
Gaps in Bounded Query Hierarchies

Richard Beigel
�

Lehigh University

May 4, 1998

Abstract

Prior results show that most bounded query hierarchies cannot contain finite gaps. For
example, it is known that

PSAT�
m � 1 � -tt � PSAT

m-tt � PSAT
btt � PSAT

m-tt

and for all sets A
� FPA�

m � 1 � -tt � FPA
m-tt � FPA

btt � FPA
m-tt

� PA�
m � 1 � -T � PA

m-T � PA
bT � PA

m-T

� FPA�
m � 1 � -T � FPA

m-T � FPA
bT � FPA

m-T

where PA
m-tt is the set of languages computable by polynomial-time Turing machines that make

m nonadaptive queries to A; PA
btt � �

m PA
m-tt; PA

m-T and PA
bT are the analogous adaptive queries

classes; and FPA
m-tt, FPA

btt, FPA
m-T, and FPA

bT in turn are the analogous function classes.
It was widely expected that these general results would extend to the remaining case —

languages computed with nonadaptive queries — yet results remained elusive. The best known
was that

PA
2m-tt � PA

m-tt � PA
btt � PA

m-tt �
We disprove the conjecture. In fact,

PA	
4
3 m
 -tt � PA

m-tt �� PA� 	 4
3 m
�� 1 � -tt � PA	

4
3 m
 -tt �

Thus there is a PA
m-tt hierarchy that contains a finite gap.

We also make progress on the 3-tt vs. 2-tt case:

PA
3-tt � PA

2-tt � PA
btt PA

2-tt � poly �

�
Research performed at the University of Maryland while on sabbatical from Yale University. Address: Elect Eng

Comp Science, 19 Memorial Dr W Ste 2, Bethlehem PA 18015-3084, USA. Supported in part by the National Science
Foundation under grants CCR-8958528, CCR-9700417, and CCR-9796317 and by NASA under grant NAG 52895.
Email: beigel@eecs.lehigh.edu. Web: http://www.eecs.lehigh.edu/˜beigel/

0

Electronic Colloquium on Computational Complexity, Report No. 26 (1998)

ISSN 1433-8092

1. Introduction

Gaps have been studied in many kinds of computational hierarchies, and many different behaviors
have been found, such as

� arbitrarily large gaps,

� only small gaps,

� no gaps at all, or

� no gaps unless the hierarchy collapses.

Time, space, and other Blum complexity measures The linear speedup and tape compres-
sion theorems [11] say that there are no complexity classes strictly between DTIME

�
t
�
n ��� and

DTIME
�
2t
�
n ��� or between DSPACE

�
s
�
n ��� and DSPACE

�
2s
�
n ��� . In fact, every Blum complexity

measure contains arbitrarily large gaps [4]. The time- and space-hierarchy theorems [11] show that
only small gaps are possible if you restrict to constructible complexity bounds.

Polynomial Hierarchy [6] The polynomial hierarchy has what is called the “upward collapse”
property: if it contains a gap at level m then it collapses to level m.

� Σp
m � 1 � Σp

m � PH � Σp
m

� Πp
m � 1 � Πp

m � PH � Πp
m

� ∆p
m � 1 � ∆p

m � PH � ∆p
m

Boolean Hierarchy [5] BH
�
0 � � P, BH

�
m � 1 � �	� A
 B : A � NP � B � BH

�
m �� , and BH ��

m BH
�
m � . The Boolean hierarchy has the upward collapse property: if it contains a gap at level m

then it collapses to level m.

� BH
�
m � 1 � � BH

�
m � � BH � BH

�
m �

Arithmetical Hierarchy The arithmetical hierarchy is the recursion theoretic analogue of the
more modern polynomial hierarchy. All levels of the arithmetical hierarchy are distinct [17, 18],
i.e., it contains no gaps.

� ∆1 � Σ1 � ∆2 � Σ2 �������
Bounded Query Hierarchies [1] Let A be a language. FPA

m-T is the class of functions computed
by polynomial-time oracle Turing machines that make at most m queries to A on each input. FPA

m-tt
is the class of functions computed by polynomial-time oracle Turing machines that make at most m
nonadaptive queries to A on each input (that is, all m queries are made in parallel). FPA

bT � � m FPA
m-T

and FPA
btt � � m FPA

m-tt. For each reduction r, PA
r is the class of all languages whose characteristic

function is contained in FPA
r .

Three of the four kinds of bounded query hierarchies are known to have the upward collapse
property (like the polynomial and Boolean hierarchies): if any of them contains a gap at level m
then it collapses to level m.

1

� FPA�
m � 1 � -tt � FPA

m-tt � FPA
btt � FPA

m-tt

� FPA�
m � 1 � -T � FPA

m-T � FPA
bT � FPA

m-T

� PA�
m � 1 � -T � PA

m-T � PA
bT � PA

m-T

Many important problems have been classified using bounded query classes [15, 9, 14, 8, 19,
20]. In this paper we investigate the hierarchy of languages decided by a polynomial-time Turing
machine that makes a bounded number of parallel queries to a fixed language A.

In light of the three results listed above, one might expect that

PA�
m � 1 � -tt � PA

m-tt � PA
btt � PA

m-tt � (1)

One of the seminal works on bounded queries [1] gives a simple divide-and-conquer argument from
which one can easily deduce a weak form of (1):

PA
2m-tt � PA

m-tt � PA
btt � PA

m-tt � (2)

(2) can be understood informally as follows: Consider an unknown assignment α to a set of Boolean
variables. Suppose that we are given a black box that takes a 2m-ary Boolean formula f

�
x1 � ����� � x2m �

and produces an m-ary Boolean formula g
�
y1 � ����� � ym � with the guarantee that

f
�
α
�
x1 � � ����� � α � x2m ��� � g

�
α
�
y1 � � ����� � α � ym ��� �

We can then use this black box in a polynomial-time algorithm that takes a Boolean formula of ar-
bitrary arity F

�
x1 � ����� � xm � and produces an m-ary Boolean formula G

�
y1 � ����� � ym � with the guarantee

that
F
�
α
�
x1 � � ����� � α � xm ��� � G

�
α
�
y1 � � ����� � α � ym ��� �

(In relation to (2), the assignment α is the characteristic function of A, the xi’s and yi’s are the queries
in the reductions, and f , g, F , and G are the truth-table evaluators.)

Lozano [16] and Gasarch [10] both conjectured Equation 1. Chang [7] conjectures it now for
the special case of A � NP.

In this paper, we disprove (1), showing in fact that

PA�
4
3 m � -tt � PA

m-tt
�� PA� �

4
3 m � � 1 � -tt � PA�

4
3 m � -tt � (3)

In other words, we have constructed an A for which the PA
btt hierarchy does not have the upward

collapse property: it has a gap at level m but it does not collapse to level m.
(3) can be understood informally as follows: Consider an unknown assignment α to a set of

Boolean variables. Suppose that we are given a black box that takes a 4k-ary Boolean formula
f
�
x1 � ����� � x4k � and produces a 3k-ary Boolean formula g

�
y1 � ����� � y3k � with the guarantee that

f
�
α
�
x1 � � ����� � α � x4k ��� � g

�
α
�
y1 � � ����� � α � y3k ��� �

Even using such a black box, there is no algorithm that takes a
�
4k � 1 � -ary Boolean formula

F
�
x1 � ����� � x4k � 1 � and produces a 3k-ary Boolean formula G

�
y1 � ����� � y3k � with the guarantee that

F
�
α
�
x1 � � ����� � α � x4k � 1 ��� � G

�
α
�
y1 � � ����� � α � y3k ��� �

2

In fact, we prove something stronger: there is no such algorithm even if g and F are fixed to
be the majority functions on 3k variables and on 4k � 1 variables respectively (f and G are still
unrestricted).

