995 Nadia Creignou examined the problem of determining the maximal number of
clauses of a given S-formula that can be satisfied simultaneously. Interestingly she also
obtained a dichotomy theorem: She proved that this problem is either polynomial-
time solvable or MazSNP-complete, depending on properties of S [Cre95]. (In 1997
the approximability of this problem and the corresponding minimization problem was
examined in [KSW97,KST97], leading to a number of deep results.) The complexity
of counting problems and enumeration problems based on satisfiability of S-formulae
was examined in [CH96,CH97).

The problem of maximizing (or minimizing) the number of clauses satisfied in
(unrestricted) propositional formula is complete for the class MazSNP (or MinSNP).
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These classes, introduced in 1988 by Papadimitriou and Yannakakis [PY88] (see also
[Pap94, pp. 311ff]), are of immense importance in the theory of approximability of
hard optimization problems. Of equal importance however is the class OptP, intro-
duced by Krentel in 1988 [Kre88]. While MazSNP and MinSNP are defined logically
making use of Fagin’s characterization of NP [Fag74], the class OptP is defined us-
ing Turing machines. OptP is a superclass of MazSNP and MinSNP. The canonical
complete problems for OptP are the problems Lex MazSAT and Lex MinSAT of de-
termining the lexicographically maximal (or minimal) satisfying assignment of a given
(unrestricted) propositional formula.

In this paper we examine Lex MazSAT and Lex MinSAT for classes of S-formulae.
We show that both problems are either polynomial-time solvable or OptP complete,
depending on properties of S. That is, we prove a dichotomy theorem for the Lex Maz-
SAT (and Lez MinSAT) problem. Comparing our results with those of Schaefer we
gain insight in the connection between the complexity of a decision problem and
the corresponding optimization problem. We show for example that if constants are
allowed in S formulae, then the problem of deciding satisfiability is NP-complete if
and only if the problem of finding the smallest assignment is Opt P-complete. (In the
case that constants are forbidden, an analogous result does not hold unless P = NP.)

From an OptP-complete optimization problem one can sometimes obtain a de-
cision problem that is complete for PP, In our case this is the Odd MinSAT (or
OddMazSAT) problem, for an exact definition refer to Sect. 5. We prove that this
problem is either polynomial-time solvable or complete for P¥F; that is we again get
a dichotomy theorem.

2 Preliminaries

Any subset R C {0,1}* is called a k-ary boolean relation (k-ary logical relation). The
integer k is called the rank of R. If k is not needed or is clear from the context we
use boolean relation (logical relation) for short. Since we need symbols representing
boolean relations in the formulae we construct, we always use lowercase letters for
relation symbols and uppercase letters for the relation itself. So the relation symbol
T represents the relation R.

We will consider different types of relations, following the terminology of Schaefer
[Sch78].

1. The boolean relation R is 0-valid (1-valid , resp.) iff (0,...,0) € R((1,...,1) € R,
resp.).

2. The boolean relation R is Horn (anti-Horn, resp.) iff R is logically equivalent to
a CNF formula having at most one unnegated (negated, resp.) variable in any
conjunct.

3. A boolean relation R is bijunctive iff it is logically equivalent to a CNF formula
having one or two variables in each conjunct.



4. The boolean relation R is affine iff it is logically equivalent to a system of linear
equations over the finite field Zy. This means that any tuple (vi,...,v;) € R
is a solution of a system of formulae of the form 1 ® 2o & --- ® z, = 0 or
1 PT2D - Dz, = 1.

Now let S = {Ry,..., R,} be a set of boolean relations. In the rest of this paper we
will always assume that such S are nonempty and finite. S is called 0-valid (1-valid,
Horn, anti-Horn, affine, bijunctive, resp.) iff every relation R; € S is 0-valid (1-valid,
Horn, anti-Horn, affine, bijunctive, resp.).

S formulae will now be propositional formulae consisting of clauses built by using
relations from S applied to arbitrary variables. Formally, let S = {R;, Ra,..., Ry} be
a set of logical relations and V be a set of variables. We will always assume an ordering
on V. An S-formula & (over V) is a finite conjunction of clauses & = C1 A ... A C,
where each Cj is of the form r(z1,...,z), R € S, r is the symbol representing R, k
is the rank of R, and z1, ...,z € V. If some variables of an S-formula & are replaced
by the constants 0 or 1 then this new formula @' is called S-formula with constants.
By Var(®) C V we denote the subset of those variables actually used in @.

