Electronic Collogquium on Computational Complexity, Report No. 27 (1998)

Sparse Sets, Approximable Sets, and Parallel Queries to NP

V. Arvind Jacobo Toran
Institute of Mathematical Sciences Abteilung Theoretische Informatik,
C. L. T. Campus Universitat Ulm,
Chennai 600 113, India D-89069 Ulm, Germany
Abstract

We relate the existence of digjunctive hard sets for NP to other well studied hypotheses in

complexity theory showing that if an NP-complete set or a coNP-complete set is polynomial-

time disjunctively reducible! to a sparse set then FPﬁIP =fp™’ [log]. Using a similar argument

we obtain also that if SAT is O(logn)-approximable then FPﬂTP = FPP[log]. Since FPﬂIP =
FPYP[log] implies that SAT is O(log n)-approximable [BFT97], these two hypotheses are shown
to be equivalent, thus solving an open question from [BFT97]. We show as a consequence of
our first result that if an NP-complete set or a coNP-complete set is disjunctively reducible to
a sparse set of polylogarithmic density then P = NP.

1 Introduction

The study of the existence of sparse hard sets for complexity classes has occupied complexity the-
orists for over two decades. The first results in this area were motivated results in this area were
motivated by the Berman-Hartmanis isomorphism conjecture [BH77] and by the study of connec-
tions between uniform and nonuniform complexity classes [KL80]. The focus shifted to proving,
for various reducibilities (whose strengths lie between the many-one and the Turing reducibility),
that P = NP is equivalent to SAT being reducible to a sparse set via such a reducibility. It is now
known (see the recent survey [CO97]) for several reducibilities that P = NP is equivalent to SAT
being reducible to a sparse set via such a reducibility. A well-known result here is for the bounded
truth-table reducibility [OW91]: if NP has sparse hard sets under bounded truth-table reductions
then P = NP.

The possible existence of sparse Turing-hard sets for NP was considered in [KL80], while
studying connections between uniform and nonuniform complexity classes. It is shown in [KLKO0]
that if NP has sparse Turing-hard sets then the polynomial-time hierarchy (PH) collapses to Xb.
In [KW95, BCGKT96] this collapse consequence is improved to ZPPNF: this new collapse conse-
quernce is pretty much the best that can be proved with relativizable techniques since it is known that
the collapse of PH (assuming NP has polynomial-size circuits) cannot be improved to AL with rel-
ativizable techniques [IM89]. It remains a challenging open problem to prove that P = NP if there
is a sparse Turing-hard set for NP. Indeed, this question remains open for stronger reducibilities .

In this paper we consider the question of existence of sparse hard sets for NP w. r. t. disjunctive
truth-table reductions. We briefly recall some known results: it is shown in [AKM96] that if there
is a sparse hard set for NP under disjunctive reductions then PH collapses to Ab. More recently,

L All reducibilities considered in this paper are polynomial-time computable.

ISSN 1433-8092



it is shown in [CNS96] that if there are sparse hard sets for NP under the disjunctive reducibility
are RP = NP. The proof technique in [CNS96] is based on powerful algebraic and randomization
techniques from [CS96] that are tailored for application in the area of reductions to sparse sets.
With these techniques [CS96] several long standing conjectures of Hartmanis regarding logspace
and NC! reductions to sparse sets have recently been settled (see also the recent survey [CO97]).

The results

The contribution of this paper is to relate the question of the existence of sparse hard sets for NP
under disjunctive reductions (or equivalently the question of whether the satisfiability problem SAT
is disjunctively reducible to a sparse set) to other, apparently different, hypotheses in complexity
theory considered in the recent work of Buhrman et. al. [BFT97]. Among these are the following
four hypotheses.

1

2) PV = FPYP[log].

(1)
(2) F
(3) SAT is O(logn) approximable.

(4) (1SAT,SAT) has a solution in P.

Clearly, hypothesis (1) implies the others. Furthermore, it is shown in [BFT97] that (2) implies
(3). Very recently, Sivakumar [Si98], using algebraic techniques from [ALRS92], has recently shown
that (3) implies (4).