In proving (3), we use some basic facts about representing Boolean functions as polynomials
over Z � 2, but we also develop new techniques to prove nonrepresentability of finite functions. We
hope that, once these new techniques are better understood, they might be useful in proving lower
bounds on circuit complexity or Boolean-formula complexity.

The positive result (2) and the negative result (3) do not match. It is an open problem to improve
either of them. The simplest open question along these lines is

PA
3-tt � PA

2-tt
?� PA

btt � PA
2-tt (4)

In this paper we also give a partial answer to that question:

PA
3-tt � PA

2-tt � PA
btt � PA

2-tt � poly � (5)

The proof uses a delicate hard/easy argument (cf. [2, 12]) to exploit very convenient representations
of 2-ary Boolean functions. It appears very difficult to generalize even to 3-ary Boolean functions.

Question (4) can be understood informally as follows: Consider an unknown assignment α to a
set of Boolean variables. Suppose that we are given a black box that takes a 3-ary Boolean formula
f
�
x1 � x2 � x3 � and produces a 2-ary Boolean formula g

�
y1 � y2 � with the guarantee that

f
�
α
�
x1 � � α � x2 � � α � x3 ��� � g

�
α
�
y1 � � α � y2 ��� �

Is there an algorithm using such a black box that takes a 4-ary Boolean formula F
�
x1 � x2 � x3 � x4 � and

produces a 2-ary Boolean formula G
�
y1 � y2 � with the guarantee that

F
�
α
�
x1 � � α � x2 � � α � x3 � � α � x4 ��� � G

�
α
�
y1 � � α � y2 ��� ?

If we fix the predicate g (but not its inputs y1 � y2), then the answer is yes, i.e.,

PA
3-tt � PA

2-fixed � PA
btt � PA

2-fixed�
This is one of the ideas behind our proof of (5), which can be interpreted as saying that the answer to
our question is yes if we give our algorithms access to a relatively small amount of information about
the set A. However, the general case where g is allowed to depend on x1 � x2 � x3 and no information
is given about A is tantalizingly open.

2. Definitions

Throughout let � denote a binary operation on � 0 � 1 . The symbols � , � , and � denote logical
AND, OR, and XOR, respectively. Let f � g � h denote Boolean formulas. Let x � y � xi � yi denote strings
for all integer subscripts i.

Many versions of m-truth-table reducibility can be defined by specifying the complexity of the
reduction and the permitted set of truth tables.

Definition 1. Let F be a set of Boolean functions; C be a class of functions; � be � , � , or � ; and A
and L be languages.

3

� L � C
F A if there exist functions t : Σ ��� F and q1 � ����� � qm : Σ ��� Σ � such that t � q1 � ����� � qm � C

and for all x
L
�
x � � t

�
x � � A � q1

�
x ��� � ����� � A � qm

�
x ����� �

� CA
F � � L : L � C

F A .
� If f is a Boolean function, � C

f denotes � C�
f � and CA

f denotes CA�
f � .

� PA
F � poly denotes

�
P � poly � AF .

� m-tt is the set of m-ary Boolean functions.

� d- � NF is the set of Boolean functions that can be written in the form
�
x11 � ������� x1i1 � � ����� ��

xk1 � ������� xkik � , where � is some associative Boolean operation that distributes over � and
i1 � ����� � ik � d. We say that functions in d- � NF have degree d over � . (This generalizes the
notions of d-CNF and d-DNF.)

Some other kinds of reductions are defined by limiting the truth table’s dependence on x.

Definition 2. Let C be a class of functions.

� L � C
btt A if there exists m such that L � C

m-tt A. (The truth table may depend on the input, but its
arity m may not.)

� L � C
m-fixed A if there exists f : � 0 � 1 m � � 0 � 1 such that L � C

f A. (The truth table may not
depend on the input at all.)

3. 2m-tt vs. m-tt

The following is an easy modification of a theorem in [1].

Theorem 3.

i. PA
2m-tt � PA

m-tt � PA
btt � PA

m-tt

ii. PA
2m-tt � PA

m-tt � poly � PA
btt � poly � PA

m-tt � poly

Proof: i. Assume PA
2m-tt � PA

m-tt. We prove by induction on n that, for all n 	 m, PA�
n � 1 � -tt � PA

m-tt.

This is clear for n � m. Let n 	 m and assume that PA
n-tt � PA

m-tt. We will show that that PA�
n � 1 � -tt �

PA
m-tt.

Let B � PA�
n � 1 � -tt. Then there is a polynomial-time computable function t from Σ �
� 22n � 1 �

�
Σ � � m such that for all x

B
�
x � � f

�
A
�
q1 � � ����� � A � qn � 1 ���

where
�
f � q1 � ����� � qn � 1 � � t

�
x � . Note that

f
�
A
�
q1 � � ����� � A � qn � 1 ��� � A

�
qn � 1 � � f

�
A
�
q1 � � ����� � A � qn � � 1 � � A

�
qn � 1 � � f

�
A
�
q1 � � ����� � A � qn � � 0 � �

Since f
�
A
�
q1 � � ����� � A � qn � � 1 � can be computed with n parallel queries to A, it can be computed with

m parallel queries to A by the inductive hypothesis. Therefore A
�
qn � 1 � � f

�
A
�
q1 � � ����� � A � qn � � 1 � can

4

be computed with m � 1 parallel queries to A; since m � 1 � 2m, it can be computed with m parallel
queries to A by assumption. Similarly A

�
qn � 1 � � f

�
A
�
q1 � � ����� � A � qn � � 0 � can be computed with m

parallel queries to A. Thus f
�
A
�
q1 � � ����� � A � qn � 1 ��� can be computed with 2m parallel queries to A, so

it can be computed with m parallel queries to A by assumption. Thus B � PA
m-tt.

ii. Similar.

Note: all of the positive results (gap implies collapse) in this paper hold also in the presence of
polynomial advice.

4. � -Degree

A few facts about the degree of functions over � will be needed in order to apply our key lemma
(next section) and prove our main result. Let � -deg

�
f � denote the least d such that f has degree d

over � .

Definition 4.
� ORn

�
b1 � ����� � bn � � b1 � ����� � bn

� ANDn
�
b1 � ����� � bn � � b1 � ����� � bn

� n-maj
�
b1 � ����� � bn � �

�
1 if b1 � ����� � bn � 1

2 n
0 otherwise

� A subfunction of a (formal) Boolean function is obtained by substituting 0 or 1 for some of
its variables.

Fact 5. Let f be a Boolean function of n variables x1 � ����� � xn.

i. f has a unique representation as a polynomial p f in x1 � ����� � xn over Z � 2. Furthermore, the
degree of p f is � -deg

�
f � .

ii. � -deg
�
f � � � -deg

���
f � .

iii. If g
�
x1 � ����� � xi � ����� � xn � � f

�
x1 � ����� � � xi � ����� � xn � then � -deg

�
f � � � -deg

�
g � .

iv. � -deg
�
ANDn � � n

v. � -deg
�
ORn � � n

vi. In the representation of n-maj as a polynomial over Z � 2 each term has degree � n � 2 � � 1 or
greater.

Proof:

i. Every Boolean function on k variables can be written as an OR of ANDs of literals in such
a way that at most one of the ANDs is true for each input. In particular, it can be written as
an XOR of ANDs of literals. Let d � � -deg

�
f � . Given a d- � NF representation of f , rewrite

each term in as an XOR of ANDs of at most k literals. Replace AND by multiplication and�
x by 1 � x. Expand by the distributive law, to obtain p f , whose degree is at most d. The

mapping f � p f described above is 1–1. Because there are 22n
polynomials in x1 � ����� � xn over

Z � 2 and 22n
Boolean functions on x1 � ����� � xn, the mapping must be onto as well. Therefore the

representation p f is unique.