The satisfiability problem for S-formulae (S-formulae with constants, resp.) is
denoted by SAT ¢ (S) (SAT(S), resp.).

By & [Z] we denote the formula created by simultaneously replacing each oc-
currence of z in @ by y, where z,y are either variables or a constants. Now we
define the set of existentially quantified S-formulae with constants, again following
Schaefer. Let Geng(S) the smallest set of formulae having the following closure prop-
erties: For any £ € N and any k-ary relation R € S where z1,...,z; € V, the
formula r(z1,...,zx) is in Geng(S). Now let @ and ¥ be in Geng(S), z,y € V,
then @ AU, & [;], o [7], ®[;] and (3z)@ are in Genc(S), for z,y € V. Define
Gennc(S) =a {P|® € Geng(S) and @ has no constants}. For & € Geng(S) let

Var(®) be the set of variables with free occurrences in &.

Let @ be an S-formula with k variables. If Var(®) = {z1,...,zx}, 71 < --- < x4
(recall that V is ordered), then an assignment I: Var(®) — {0,1} where I(z;) = a;
will also be denoted by (ai,...,ax). The ordering on variables induces an ordering
on assignments as follows: (ai,...,ax) < (b1,...,b;) if and only if there is an ¢ < k
such that for all ; < ¢ we have a; = b; and a; < b;. We refer to this ordering as
the lezicographical ordering. That an assignment (a1, ...,a;) € {0,1}* satisfies @ will
be denoted by (ai,...,ax) F ®. We write (a1,...,a5) Fmin © ((a1,--.,a0r) Fmax P,
resp.) iff (aq,...,ax) = @ and there exists no lexicographically smaller (larger, resp.)
(af,...,a,) € {0,1}* such that (a},...,a}) &= &. If I: {z1,72,...} — {0,1} is an
arbitrary assignment, y is variable and a € {0,1}, then I U {y := a} denotes the
assignment I’ defined by I'(y) = a and I'(z) = I(z) for all = # y.

Let [®] =4 {(a1,...,a;) € {0,1}*|Var(®) = {z1,...,2} and (ai,...,a;) = D}
be the logical relation defined by @, and let

Repc(S) =aes {[P]|® € Gene(S)}
Repne(S) =aes {[P]|P € Genne(S)}
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The following results proved by Schaefer will be needed in this paper.

Proposition 1 ([Sch78], Theorem 3.0). Let S be a set of logical relations. If S
is Horn, anti-Horn, affine or bijunctive, then Repc(S) satisfies the same condition.
Otherwise, Repc(S) is the set of all logical relations.

Proposition 2 ([Sch78], Lemma 4.3). Let S be a set of logical relations. Then at
least one of the following four statements holds:

(1) S is 0-valid
(2) S is 1-valid
(3) la],[~z] € Repne(S)
(4) [z # y] € Repnc(S)

Schaefer’s main result, a dichotomy theorem for satisfiability of propositional for-
mulae, can be stated as follows:

Proposition 3 (Dichotomy Theorem for Satisfiability with Constants). Let
S be a set of logical relations. If S is Horn, anti-Horn, affine or bijunctive, then
SAT¢(S) is polynomial-time decidable. Otherwise SAT(S) is NP-complete.

Proposition 4 (Dichotomy Theorem for Satisfiability). Let S be a set of log-
ical relations. If S is O-valid, 1-valid, Horn, anti-Horn, affine or bijunctive, then
SAT ¢ (S) is polynomial-time decidable. Otherwise SAT n¢(S) is NP-complete.

By SAT*(S) we denote the problem to decide whether there exists a satisfying
assignment for an S-formula which is different from (0,0,...,0) and (1,1,...,1). The
following proposition is from Creignou and Hebrard [CH97].

Proposition 5. Let S be a set of logical relations. If S is not Horn, anti-Horn, affine
and bijunctive, then SAT*(S) is NP-complete.

3 Maximization and Minimization Problems

The study of optimization problems in computational complexity theory started with
the work of Krentel [Kre88,Kre92]. He defined the class OptP and an oracle hierarchy
built on this class using so called metric Turing machines. We do not need this machine
model here; therefore we proceed by defining the classes relevant in our context using
a characterization given in [VW95].