It is known that RP = NP follow from (4) [VV86], and it is an outstanding open problem in
structural complexity whether P = NP follows from any of hypotheses (2), (3) or (4). This is the
main motivation for studying them. Cai, Naik and Sivakumar [CNS96] have shown that if SAT is
disjunctively reducible to a sparse set then hypothesis (4) holds. Building on this result we show:

o If SAT or SAT is disjunctively reducible to a sparse set then FPII = FPNPlog].

e For any prime k, if Mod;P is disjunctively reducible to a sparse set then (1SAT,SAT) has a
solution in P.

There are collapse results that follow from the hypothesis (2) that are not know to follow from
(4). For example, in [JT95] it is shown that if FPII = FPNP[log] then a polylogarithmic amount
on nondeterminism can be simulated in polynomial time. From this follows as a corollary that if
SAT or SAT is disjunctively reducible to a sparse set of polylogarithmic density then P = NP.
With related techniques we obtain also consequences of SAT being majority reducible to a sparse
set that are discussed at the end of the paper.

With a similar argument as the one used for the results on sparse sets, applied this time to
Sivakumar’s proof for his main result in [Si98] we show:

o If SAT is O(logn) approximable then FPII = FPNP[log].

This proves that hypotheses (2) and (3) are equivalent, answering an open question in [BFT97].
From these results we conclude that both these hypotheses are at least as weak as SAT being
disjunctively reducible to a sparse set.



2 Preliminaries

We fix the alphabet ¥ = {0,1}. The set Uyc,<, 3¢ of all strings in ¥* of length up to n is denoted
by ©=". For any set A C ¥*, AS" = AN Y=" and A=" = AN I". x4 denotes the characteristic
function of A. By abuse of notation, let x4(z1,23,...,2, ) denote the function that maps the list
of strings 1, g, ..., %y to the m-bit vector whose ith bit is x4(2;). The length of a string » is
denoted by |z|, and the cardinality of a set A is denoted by ||A||. The density function of a set A
is defined as density 4(n) = ||AS"||. A set S is sparse if its density function is bounded above by
a polynomial. A sparse set has polylog density if its density function is bounded above by log* n
for some constant k > 0. The complement of a language A is denoted by A. Let (-,-) denote a
standard polynomial-time invertible pairing function which can be extended in a standard fashion
to encode arbitrary sequences (z1,...,z) of strings into a string (z1,...,z).

Unless explicitly stated all reducibilities in this paper are polynomial-time computable. Apart
from the standard many-one reducibility, we consider the disjunctive truth-table reducibility: A set
A is disjunctively reducible to a set B, if there is a polynomial-time computable function f mapping
strings to sets of strings such that for all « € ¥* it holds that « € A < f(z)N B # 0.

Let SAT denote the set of satisfiable boolean formulas, and let Fs47 denote the function ygar
applied to a list of boolean formulas. We next define promise problems.

Definition 1 [ESY84] A promise problem is a pair of sets (Q,R). A set L is called a solution of
the promise problem (Q,R) if for allz € Q, x € L & x € R.

Of particular interest to us is the promise problem (1SAT,SAT), where 1SAT contains precisely
those boolean formulas which have at most one satisfying assignment. Observe that any solution of
the promise problem (1SAT, SAT) has to agree with SAT in the formulas having a unique satisfying
assignment as well as in the unsatisfiable formulas.

Definition 2 [BKS95] A function g is an f-approzimator for a set A if for every x1,x2,...,Tm
with m > f(maz;|z;),
g(z1,29,...,2,) €™ and,

g(z1, 20, . 20) # xa((Z1, 22, ..., 2))

A set A is called f-approzimable if it has an f-approzimator.?

FPI|\|IP denotes the class of functions computable in polynomial time with parallel queries to

an NP oracle and FPNF[log] denotes the class of functions computable in polynomial time with
logarithmically many adaptive queries to an NP oracle.

Other complexity-theoretic notions used in this paper can be found in textbooks like [BDGS8S,
BDGY0, Pa94].

3 Sparse sets and parallel queries to NP

As preparation for the first result of this paper we prove the following lemma. It is essentially
based on the ideas in [CNS96] stated in a more general setting. We are interested in solving the
following decoding problem which we call the hidden polynomial problem: Let F, denote the finite
field of size ¢. Suppose there is an unknown univariate polynomial P(z) of degree n over F,. Also,

2 Approximability is called membership comparability in [Og95].



suppose we are given a ‘noisy’ table consisting of N rows, with each row containing a variable-sized
list of pairs (u,v) € F, x F, with the claim that P(u) = v. In addition, we know that there is a
small set of ¢ ( such that ¢ > (n+ 1)t) correct rows which completely specify the polynomial P on
the whole of Fj,. The problem is to efficiently compute a small set of candidate polynomials which
includes P.