5

ii. p � f � 1 � p f so � -deg
���

f � � � -deg
�
f � .

iii. pg
�
x1 � ����� � xn � � p f

�
x1 � ����� � 1 � xi � ����� � xn � , so � -deg

�
g � � � -deg

�
f � , and p f

�
x1 � ����� � xn � �

pg
�
x1 � ����� � 1 � xi � ����� � xn � , so � -deg

�
f � � � -deg

�
g � .

iv. Let f � x1 � ����� � xn. Then p f � x1 ����� xn, so � -deg
�
f � � n.

v. This follows from parts ii–iv.

vi. Let the lowest-degree term in the polynomial representation of n-maj over Z � 2 have degree d.
If we assign 1 to all variables in that term and 0 to all other variables, then the polynomial
must evaluate to 1. Then n-maj is 1 under this assignment, so d � n � 2.

Lemma 6.

i. If h is a nonconstant Boolean function such that ORk � h then � -deg
�
h � 	 k.

ii. If h is a nonconstant Boolean function such that
�

ANDk � h then � -deg
�
h � 	 k.

iii. Let a � k � 2. If h1 is an a-ary subfunction of k-maj then one of the following is true:

� ��� nonconstant h2 ��� if h1 � h2 then � -deg
�
h2 � � a � 2 � or

� ��� nonconstant h2 ��� if
�

h1 � h2 then � -deg
�
h2 � � a � 2 �

iv. If
�

k-maj
�
x1 � ����� � xk � � h1

�
x1 � ����� � xk � 1 � � h2

�
x1 � ����� � xk � where h2 depends (semantically) on

xk, then � -deg
�
h2 � � k � 2.

Proof:

i. Assume that ORk
�
x1 ��� ����� � xk � � h

�
x1 � ����� � xm � and h is nonconstant. Without loss of generality,

m 	 k (otherwise allow dummy arguments to h). Since h is nonconstant, there exist a1 � ����� � am

such that h
�
a1 � ����� � am � � 0. Since ORk

�
x1 � ����� � xk � h

�
x1 � ����� � xm � we must have a1 � ����� �

ak � 0. Let h � � x1 � ����� � xk � � h
�
x1 � ����� � xk � ak � 1 � ����� � am � . Then ORk � h � , so � -deg

�
h � � � k.

Therefore � -deg
�
h � 	 k.

ii. Negate all variables, which does not effect � -deg
� � , and apply part (i).

iii. Because a � k � 2, h1 is a nonconstant subfunction of k-maj. Therefore, either OR
�
a � 2 � � 1 or

AND
�
a � 2 � � 1 is a subfunction of h1. Let h be the corresponding subfunction of h2 (obtained

by setting the same variables to 0 or 1 in h2 as in h1).

In the first case, if h1 � h2 then OR
�
a � 2 � � 1 � h, so � -deg

�
h2 � 	 � -deg

�
h � � a � 2 by part (i).

In the second case, if
�

h1 � h2 then
�

AND
�
a � 2 � � 1 � h, so � -deg

�
h2 � 	 � -deg

�
h � � a � 2 by

part (ii).

iv. Assume that
�

k-maj � h1 � h2. Equivalently, we have k-maj � � h1 � h2 � . That, in turn, is
equivalent to k-maj � h1 � h2 � �

k-maj � � h1 � h2 ��� . Call that formula φ.

Assume, for the sake of contradiction, that � -deg
�
h2 � � k � 2. Then h2 contributes a term t

involving xk and having degree k � 2 or less. However, h1 contributes no terms involving xk,
and the rest of the formula contributes only terms of degree greater than k � 2, because all terms
in k-maj have degree greater than k � 2. Thus the term t is not canceled out from φ, so φ cannot
be constant. But φ is identically equal to 1. This contradiction proves that � -deg

�
h2 � � k � 2.

6

5. Key Lemma

In this section we present a lemma that is the key to our main result. The lemma is proved in
Appendix 1. This lemma will be applied in the next section, with m � 3k, n � 4k, g � 3k-maj, and
F �

�
4k � 1 � -maj. We have stated the lemma in terms of m, n, g, and F , so that it will be clear which

properties of the majority function are used in the proof, and also so that it will be clear where 3k
and 4k come from. This may be helpful to anyone trying to understand the proof of the key lemma
or trying to prove a stronger gap result.

Notation 7.

� Let X be an infinite set.

� Let � be a well-founded partial order on X . That is, � has no infinite descending chains.

� We extend the definition � to subsets of X as follows: U � � v1 � ����� � vk if

– U
�� V and

– there exists a partition U1 � ����� � Uk of U such that
���

i � �Ui � � vi or
���

u � ui ��� u � vi � � .
� Let Predn

X denote the set of formal n-ary Boolean predicates over X . That is, Predn
X is the set

of formulas h
�
x1 � ����� � xn � where h is a Boolean formula and x1 � ����� � xn � X .

� We write h
�
u1 � ����� � u j ��� �

v1 � ����� � vk � and h1
�
u1 � ����� � u j ��� h2

�
v1 � ����� � vk � if � u1 � ����� � u j ��

� v1 � ����� � vk .
� A partial function α � extends a partial function α (denoted α ��� α) if dom

�
α � ��� dom

�
α � and���

x � dom
�
α ����� α � � x � � α

�
x � � .

� When we write “extend α to satisfy some condition” we mean “find a total assignment α��� α
such that α � satisfies that condition, and then let α � α� .”

� When we write “extend α on Y to satisfy some condition” we mean “find a partial assignment
α � � α such that Y � dom

�
α � � and α � satisfies that condition, and then let α � α� .”

� If Φ and Γ are formal Boolean predicates over a set X and α is a partial function from X to

� 0 � 1 , we write Φ � α Γ if and only if Φ and Γ take the same value under every assignment
that extends α, i.e.,

f
�
x1 � ����� � xn � � α g

�
y1 � ����� � yn � iff

���
α � � α ��� f � α � � x1 � � ����� � α � � xn ��� � g

�
α � � y1 � � ����� � α � � yn ��� � �

7

Lemma 8.

� Let m and n be natural numbers such that m � n � 2m.

� Let g be a function: � 0 � 1 m � � 0 � 1 such that

– g is monotone

– g is not a function of m
 1 variables or fewer,

– if g � is a
�
2m
 n � -ary subfunction of g then one of the following is true:

� ��� nonconstant h ��� if g � � h then � -deg
�
h � � n
 m � or

� ��� nonconstant h ��� if
�

g � � h then � -deg
�
h � � n
 m �

– if
�

g
�
x1 � ����� � xm � � h1

�
x1 � ����� � xm � 1 � � h2

�
x1 � ����� � xm � where h2 depends (semantically) on

xm, then � -deg
�
h2 � � n
 m.

� Let F be a function � 0 � 1 n � 1 � � 0 � 1 such that

– F
�� h1 � h2 for any Boolean functions h1 and h2 such that h1 is a function of n variables

or fewer and � -deg
�
h2 � � n
 m.

– F has no minterm or maxterm of size n
 m or less,

– If F � is an
�
m � 1 � -ary subfunction of F, then � -deg

�
F � � n
 m.

� Let r be a function: Predn
X
�

Xn � Xm such that

–
���

Q ��� Q � r
�
Q � �

– u
�� v � � r � u � ��� � r � v � � � /0,

where � � x1 � ����� � xm � � denotes � x1 � ����� � xm .
� Let R be a function: Xn � 1 � Predn

X .