We fix the alphabet X = {0,1}. Let FP denote the class of all functions f: X* —
X* computable deterministically in polynomial time. Using one of the well-known
bijections between X* and the set of natural numbers (e.g. dyadic encoding) we may
also think of FP (and the other classes of functions defined below) as a class of



number-theoretic functions. Say that a function i belongs to the class MinP if there
is a function f € FP and a polynomial p such that for all z,

h(z) =

= min z,Y).
Iylsp(\w\)f( v)

The class Maz P is defined by taking the maximum of these values. Finally, let
OptP = MinP U Maxz P.

Krentel considered the following reducibility in connection with these classes: A
function f is metric reducible to h (f <F ., h) if there exist two functions g1, go € F P
such that for all z:

f(z) = g1(h(g2(2)), 2)-

As a side remark let us mention that the closure of all three classes MinP, Maz P,
and OptP under metric reductions coincides with the class FPN?; which means that
showing completeness of a problem for MinP generally implies hardness of the same
problem for Maz P and completeness for Opt P, see [Kre88,VW95,Vol94].

Krentel gave in [Kre88] a number of problems complete for OptP under metric
reducibility. The for us most important complete problem for OptP is the problem
of finding the lexicographically minimal satisfying assignment of a given formula.

PROBLEM: LezxMinSAT

INSTANCE: a propositional formula @

OvutpUT:  the lexicographically smallest satisfying assignment of @ or L if @ is
unsatisfiable

The problem Lex MaxSAT is defined analogously.

Proposition 6 ([Kre88]). Lez MinSAT and LexMaxSAT are complete for OptP
under metric reductions.

One of the main points of this paper is to answer the question for what syntacti-
cally restricted classes of formulae (given by a set S of boolean relations) the above
proposition remains valid. For this, we will consider the following problems:

PROBLEM: Lexicographically Minimal SAT (Lez MinSAT n¢(S))

INSTANCE: An S-formula &

OvutpuT: The lexicographically smallest satisfying assignment of @ or L if &
is unsatisfiable

PROBLEM: Lexicographically Minimal SAT with constants (Lez MinSAT(S))

INSTANCE: An S-formula @ with constants

OutpuT: The lexicographically smallest satisfying assignment of @ or L if &
is unsatisfiable



PROBLEM: Lexicographically Maximal SAT (Lex MazSAT nc(S))

INSTANCE: An S-formula &

OutpuT: The lexicographically largest satisfying assignment of @ or L if @ is
unsatisfiable

PROBLEM: Lexicographically Maximal SAT with constants (Lez MazSAT (S))

INSTANCE: An S-formula @ with constants

OvutpuT: The lexicographically largest satisfying assignment of @ or L if @ is
unsatisfiable

4 A Dichotomy Theorem for OptP

There are known algorithms for deciding satisfiability of given formulae in polynomial
time for certain restricted classes of formulae. We first observe that these algorithms
can easily be modified to find minimal satisfying assignments. We first consider for-
mulae with constants and then turn to the case where no constants are allowed.

Theorem 1. Let S be a set of logical relations. If S is bijunctive, Horn, anti-Horn or
affine, then we have Lex MinSAT(C) € FP. In all other cases Lex MinSAT¢(C) ¢
FP unless P = NP.

Proof. For the cases that S is bijunctive, Horn, anti-Horn or affine, there are well-
known polynomial time procedures to decide satisfiability of a given formula (see
e.g. [Pap94]; for the case of affine S we use Gaussian elimination).

Now we can use Algorithm 1 for finding the lexicographically smallest satisfying
solution. Note that lines 5 and 8 of the algorithm do not change one of the properties
bijunctive, horn, anti-horn and affine; so the test whether e is satisfiable runs also in
deterministic polynomial time for the modified formula. Since we always try first to
assign z; = 0 we obtain the lexicographically smallest satisfying assignment.

Now let S contain at least one relation which is not bijunctive, one relation which
is not Horn, one relation which is not anti-Horn, and one relation which is not affine.
Then Lexz MinSAT yc(S) cannot be in FP (unless P = NP), because Proposition
3 shows that the corresponding decision problem (which is the problem of deciding
whether there is any satisfying assignment, not necessarily the minimal one) is log-
complete for NP. O

Theorem 2. Let S be a set of logical relations. If S is 0-valid, bijunctive, Horn, anti-
Horn or affine, then we have Lex MinSAT nc(S) € FP. In all other cases Lex Min-
SATnNc(S) € FP unless P = NP.

Proof. The case “0-valid” is obvious. For the cases that S is bijunctive, Horn, anti-
Horn or affine we use again algorithm 1.

Now let S contain at least one relation which is not 0-valid, one relation which is
not bijunctive, one relation which is not Horn, one relation which is not anti-Horn,
and one relation which is not affine.



Input: Boolean formula @ over S with Var(®) = {z1,...,%n}
Output: Lexicographically minimal satisfying assignment A € {0,1}"
1: e+ &
2: if (@ is satisfiable) then
3: fori«+1tondo

4: if (e A —z; is satisfiable) then
5: e « (e A nz;);
6: Ald] « 0;
7: else
8: e+ (eNx;);
9: Afi] + 1;
10: end if
11:  end for
12:  writeln(A);
13: else
14:  writeln(“L”);
15: end if

Algorithm 1: Calculate the lexicographically minimal satisfying assignment

Case 1: Thereis arelation in S which is not 1-valid. Then Lez MinSAT y¢(S) cannot
be in FP (unless P = NP), because Proposition 4 shows that the corresponding
decision problem is log-complete for NP.

Case 2: S is 1-valid, i.e. we know that the O-vector is not a satisfying assignment of
the given formula but the 1-vector is; and we have to solve the question if there is
a lexicographically smaller one. However Proposition 5 shows that the problem of
deciding whether any assignment different from the 0- or 1-vector exists is NP-
complete; thus finding the lexicographically smallest solution cannot be in FP
unless P = NP. O

Now we know that there are easy (polynomial time solvable) cases of finding
lexicographically minimal satisfying assignments, and other cases where under the
assumption that P # NP no efficient way exists. However this leaves open the possi-
bility that in the latter case different levels of inefficiency depending on the properties
of S can occur. The following two theorems rule out this possibility. In the case that
the lex min sat problem is not in P it is already Min P complete under metric reduc-
tions.

We first consider the (easier) case of formulae where constants are allowed.

Theorem 3. Let S be a set of logical relations. If S does not fulfill the properties
Horn, anti-Horn, bijunctive or affine then LexMinSATc(S) is <P ..-complete for
MinP.

Proof. Obviously Lez MinSAT(C) € MinP. Now we have to proof <P .-hardness
for MinP.

If S does not fulfills the properties Horn, anti-Horn, bijunctive or affine then
Proposition 1 shows that Rep¢(S) includes all boolean relations.




Let R; be any logical relation. Proposition 1 tells us that there exists an S-formula
@ = Jy; ...y P, representing R;, where &' contains no quantifier. Any clause of a
3-SAT formula can be represented by a finite number of boolean relations. So any
clause C; of a 3-SAT formula & can be represented by an S-formula @;. Var(®;)
consists of the variables in Var(C;) plus a number of variables of the form y;. We pick
different sets of y;-variables for different formulae ;.

Now we construct a function go € FP mapping a 3-SAT formula & into an S-
/
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of {z1,...,2,} plus a set of variables of the form y;. We order the variables by their
index and by alphabet, ie. z; < 29 < 23 < -+ < y; < y2 < ---. Note that we can

drop the J-quantifiers of the variables y; since we ask for a satisfying assignment of

formula @' by replacing each C; by the corresponding @, where Var(®') consists out

@'. The ordering of the variables ensures that in the minimal satisfying assignment
of @' the variables in {z1,...,2z,} will be minimal with respect to satisfaction of @.

Now the function g; € FP shortens the assignment and removes all bits belonging
to the variables y;. Thus g; applied to the minimal satisfying assignment of ¢’ = go(®)
produces the minimal satisfying assignment for @. This says that Lez Min3-SAT <P .

Lex MinSAT(C). 0

Mainly we are interested in formulae without constants. So we have to get rid
of the constants in the construction of the just given proof. This is achieved in the
reduction which we now present.