Then there exists a total function α : X � � 0 � 1 such that

(1)
���

Q � Predn
X ��� Q � α g

�
r
�
Q ��� � , and

(2)
�����

x � Xn � 1 ��� F �	�x � � α 1
 R
���
x � � ,

6. 4k-tt vs. 3k-tt

In this section we prove that PA
4k-tt � PA

3k-tt
�� PA�

4k � 1 � -tt � PA
4-tt.

Theorem 9. Let n � 4
3 m. There exists a set A such that

PA�
n � 1 � -maj

�
� PA

n-tt � PA
m-maj

Proof: Definitions:

� Fix a string alphabet Σ and a tupling function
�� from
�
Σ � �� ∞ to Σ � . Our only requirement on

�� is that its result always be longer than each of its arguments.

� For strings x and y, we say x � y iff � x ����� y � .

8

� For a formal Boolean predicate h
�
x1 � ����� � xn � , let

r
�
h
�
x1 � ����� � xn ��� �

�
 x1 � ����� � xn � ĥ � 1 � � ����� �
 x1 � ����� � xn � ĥ � m ��� �
where ĥ is a nonempty string encoding h.

� Let r
���

x1 � ����� � xn ��� �
�
 x1 � ����� � xn � Λ � 1 � � ����� �
 x1 � ����� � xn � Λ � m ��� .

In order to make PA
m-maj � PA

n-tt we will ensure that

m-maj
�
A
�
 x1 � ����� � xn � ĥ � 1 ��� � ����� � A �
 x1 � ����� � xn � ĥ � m ����� � h

�
A
�
x1 � � ����� � A � xn ��� �

There is some flexibility in the coding. It will permit us to diagonalize.
We will think of the oracle A as a partial function from Σ � to � 0 � 1 . We construct A via the

initial segment method. Initially, A is everywhere undefined. Let M1 � M2 � ����� be an enumeration of
oracle Turing machines such that Mi makes at most n parallel oracle queries on every input. At
Stage i, we will extend A in order to defeat Mi.

Stage i: Let X � Σ �
 dom
�
A � . Mi computes a mapping from

�
Σ � � n � 1 � Predn

Σ
� . Restrict the

domain of that mapping to Xn � 1; in the predicates output by the mapping, substitute A
�
z � for any

z � dom
�
A � . Let R denote the resulting mapping from X n � 1 � Predn

X . Let f �
�
n � 1 � -maj. Let

g � m-maj. By Lemma 6, f and g satisfy the conditions of Lemma 8. It is clear that X , � , r, and R
satisfy those conditions as well. Therefore there exists a total function α : X � � 0 � 1 such that

� ��� Q � Predn
X ��� Q � α m-maj

�
r
�
Q ��� � , and

� �����x � Xn � 1 ��� � n � 1 � -maj
�	�
x � � α 1
 R

���
x � �

Let
�
x be as promised and let

�
be the length of the longest string in

�
x or R

���
x � . Extend A by letting

A
�
x � �

���� A
�
x � if x � dom

�
A �

α
�
x � if x � dom

�
α � and � x � � �

undefined otherwise

This completes Stage i.

Corollary 10. Let k 	 1. There exists a set A such that

PA�
2
3 k � -fixed � PA

k-fixed � PA
k-tt � PA�

4
3 k � -fixed � PA�

4
3 k � -tt � PA� �

4
3 k � � 1 � -fixed � PA� �

4
3 k � � 1 � -tt � PSPACEA

Proof: The middle equalities and inequalities follow from Theorem 9. The first inequality follows
from Theorem 3. For the final equality, it is necessary to modify the proof of Theorem 9 to code
arbitrary PSPACEA predicates into the majority function on blocks of size � 4

3 k � � 1. The additional
coding does not cause any new difficulty in the diagonalization.

9

Note 1: Because we did not clock the Turing machine Mi, the predicate
�
n � 1 � -maj

�
A
�
x1 � � ����� � A � xn � 1 ���

is not n-truth-table reducible to A by any Turing machine. In fact,
�
n � 1 � -maj

�
A
�
x1 � � ����� � A � xn � 1 ���

is not even n-weak-truth-table reducible to A (see [18] for recursion-theoretic definitions). Q�
�
k � A �

is the set of languages k-weak-truth-table reducible to A (see [2] for definitions of bounded query
classes in recursion theory). If we modify the coding above by allowing h to be an index for a partial
recursive function from � 0 � 1 n to � 0 � 1 then the coding above makes Q �

�
n � A � � Q �

�
m � A � . Thus,

if n � 4
3 m, then we have a set A such that

Q �
�
m � A � � Q �

�
n � A � � Q �

�
n � 1 � A � �

Note 2: If, on the other hand, we clock the Turing machine Mi, then we can make the set A be
recursive.

Note 3: We do not think that our gaps are the largest possible. In fact, we conjecture that
PA�

2m � 1 � -tt � PA
m-tt

�� PA
2m-tt � PA�

2m � 1 � -tt. If you prove an analogue to our key lemma and can ap-
ply it to some 2m-ary F and m-ary g, then you will have proved our conjecture.

Note 4: If we hope to obtain a 2m
 1 : m gap, it will, however, be necessary to code using some
function other than majority:

Theorem 11. For all languages A and natural numbers k,

PA�
3k � 2 � -tt � PA�

2k � 1 � -maj � PA
btt � PA�

2k � 1 � -maj �

The proof is given in Appendix 2.

Note 5: Instead of m-maj
�
x1 � ����� � xm � we could use any unweighted threshold function with thresh-

old between m � 3 and 2m � 3. Unfortunately this does not seem to help us to obtain a larger gap. In
order to improve on this technique it would seem necessary either to use an asymmetric function in
place of m-maj or else to improve on inductive case 2.3 of the key lemma, which necessitates that g
be monotone and satisfy the “subfunction” condition.

7. 3-tt vs. 2-tt

Lemma 12. Let � be an associative Boolean operation.

PA�
m � 1 � -tt � PA

m-tt � PA
1- � NF � PA

m-tt �

Proof: This is a simple induction.

Theorem 13. PA
3-tt � PA

2-fixed � PA
btt � PA

2-fixed.

10

Proof: By assumption, PA
2-tt � PA

f where f is a 2-ary Boolean formula. Without loss of generality,

f
�
a � b � � u � v where � is � , � , or � and u and v are literals (a, a, b, b, 0 or 1). Let L � PA

m-tt � PA
m- � NF,

so

L
�
x � � A

���
g11
�
x � � ����� � g1i1

�
x ��� � ����� � � gk1

�
x � � ������� gkik

�
x �����

� A
���

g �11
�
x � � g �12

�
x ��� � ����� � � g �k1

�
x � � g �k2

�
x ����� by Lemma 12 and the assumption PA

2-tt � PA
f

� A
�
g � �1
�
x � � g � �2

�
x ��� for the same reason �

Therefore L � PA
2-tt � PA

3-tt � PA
2-fixed by assumption.

Theorem 14. PA
3-tt � PA

2-tt � poly � PA
btt � poly � PA

2-tt � poly.

Proof: Assume that PA
3-tt � PA

2-tt � poly. We will show that PA
4-tt � poly � PA

2-tt � poly. The conclusion
then follows from Theorem 3(ii).

For each input length n, we will construct polynomial-size advice. Let p be a large integer that
we will specify later. Let V � Σ � np

. Let L � V
� � v : v � V , the corresponding set of literals.