Theorem 4. Let S be a set of logical relations. If S is not 0-valid, Horn, anti-Horn,
bijunctive or affine, then Lex MinSAT n¢(S) is <P ..-complete for MinP.

Proof. Clearly Lex MinSAT nyc(S) € MinP. We want to show that Lex MinS AT ¢(.S)
reduces to Lez MinSAT yc(S).

Case 1: § is not 1-valid.

Using Proposition 2 we know, that [z],[~z] € Repnc(S) or [z # y] € Repnc(S).

In what follows, we again sort all variables by index and alphabet.

Case 1.1: [z],[~z] € Repnc(S).
Let @ an S-formula with constants and Var(®) = {z1,...,zn}. Now we can
remove the constants by replacing any 1 by y; and 0 by y9 and adding clauses
representing {y;} and {—yo}. Define the function g2 such that go(®) performs
exactly the just described replacement.
Now I Emin @ if and only if I' =4 (I U{yo := 0,91 := 1}) Emin ¢, where
&' =, g2(P). The function g removes the last two bits (assignments of yq
and y;) from I', showing that Lez MinSAT(C) <P .. Lez MinSAT yc(S5).

Case 1.2: [z # y] € Repnc(S).
Let ¢ an S-formula with constants and Var(®) = {z1,...,zn}. We construct
an S-formula @' =, @ [2] [11)] A (u # v) without constants. Define go by
g2(®) = @'. Now suppose there exists a satisfying assignment I’ =4 I, U{u :=
1,v := 0}. This would be an unwanted assignment, since v should represent 1



and u should represent 0. But there exists also the correct satisfying assignment
I" =4¢ Iy U{u := 0,v := 1}, where I, Fmin ®. This assignment is clearly
lexicographically smaller than I' and thus I" FEpin @' iff I, FEmin @
Now we remove the assignment for v and v by g;. The functions g; and go
show that Lez MinSAT¢(S) <P .. Lex MinSAT n¢(S).
Case 2: § is 1-valid.
Having an S-formula with constants we construct one without constants in poly-
nomial time by go as follows. Let R € S a relation which is not 0-valid but 1-valid
and & =4 @[] [L] A R(v,...,v). We claim that I i @ iff TU {u = 0,v :=
1} Emin @'
First suppose that I |=min @. It is clear from the clause R(v,...,v) that we have
to choose v := 1. Since we are interested in the lexicographically smallest solution
we have to choose u := 0 giving us immediately 7 U {u := 0,v := 1} = @' and
certainly also I U {u := 0,v := 1} |Emin 9. Now let T U {u := 0,v := 1} |Emin 9.
Suppose that there exists a satisfying solution I; for @ being lexicographically
smaller than I. Obviously I, U {u := 0,v := 1} is a lexicographically smaller
satisfying assignment than I U {u := 0,v := 1} giving us a contradiction to
TU{u:=0,v:=1} Fmin 9.
We remove the assignment for « and v by g1, showing that Lex MinSAT(C) <P

—met

Lex MinSAT n¢(S). 0

Thus we get dichotomy theorems for finding lexicographically minimal satisfying
assignments of propositional formulae, both for the case of formulae with constants
and without constants.

Corollary 1 (Dichotomy Theorem for Lex MinSAT with constants). Let S be
a set of logical relations. If S is bijunctive, Horn, anti-Horn or affine, then we have
Lez MinSAT¢(C) € FP. In all other cases LexMinSAT¢(C) is <P .-complete for
MinP.

Corollary 2 (Dichotomy Theorem for LexMinSAT). Let S be a set of logical
relations. If S is 0-valid, bijunctive, Horn, anti-Horn or affine, then we have Lex Min-

SATnc(S) € FP. In all other cases Lex MinSAT n¢(S) is <P . -complete for MinP.

If we compare the classes of relations in the statements of the above corollaries with
those needed in Schaefer’s results (Propositions 3 and 4), the following consequence
is immediate:

Corollary 3. Let S be a set of logical relations.

1. SAT(S) is NP-complete if and only if Lex MinSATc(S) is MinP complete.

2. If SAT n¢(S) is NP-complete then Lex MinSAT nc(S) is MinP complete.

3. If S is a set of logical relations which is 1-valid but is not 0-valid, Horn, anti-
Horn, bijunctive, or affine, then SAT nc(S) is in P but Lex MinSAT n¢(S) is
MinP complete.



Results analogous to the above for the problem of finding maximal assignments
can be proved, where we just have to replace 1-valid by 0-valid.

Ezample 1. Hierarchical SAT is the variant of 3-S AT where only unnegated variables
occur and we require that in each clause if either the first or the second variable are
satisfied then the third variable is not satisfied, and if the third variable is satisfied
then also the first and second variable are satisfied. In our framework this problem is
given by S = {R}, where R = {(1,0,0),(0,1,0),(1,1,1)}. It can be seen using tech-
niques from [Sch78] that S is 1-valid but is not 0-valid, Horn, anti-Horn, bijunctive,
or affine. Thus SAT y¢(S) is in P but Lez MinSAT y¢(S) is MinP complete.

Results analogous to the above for the problem of finding maximal assignments
can be proved:

Theorem 5 (Dichotomy Theorem for LexMazSAT). Let S be a set of logical
relations.

1. If S is bijunctive, Horn, anti-Horn or affine, then Lex MaxSAT(C) € FP. Oth-
erwise Lez MazSAT¢(C) is <P ..-complete for MazP.

2. If S is 1-valid, bijunctive, Horn, anti-Horn or affine, then Lex MazSATnc(S) €
FP. Otherwise Lez MazSAT n¢(S) is <P .-complete for MazP.

Ezample 2. The problem of finding a maximal weighted assignment of an S-formula
can be defined as follows:

PROBLEM: Maz Weighted SAT yc(S)
INSTANCE: An S-formula & with weights wy, ..., w,, on the clauses

OutpuT: The maximum weight of an assignment.

Let S be a set of logical relations such that Lez MazSAT ¢ (S) is <P ,-complete
for Maz P. Let R;4 be the unary identity relation R;q = {(1)}. We show that Lez Maz-
SAT N (S) <P . Maz WeightedSAT yc(S') via g1,92 € FP where S =40 SU{R;q}.

First the polynomial-time function go maps a Lex MazSAT yc(S) instance @ =
/\f:1 C; where C; is of the form r(z1,...,x;) for an l-ary r € S, z1,...,2; € V and
Var(®) = {zo,...,Zn}, to a Maz WeightedSAT yc(S) instance

k

¢ =aer \ Ci Arialzn) Aia(@n1) A ... Aria(o)
'—lv —— Y—— S~——
=1 on+1 on on—1 20

where the corresponding weights are written below the clauses. This is clearly
a polynomial-time calculation and one can show that (ag,...,a,) Fmax @ iff there
exists a assignment of & with weight > k2"*!1. Moreover one can easily show that
(ag, .- -,an) Fmax @ is the assignment of @ with biggest weight.
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Let bin(x) be the binary representation of z. The function g; € FP is defined as
follows:

bin(z mod 2"*1) if £ > K2+
gl ('T) —def
1 else

showing that Lez MazSAT yc(S) <P . Maz Weighted SAT yco(S').

From this example it follows: For any set of logical relations S, where S is not
1-valid, bijunctive, Horn, anti-Horn and affine Maz WeightedSAT yo(S') is <P .-
complete for Maz P, where S’ =4, SU {R;q}-

If we look at the definition of metric reductions (see Sect. 3) and compare this with
the proofs given above, we see that we do not need the full power of metric reductions
here. In fact the function ¢; in our proof is a function which, first, does not depend
on z but only on gs(z), and second, g; is “almost” the identity function—g;(2) is
obtained from z by simply stripping away a few bits. Since g; is almost the identity,
let us call these reductions weak many-one reductions; that is, f is weakly many-one
reducible to h if there are two functions g1, g2 € FP where g1(2) is always a sub-word
of z, such that for all z,

/(@) = g1(h(g2()))-

Theorem 6. All the above given completeness results also hold for weak many-one
reductions instead of metric reductions.

Proof. A close look at Krentel’s work shows that Proposition 6 also holds for weak
many-one reductions. The reductions given above in the proofs of Theorems 3 and
4 are in fact weak many-one reductions. Since these reductions are transitive our
theorem follows. 0

The question that now arises is of course if we can even prove our completeness
results for many-one reductions, which are weak many-one reductions where g; is
the identity function. However this cannot be expected for “syntactic” reasons, since
when we manipulate a given formula @ constructing @' such that Var(®) # Var(®')
then an assignment of @' simply by definition cannot be an assignment of &. And it
seems that there is no way of getting around this; we have to change the variable set.