Henceforth we will consider only literals in L. S will denote a subset of L
�

L.
The language

�
 x � y � z � : A
���

x � y � � z � �
is in PA

3-tt and thus, by assumption, is contained in PA
2-tt � poly. Therefore there exist polynomial

computable functions t :
�
Σ � � 3 � 222

and q1 � q2 :
�
Σ � � 3 � Σ � such that

A
���

x � y � � z � � A
�
t
�
x � y � z � � q1

�
x � y � z � � q2

�
x � y � z ����� �

For each x � y � z, let t
�
x � y � z � � a � b � � u � v where � is � , � , or � , and u and v are literals (a, a, b, b, 0,

or 1). We write
�
x � y � � z � u � v, and take four cases. (In what follows, the quantifier

� 	 p z � S �
means “for at least p of all z � S”, i.e.,

� 	 p z � S ��� Q � z � � means that � S � � z : Q
�
z � � � � S � 	 p.)

Case 1:
���

S � ��� z � � 	 1
7

�
x � y � � S ��� � x � y � � z � u � v � . By a greedy algorithm construct a set

ADVICE consisting of O
�
np � literals such that

��� �
x � y � � L2 � ��� z � ADVICE ��� � x � y � � z � u � v �

Thus given any pair of literals x � y we can find in the set ADVICE a literal z such that A
���

x � y � � z � �
A
�
u � v � for some u and v, so

A
�
x � y � � A

�
z � u � v � �

Now, suppose we want to evaluate a 4-place predicate whose variables are of length n or less. Write
the predicate in 4- � NF. By the Lemma, each AND in that formula can be replaced by a formula in
2 variables. Rewrite each of those formulas in 2- � NF. Thus the original 4-place predicate is now
expressed in 2- � NF. By the equation above, we can replace each � of two literals by the � of three
literals. Thus the formula becomes an � of literals. By Lemma 12, it can be converted to a function
of two literals, and so we are done.

Case 2:
���

S � ��� z � � 	 1
7

�
x � y � � S ��� � A � z � � 0 � and

���
x � y � � z � u � v � � . Construct advice, as in

Case 1, so we get A
�
x � y � � A

�
u � v � . Continue as in Case 1, but use � NF instead of � NF.

11

Case 3:
���

S � ��� z � � 	 1
7

�
x � y � � S ��� � A � z � � 1 � and

���
x � y � � z � u � v � � . Construct advice, as in

Case 1, so we get A
�
x � y � � A

�
u � v � . Continue as in Case 2.

Case 4:
���

S � ��� z � � � 4
7

�
x � y � � S �

� �
x � y � � z �

�
u � v if A

�
z � � 1

u � v if A
�
z � � 0 � . By sampling once from

S, we can compute A
�
z � correctly with probability greater than 4

7 . Amplify probabilities by majority
voting, obtaining a probabilistic algorithm that samples O

�
np � times from S and computes A

�
z � with

probability greater than 1
 1 � 2np � 1. Thus for some fixed set of O
�
np � samples, we compute A

�
z �

correctly for all z. Let ADVICE be that set of samples. Now, we can evaluate any 4-ary predicate
without querying A at all.

The case analysis is complete. It remains to specify p. Each time we transform formulas
by using the function t

�
x � y � z � or by applying Lemma 12 we increase the length of strings by a

polynomial amount. Because we are dealing with formulas on only 4 variables, there is a constant
bound on the number of transformations performed, no matter which case holds. Therefore there is
some polynomial bound np on the length of queries to A in the final 2-ary formula we obtain.

8. Functions vs. Languages

In contrast to our results for languages, the following is well known:

Fact 15. FPA�
m � 1 � -tt � FPA

m-tt � FPA
btt � FPA

m-tt

Thus output length affects translation of equality in bounded query classes. Is there something
special about decision problems or do other output lengths prevent equality from translating up-
ward? We show that there is in fact something special about decision problems: even log2 3 bits of
output are enough to make equality translate upward.

Definition 16. Let k 	 2.

� FkPA
m-tt is the set of functions from Σ � to � 0 � ����� � k
 1 computable by polynomial-time Turing

machines that make m parallel queries to A.

� FkPA
btt � � m FkPA

m-tt

Note that F2PA
m-tt � PA

m-tt, etc.

Theorem 17. F3PA�
m � 1 � -tt � F3PA

m-tt � F3PA
btt � F3PA

m-tt.

Proof: Part (i). Define A
�
x � � 2 if x � A, 1 if x �� A. Let G � F3PA

k-tt. Then there exist polynomial-
time computable functions t : Σ � � 3

�
1 � 2 � m

and q1 � ����� � qm : Σ � � Σ � such that for all x

G
�
x � � t

�
x � � A � q1

�
x ��� � ����� � A � qk

�
x ����� �

Let g
� � � t

�
x � � � , and write g

� � as a polynomial over Z � 3, i.e.,

g
�
x1 � ����� � xm � � ∑

i

ci ∏
j

xi j

12

where c1 � ����� � cs � Z � 3. Thus we have

G
�
x � � ∑

i

ci ∏
j

A
�
qi j
�
x ���

where each qi j is polynomial-time computable. A fortiori we have

Γ
�
x � � f

�
x � � ∑

i

ci ∏
j

A
�
qi j
�
x ���

where f � F3PA
m-tt (take f

�
x � identically equal to 0). We complete the proof by showing that every

function in the form above actually belongs to F3PA
m-tt. It is enough to prove this for functions of the

form
f
�
x � � c ∏

1 � j � d

A
�
q j
�
x ���

because then our assertion follows by induction. We now prove the weaker assertion by induction
on d. If d � 0, then the assertion is trivial. If d 	 1 then we have

f
�
x � � c ∏

1 � j � d

A
�
q j
�
x ��� � A

�
q j
�
x ����� f

�
x � � A

�
q j
�
x ��� � c ∏

1 � j � d � 1

A
�
q j
�
x ����� �

f
�
x � � A

�
q j
�
x ��� is in F3PA�

m � 1 � -tt � F3PA
m-tt by assumption. Thus, the bracketed expression is in F3PA

m-tt

by the inductive hypothesis. Therefore f
�
x � � c ∏1 � j � d A

�
q j
�
x ��� is in F3PA�

m � 1 � -tt � F3PA
m-tt by as-

sumption.
Part (ii) is similar.

9. Open Questions

We proved an upper bound on the size of finite gaps in bounded query hierarchies:

PA
2m-tt � PA

m-tt � PA
btt � PA

m-tt �

Can this 2m upper bound be improved, i.e.,

PA�
2m � 1 � -tt � PA

m-tt
?� PA

btt � PA
m-tt

Does a smaller gap imply a collapse higher up, i.e.,

PA�
m � 1 � -tt � PA

m-tt
?� ���

j ��� PA
btt � PA

j-tt �
We also proved a lower bound:

PA�
4
3 m � -tt � PA

m-tt
�� PA� �

4
3 m � � 1 � -tt � PA

m-tt �

Can this � 4
3 m � lower bound be improved, i.e.,

PA� �
4
3 m � � 1 � -tt � PA

m-tt
?� PA�

4
3 m � -tt � PA

m-tt

13

In general we would like to know, when does

PA
h-tt � PA

i-tt � PA
j-tt � PA

k-tt?

The simplest case that is open is

PA
3-tt � PA

2-tt
?� PA

btt � PA
2-tt

In the polynomial-size circuits model, we know the answer to this particular question:

PA
3-tt � PA

2-tt � PA
btt � PA

2-tt � poly �

Can this nonuniform upper bound be extended to larger numbers of queries? For example,

PA�
m � 1 � -tt � PA

m-tt
?� PA

btt � PA
m-tt � poly �

Or, can the � 4
3 m � lower bound be extended to nonuniform computation. In general we would like

to know, when does
PA

h-tt � PA
i-tt � PA

j-tt � PA
m-tt � poly?