5 A Dichotomy Theorem for PN?

Given a function f:N — N, define the set Ly = {x € X* | f(z) =1 (mod 2)}. Often
it turns out that if f is complete for OptP under metric reductions, then the set L;
is complete for P¥ under usual many-one reductions; a precise statement is given
below.

In our context the above problem translates to the question if the largest variable
in a lexicographically minimal assignment of a given S-formula gets the value 1. Let
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us denote this problem by Odd MinSAT n¢(S), and in the case that S-formulae with
constants are allowed by Odd MinSAT¢(S). (In the case of maximal assignments we
use the notation OddMazSAT(S) and OddMazSAT n¢(S).) The corresponding
problems for unrestricted propositional formulae will be denoted by Odd MinSAT
and Odd MazSAT.

Proposition 7 ([Kre88]). OddMinSAT and OddMazSAT are complete for the

class PNP

under many-one reductions.

It is known that if f is complete for MinP or Maz P under many-one reductions
(see the discussion at the end of Sect. 4) then L; is complete for PN under usual
many-one reductions [Kre88], see also [Vol94]. In the case that f is only metric com-
plete or weakly many-one complete, a similar result is not known. Since in Sect. 4
we proved completeness under weak many-one reductions we cannot by the above
remark mechanically translate our results for SAT y¢(S) to completeness results for

0dd MinSAT y¢(S) for the class PMY. However by separate proofs we can determine
the complexity of Odd MinSAT(S) and Odd MinSAT yc(S).

Theorem 7 (Dichotomy Theorem for Odd MinSAT with constants). Let S be
a set of logical relations. If S is bijunctive, Horn, anti-Horn or affine, then we have
0ddMinSATc(S) € P. In all other cases Odd MinSATc(S) is complete for PNP

under many-one reductions.

Proof. If S is bijunctive, Horn, anti-Horn or affine, then Odd MinSAT(S) € P, since
we can use Algorithm 1 to find the minimal assignment, and then we accept if and
only if the truth value 1 is assigned to the largest variable.

In the other cases we reduce OddMin3-SAT to OddMinSATc(S). In the proof
of Theorem 3 we showed how to transform an arbitrary formula ¢ with Var(®) =
{z1,...,2n} into an S-formula at the cost of introducing new variables of the form
yj. We modify this construction as follows: Introduce one more variable z (larger than
all the other variables). Transform & into &' as described in Theorem 3. Finally set
¢" = @' A\ (z, = z). (Observe that the predicate = is in Repc(S).) Let I,I',1" be
the minimal satisfying assignments of @, & and &". Observe that they all agree on
assignments of the variables in Var(®). Now we have

I(zn) = I'(zy) = I"(zy) = I"(2).

Thus @ € OddMin3-SAT if and only if & € OddMinSAT(S), which proves the
claimed hardness result. O

Theorem 8 (Dichotomy Theorem for OddMinSAT). Let S be a set of logical
relations. If S is 0-valid, bijunctive, Horn, anti-Horn or affine, then we have Odd Min-
SATNc(S) € P. In all other cases OddMinSAT nc(S) is complete for PNP under
many-one reductions.

12



Proof. Similar to the proof of the previous theorem. The easy case is obvious. In the
hard case define &" as above, and then use the construction of Theorem 4 to remove
the constants. Let @' be the resulting formula. The variables introduced in this last
step should be smaller than z. Then we can argue as in the previous proof that z is
assigned one in a minimal assignment for ¢ if and only if z,, is assigned one in a
minimal assignment for @. O

Again, analogous results for maximal assignments can be proved.

Theorem 9 (Dichotomy Theorem for OddMaxSAT). Let S be a set of logical
relations.

1. If S is bijunctive, Horn, anti-Horn or affine, then OddMazSATc(S) € P. In all
other cases OddMazSATc(S) is complete for PNY under many-one reductions.

2. If S is O-valid, bijunctive, Horn, anti-Horn or affine, then OddMazSAT N (S) €
P. In all other cases OddMazSAT yc(S) is complete for PNY under many-one
reductions.
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