We have shown that certain pairs of gaps imply a collapse:�
PA�

d � 1 � -tt � PA
d-tt and PA�

m � d � -tt � PA
m-tt � � PA

btt � PA
m-tt �

It would be interesting to know what combinations of gaps and separations are possible. For exam-
ple, does there exist A such that

PA
3-tt � PA

4-tt � PA
5-tt � PA

6-tt � PA
7-tt ����� ?

(See [3] for an oracle that makes Kintala and Fischer’s β hierarchy [13] behave in that way.)
What about Chang’s conjecture?

���
A � NP ��� PA�

m � 1 � -tt � PA
m-tt

?� PA
btt � PA

m-tt �

Acknowledgments

We are grateful to Frank Stephan for pointing out that PA
2-tt � PA

1-tt � PA
btt � PA

1-tt, to Bin Fu and
Richard Chang for helping us to debug early versions of our proofs and for other helpful discussions,
and to Bill Gasarch for helpful suggestions and continual encouragement.

References

[1] R. Beigel. Query-Limited Reducibilities. PhD thesis, Stanford University, 1987. Available as
Report No. STAN-CS-88-1221.

[2] R. Beigel, W. I. Gasarch, J. T. Gill, and J. C. Owings. Terse, superterse, and verbose sets. Inf.
& Comp., 103:68–85, 1993.

14

[3] R. Beigel and J. Goldsmith. Downward separation fails catastrophically for limited nonde-
terminism classes. In Proceedings of the 9th Annual Conference on Structure in Complexity
Theory, pages 134–138, 1994.

[4] M. Blum. A machine-independent theory of the complexity of recursive functions. J. ACM,
14, 1967.

[5] J. Cai, T. Gundermann, J. Hartmanis, L. A. Hemachandra, V. Sewelson, K. W. Wagner, and
G. Wechsung. The Boolean hierarchy I: structural properties. SICOMP, 17(6):1232–1252,
Dec. 1988.

[6] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28:114–133, 1981.

[7] R. Chang, 1997. Personal communication.

[8] R. Chang, W. I. Gasarch, and C. Lund. On bounded queries and approximation. SICOMP,
26(1):188–209, February 1997.

[9] W. Gasarch, M. W. Krentel, and K. Rappoport. OptP-completeness as the normal behavior of
NP-complete problems. MST, 28:487–514, 1995.

[10] W. I. Gasarch, 1996. Personal communication.

[11] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. T. AMS,
117:285–306, 1965.

[12] J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses.
SICOMP, 17(6):1263–1282, Dec. 1988.

[13] C. M. R. Kintala and P. C. Fischer. Refining nondeterminism in relativized polynomial-time
bounded computations. SICOMP, 9(1):46–53, Feb. 1980.

[14] M. Krentel. Generalizations of OptP to the polynomial hierarchy. Theoretical Computer
Science, 97:183–198, 1992.

[15] M. W. Krentel. The complexity of optimization problems. JCSS, 36(3):490–509, 1988.

[16] A. Lozano. On bounded queries to arbitrary sets, 1991. Unpublished Manuscript.

[17] H. Rogers, Jr. Theory of Recursive Functions and Effective Computability. McGraw Hill, New
York, 1967.

[18] R. I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1987.

[19] K. W. Wagner. The complexity of combinatorial problems with succinct input representation.
Acta Inf., 23:325–356, 1986.

[20] K. W. Wagner. More complicated questions about maxima and minima and some closures of
NP. Theoretical Computer Science, 51:53–80, 1987.

15

Appendix 1: Proof of key lemma

Definitions and notation concerning coding blocks:

� An m-tuple r
�
Q � is called a coding block.

� A single element of a coding block is called a coding variable.

� If x is a coding variable, then the coding block that contains x is called
�
b
�
x � .

� Let � �b � denote the set of variables in the coding block
�
b.

� All noncoding variables are called diagonalization variables.

Definitions and notation concerning legal assignments:

� An assignment α is called legal if it satisfies condition (1).

� A partial assignment α is called legal if there exists a legal assignment α � that extends α.

� By “legally extend α to satisfy some condition” we mean “find a total assignment α� � α such
that α � is legal and α � satisfies that condition, and then let α � α� ”

� By “legally extend α on Y to satisfy some condition” we mean “find a total assignment α��� α
such that α � is legal, Y � dom

�
α � � , and α � satisfies that condition, and then let α � α� ”

� Let α be a legal partial assignment. We say that two formal Boolean predicates Q1 � Q2 � Predn
X

are congruent modulo α (written Q1 � α Q2) if Q1 � α � Q2 for every legal assignment α � that
extends α.

� We say that Q1 is congruent to Q2 (written Q1 � Q2) if Q1 � α Q2 for every legal assignment α.

Construction:

� Let d1 � ����� � dn � 1 be any n � 1 distinct diagonalization variables, let
�
d �

�
d1 � ����� � dn � 1 � , and let

D � � d1 � ����� � dn � 1 .
� Let R

�
d1 � ����� � dn � 1 � � Γ

�
x1 � ����� � xn � where Γ � 22n

and x1 � ����� � xn � X .

� Let Γ � be a formal Boolean predicate such that

(a) Γ � � Γ,

(b) Γ � � hk
� ����� h1

�
H � z1

m � 1 � ����� � z1
n � ����� � zk

m � 1 � ����� � zk
n � where

� H is a formal n-ary Boolean predicate over X
� each hi is an

�
n
 m � 1 � -ary Boolean predicate

� each z j
i � X

(c) H is minimal (under the partial order �) among all choices of Γ � that satisfy (a) and (b).

Since Γ � � Γ, it is sufficient to prove that F
�
d1 � ����� � dn � 1 � �� Γ � . We prove that by induction on k.

For the base case we take k � 0, so Γ � � H . Let Z be the set of variables in H . We consider
several subcases:

16

Base case 1: m elements of Z form a coding block. Let
�
b �

�
b1 � ����� � bm � be that coding block.

Because of the minimality of H , H is not congruent to any function of g
� �
b � and the variables in

Z
 � �b � . Therefore, there exists a legal partial assignment α : Z
 � �b ��� � 0 � 1 such that H
�� α 0,

H
�� α 1, H

�� α g
� �
b � and H

�� α
�

g
� �
b � . Let h be a Boolean predicate such that h

� �
b � � α H . Then���

v1 � v2 � � 0 � 1 m ��� h � v1 � �� h
�
v2 � and g

�
v1 � � g

�
v2 � � . Let c � g

�
v1 � � g

�
v2 � .

If possible, extend α to all of X in a legal way so that g
� �
b � � α c. Then we have

F
�
d1 � ����� � dn � 1 � � α a for some a � � 0 � 1 . Now we can modify α so that

�
α
�
b1 � � ����� � α � bm ��� � v1

or
�
α
�
b1 � � ����� � α � bm ��� � v2, as we wish; both modifications result in legal assignments and keep

F
�
d1 � ����� � dn � 1 � � α a. Because h

�
v1 � �� h

�
v2 � , one of those modifications makes H � α 1
 a.

If no such extension exists, it must be the case that g
� �
b � � α 1
 c. Extend α to � �b � in any way

such that g
� �
b � � 1
 c. Now we have H � α a for some a � � 0 � 1 . Then, since F has no minterm or

maxterm of size n
 m or less, we can extend alpha to D so that F
�
d1 � ����� � dn � 1 � � α 1
 a.

Base case 2: At most m
 1 elements of Z belong to any single coding block. For each coding
block

�
b, define α on � �b � � Z in such a way that the value of g

� �
b � is not determined; this is possible

because g is not a function of m
 1 variables or fewer. Define α arbitrarily on diagonalization vari-
ables in Z
 � d1 � ����� � dn � 1 . The partial assignment α defined in this way is clearly legal. In addition,
H � α h

�
d1 � ����� � dn � 1 � where h is a function of n variables or fewer. By the first condition on F , F is

not a function of n variables or fewer; therefore we can extend α to the rest of Z without forcing a
value for F

�
d1 � ����� � dn � 1 � . Then we have H � α c for some c � � 0 � 1 ; define α on � d1 � ����� � dn � 1 so

that F
�
d1 � ����� � dn � 1 � � α 1
 c.

That completes the base case of the induction. Now assume k 	 1. We write h � h � if the
Boolean functions h and h � are identically equal. Every

�
n
 m � 1 � -ary Boolean function h satisfies

exactly one of the following three conditions:

� h
�
zm � ����� � zn � � zm or h

�
zm � ����� � zn � � �

zm

� ��� am � 1 � ����� � an � � 0 � 1 ��� h
�
0 � am � 1 � ����� � an � � h

�
1 � am � 1 � ����� � an � �

� there is a nonconstant
�
n
 m � -ary Boolean function ĥ such that h

�
zm � ����� � zn � � zm �

ĥ
�
zm � 1 � ����� � zn �

We take cases depending on the functions h1 � ����� � hk .

Inductive case 1:
��� � � k ��� h �

�
zm � ����� � zn � � zm or h �

�
zm � ����� � zn � � �

zm � . Then we are done by
induction on k.

Inductive case 2:
��� � � k � ��� am � 1 � ����� � an � � 0 � 1 ��� h �

�
0 � am � 1 � ����� � an � � h �

�
1 � am � 1 � ����� � an � � .

Choose the largest such
�
. Set

�
α
�
z �

m � 1 � � ����� � α
�
z �

n ��� �
�
am � 1 � ����� � an � .

Γ � � α ĥ � � 1
�
z

� � 1
m � 1 � ����� � z � � 1

n � � ����� � ĥm
�
zk

m � 1 � ����� � zk
n �

for some nonconstant
�
n
 m � -ary Boolean functions ĥ � � 1 � ����� � ĥm (the constant h �

�
0 � am � 1 � ����� � an � is

absorbed into ĥ � � 1).
Choose a formal

�
n
 m � - � NF predicate Γ � � � α Γ � such that the number of variables in Γ � � is

minimum. If Γ � � � c for some c � � 0 � 1 , then define α on � d1 � ����� � dn � 1 so that F
�
d1 � ����� � dn � 1 � � α

1
 c. Otherwise, let

17

� W � � z �
i : m � 1 � i � n � dom

�
α � .

� Z be the set of variables in Γ � � .
� z � max

�
Z �

� �
b �

�
b
�
z �

We consider subcases:

Inductive case 2.1: z � D. Then F
�
d1 � ����� � dn � 1 � � α F � � d1 � ����� � dn � 1 � where F � is a �D
 W � -ary

subfunction of F . Since �D
 W � 	 n � 1
 � n
 m � � m � 1, F � �� � n
 m � - � NF. But Γ � � � � n

 m � - � NF, so Γ � � �� α F � � d1 � ����� � dn � 1 � . Therefore we can define α on D
 W so that Γ� � � α 1

F � � d1 � ����� � dn � 1 � . Since α has been defined on only n
 m elements of X
 D, α can be extended to
a legal assignment.

Inductive case 2.2: z is not a coding variable and z �� D. We assert that α can be legally extended
to D

�
Z
 � z in such a way that Γ � � � α z or Γ � � � α

�
z. For the sake of contradiction, suppose not.

Then, for every legal extension α � of α to D
�

Z
 � z , we have Γ � � α � 0 or Γ � � α � 1. Substitute
an arbitrary value for z in the formal Boolean predicate Γ � � to obtain a congruent formal Boolean
predicate modulo α, on one variable fewer. This contradicts the minimality of Γ � � .

So, extend α legally to D
�

Z
 � z in such a way that Γ � � � α z or Γ � � � α
�

z. Now we have
F
�
d1 � ����� � dn � 1 � � α c for some c � � 0 � 1 , and we can define α

�
z � so that Γ� � � α 1
 c.

Inductive case 2.3: z is a coding variable. Let
�
b �

�
b
�
z � , and let � b1 � ����� � bp � � �b �
 W . Then

p 	 m
 � n
 m � � 2m
 n, and g
� �
b � � α g � � b1 � ����� � bp � where g � is a p-ary subfunction of g. By

assumption

���
a � � 0 � 1 �

���
nonconstant h ��� if g � � a � h then � -deg

�
h � � n
 m � �

Choose a accordingly. We consider sub-subcases:

Inductive case 2.3.1: for every legal extension α � of α to the variables less than min
� � �b ��� , we

have g
� �
b � � α � 1
 a � ���

Γ � � � α � 0 � or
�
Γ � � � α � 1 ��� . Obtain Γ � � � by substituting the value a for z in

the formula Γ � � . By the minimality of Γ � � , we have Γ � � � �� α Γ � � . Legally extend α on the variables less
than or equal to z so that Γ � � � � α 1
 Γ � � . Then we must have g

� �
b � � α a. Let c � � 0 � 1 such that

F
�
d1 � ����� � dn � 1 � � α c. If Γ � � � α 1
 c then we are done. Otherwise modify α by letting α

�
z � � a.

The resulting α is legal because g is monotone. Now we have Γ � � � α 1
 c.

Inductive case 2.3.2: it is possible to legally extend α to the variables less than min
� � �b ��� so that

g � � b1 � ����� � bp � � α 1
 a,
�
Γ � � �� α 0 � , and

�
Γ � � �� α 1 � . Extend α accordingly. Then F

�
d1 � ����� � dn � 1 � � α

c for some c � � 0 � 1 .
We would like to find a legal extension α� � α such that Γ � � � α � 1
 c. Suppose, for the sake

of contradiction, that we cannot. Then Γ � � � α � c for all assignments α � such that α � � α and
g � � b1 � ����� � bp � � α � 1
 a. Let h

�
b1 � ����� � bp � � α Γ � � . Then g � � a � h � �

1
 c � . Since g � is a p-ary
subfunction of g and p 	 2m
 n, � -deg

�
h � � n
 m, a contradiction. Thus the desired extension

exists, and we have Γ � � � α � 1
 F
�
d1 � ����� � dn � 1 � .

18

Inductive case 3: for all
� � k there is a nonconstant

�
n
 m � -ary Boolean function ĥ � such that

h �
�
z1 � ����� � zn � m � 1 � � z1 � ĥ �

�
z2 � ����� � zk � 1 � . Then

Γ � � H � Ĥ1 � ����� � Ĥk

where H is an n-ary formal Boolean predicate and Ĥ1 � ����� � Ĥk are nonconstant
�
n
 m � -ary formal

Boolean predicates.
Choose a formal Boolean predicate Γ � � � α Γ � having the form given above such that the number

of variables in Γ � � is minimum. If Γ � � � c for some c � � 0 � 1 , then define α on � d1 � ����� � dn � 1 so that
F
�
d1 � ����� � dn � 1 � � α 1
 c. Otherwise, let
� Z � the set of variables in Γ � � ,
� ZH � the set of variables in H ,

� z � max
�
Z � .

We consider several subcases.

Inductive case 3.1: z � D Then Γ � � � h1
�
d1 � ����� � dn � 1 � � h2

�
d1 � ����� � dn � 1 � where h1 is an n-ary

Boolean function and � -deg
�
h2 � � n
 m. Since F

�� h1 � h2, we can define α on D so that Γ� � � α
1
 F

�
d1 � ����� � dn � 1 � .

Inductive case 3.2: z is not a coding variable and z �� D. The proof for this case is the same as
in inductive case 2.2.

Inductive case 3.3: z is a coding variable. Let
�
b �

�
b1 � ����� � bm � �

�
b
�
z � .

We consider sub-subcases:

Inductive case 3.3.1: � �b � � ZH . By the minimality of H , H is not congruent to any formal
�
n

 m � - � NF predicate � any formal Boolean predicate that depends only on g
� �
b � and the variables

in ZH
 � �b � . Therefore it is possible to legally extend α to ZH
 � �b � so that H � α h
� �
b � where h is

not equal to any
�
n
 m � - � NF predicate � any of the following: 0, 1, g

� �
b � , or

�
g
� �
b � . Extend α

accordingly. Extend α in some legal way to the variables less than min
� � �b ��� . Now we have

� F
�
d1 � ����� � dn � 1 � � α a for some a � � 0 � 1 ,

� g
� �
b � � α c for some c � � 0 � 1 , and

� Γ � � � α h � � �b � where h � is not equal to 0, 1, g, or
�

g.

Because of the condition above on Γ � � we can extend α to � �b � so that g
� �
b � � α c and Γ � � � α 1
 a. By

our choice of c, this extension is legal.

Inductive case 3.3.2: � �b � �
� Z Since g is not a function of m
 1 variables or fewer, there is a

partial assignment β to � �b � � Z such that g
� �
b � �� β 0 and g

� �
b � �� β 1. Obtain Γ � � � by substituting β

�
x �

for x in Γ � � for each x in � �b � � Z. Γ � � � contains fewer variables than Γ � � because z � � �b ��� Z. By
the minimality of Γ � � , Γ � � � �� α Γ � � . Legally extend α to the variables less than or equal to z so that
Γ � � � � α 1
 Γ � � . Let c � � 0 � 1 such that F

�
d1 � ����� � dn � 1 � � α c. If Γ � � � α 1
 c then we are done.

Otherwise modify α by letting α
�
x � � β

�
x � for all x � � �b � � Z, and then re-defining α on � �b � � Z so

that α is legal. This is possible because g
� �
b � �� β 0 and g

� �
b � �� β 1. Now we have Γ � � � α 1
 c.

19

Inductive case 3.3.3: � �b � � Z
 ZH
�� /0. We consider sub-sub-subcases:

Inductive case 3.3.3.1: every legal extension α � of α to the variables less than min
� � �b ��� makes

g
� �
b � � α � 1, Γ � � � α � 0 or Γ � � � α � 1. Choose

�
a1 � ����� � am � � � 0 � 1 m such that g

�
a1 � ����� � am � � 1. Ob-

tain Γ � � � by substituting a1 � ����� � am for b1 � ����� � bm respectively in Γ � � . Γ � � � has fewer variables than
Γ � � because � �b � � Z

�� /0. By the minimality of Γ � � , Γ � � � �� α Γ � � . Legally extend α � � to the vari-
ables less than or equal to z so that Γ � � � � α 1
 Γ � � . Then we must have g

� �
b � � α 1. Let c � � 0 � 1

such that F
�
d1 � ����� � dn � 1 � � α c. If Γ � � � α 1
 c then we are done. Otherwise modify α by letting�

α
�
b1 � � ����� � α � bm ��� �

�
a1 � ����� � am � . The resulting α is legal because g

�
a1 � ����� � am � � 1. Now we have

Γ � � � α 1
 c.

Inductive case 3.3.3.2: it is possible to legally extend α to the variables less than min
� � �b ��� so

that g
� �
b � � α � 0, Γ � � �� α � 0 and Γ � � �� α � 1. Extend α accordingly. Then F

�
d1 � ����� � dn � 1 � � α a for

some a � � 0 � 1 , and Γ � � � α h
� �
b � for some m-ary Boolean predicate h. Because � �b � � Z
 ZH

�� /0,
h � h1 � h2 where h1 is an

�
m
 1 � -ary predicate and h2 � � n
 m � - � NF.

We would like to find a legal extension α� � α such that Γ � � � α � 1
 a. Suppose, for the sake
of contradiction, that we cannot. Then h

� �
b � � α � a for all assignments α � such that α � � α and

g
� �
b � � α � 0. Thus

�
g � �

h � �
1
 a ����� . Therefore � -deg

�
h2 � � n
 m, a contradiction. Thus the

desired extension exists, and we have Γ � � � α � 1
 F
�
d1 � ����� � dn � 1 � .

Appendix 2: Miscellaneous

Definition 18. If A is a set and f a Boolean formula, we define A
�
f � recursively:

� A
�
g � h � � A

�
g � � A

�
h � , for all g � h � �

� A
���

g � �
�

A
�
g � , for all g

� A
�
x � � χA

�
x � , for all x

Definition 19. L � C
d-degree A if there exists � such that L � C

d- � NF A. (The truth table may depend on
the input, but the operation � may not.)

Lemma 20.

i. PA�
d � 1 � -tt � PA

d- � NF � PA
btt � PA

d- � NF

ii. PA�
d � 1 � -tt � PA

d-degree � PA
btt � PA

d-degree

Proof: Part (i). Assume every language in PA�
d � 1 � -tt is also reducible to A via degree-d formulas

over � . Consider any language L such that L � P
m-tt A. On input x, we can compute in polynomial

time a Boolean formula f and m strings q1 � ����� � qm such that L
�
x � � A

�
f
�
q1 � ����� � qm ��� . Write f in the

form
�
q11 � ������� q1 j1 � � ����� � � qk1 � ����� � qk jk � , where each ji � m and � is an associative Boolean

20

operation (� � � if � � � , and � � � otherwise). Because � is associative, we can, by Lemma 12
rewrite A

�
qi1 � ����� � qim � as A

�
fi � where fi has degree d over � . Thus

L
�
x � � A

�
f � � A

�
f1 � ����� � fk � �

The predicate f1 � ����� � fk has degree d over � .
Part (ii) is immediate from part (i).

Lemma 21. Let m � d 	 0.

i. PA�
m � d � -tt � PA

m-tt � PA
d-degree � PA

m-tt

ii. PA�
m � d � -tt � PA

m-tt � PA
d-degree � PA

btt � PA
m-tt � PA

d-degree

Proof: Part (i). Assume PA�
m � d � -tt � PA

m-tt. Let L � P
d-degree A. Then, on input x, we can compute in

polynomial time a Boolean formula f and strings q1 � ����� � qk such that L
�
x � � A

�
f
�
q1 � ����� � qk ��� where

f has degree d over some associative Boolean operation � . Let f � f1 � ����� � fs where each fi involves
at most d variables. Because m 	 0, f1 involves at most m � d variables. Since PA�

m � d � -tt � PA
m-tt, f1

can be rewritten as a predicate on m variables. The predicate f1 � f2 involves at most m � d variables
so it can be rewritten as a predicate on m variables. We continue in this way, until we have rewritten
f1 � ����� � fs as a predicate on m variables.

Part (ii). Let L � P
btt A. By Lemma 20(ii), L � P

d-degree A. By (i), L � P
m-tt A.

Theorem 11 For all languages A and natural numbers m,

PA�
3m � 2 � -tt � PA�

2m � 1 � -maj � PA
btt � PA�

2m � 1 � -maj �

Proof: Because
�
2m � 1 � -maj � � m � 1 � - � NF, the conclusions follow from Lemma 21(ii,iv).

21
ftpmail@ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://www.eccc.uni-trier.de/eccc
ECCC
 ISSN 1433-8092