The following lemma (based on [CNS96]) gives a precise answer to this problem.

Lemma 3 There is an algorithm (that runs in time polynomial in n, N, and q) that takes as input
a table T of size N X ¢2, as described above, and outputs a list of at most N polynomials, one of
which is the hidden polynomial.

Proof. Notice that there are exactly ¢? pairs (u,v), u,v € F, of which exactly ¢ pairs correctly
define the graph of the hidden polynomial P. Since there is a set of ¢ correct rows in the table T
which completely specify the polynomial, by pigeon-hole principle there is one correct row which
contains at least ¢/t pairs. Furthermore, notice that no correct row contains inconsistent pairs
(u,v) and (u,w) where v # w.

Call a row of the table long if it has at least ¢/t pairs and does not contain any inconsistent
pair. We know that there is at least one correct row which is long.

Writing the hidden polynomial P(z) as Y.% o a;z* we notice that each long row gives us a system
of at least ¢/t linear equations in the n + 1 unknowns a;,0 < ¢ < n. Since ¢/t > n+ 1, we can pick
any n + 1 of the equations corresponding to a given long row which will have a unique solution in
the a;’s since the coefficient matrix is a Vandermonde matrix which is invertible. Using Gaussian
elimination we can efficiently compute this unique solution for each long row.

This yields a list of at most N polynomials, one for each long row in the table T, and we know
that the hidden polynomial (corresponding to a good long row of T') is in this list. [

We prove now the first result of the paper.
Theorem 4 If SAT is disjunctively reducible to a sparse setl then FPWP = FP P log].

Proof. Suppose SAT is disjunctively reducible to a sparse set. Recall that Fs4r, which computes
the characteristic sequence of a list of SAT queries, is complete for FPWP. It suffices to show that

Fgar isin FPNP [log]. We will design an FPNP [log] machine M for Fssr. On input a list of formulas
(z1,22,...,%m), the machine M first computes, with a binary search and queries to a suitable NP
oracle, the cardinality & of {x1,z9,...,2,,} N SAT.

Now consider the following set Y = {(¢q,u,v,k,z1,22,...,2,) |0 < u,v < ¢—1, and Ja € ¥™
with & 1’s such that if a; = 1 then 2; € SAT and Y7, a;u* ™' = v (mod ¢)}.

Notice that Y € NP. Also, observe now that if k£ is ||[{z,2z2,...,2m} N SAT|| then there is a
unique vector ¢ € X™ such that if a; = 1 then z; € SAT. Thus, for a given triple ¢, u, v there is at
most one vector @ € ™ satisfying the above property.

Actually, we are interested only in those instances (q,u,v,k, 21, 22,...,2,) of Y where ¢ is a
small prime. More precisely, consider an instance (z1,z3,...,%s) of Fsar of length n. Corre-
sponding to this instance, we pick ¢ to be a clogn bit prime number, where we will choose ¢ later
appropriately. Let F, denote the finite field of size ¢q. Notice that we can pick ¢ and construct
the field F, efficiently (i.e. in time polynomial in n). Moreover, arithmetic in F, can also be done
efficiently.

Since Y € NP there is a disjunctive reduction f from Y to a sparse set S of density ||S<"|| < p(n)
for some polynomial p. Le. f is an FP function that on input z produces a set of strings f(z) such



that z € Y iff f(z) NS # (. Fix an instance (z1,22,...,2,) of Fsar. Let the length of this
instance be n. Let ¢ be a clogn bit prime number. The length of (¢, u,v,k, 21, 22,...,2,,) using
a standard pairing function can be bounded by 2n for large enough n since ¢,u,v and k can
be encoded in 3clogn + logn bits. Now, since the reduction f from Y to 5 is polynomial-time
computable there is a polynomial r(n) which bounds both ||f({u,v,k,z1,22,...,2m,))|| and the
length of each query in f((g,u,v,k,z1,22,...,2m)). Let @ = Uyper, f({u,0,k,21,22,. .., 2m)).
Write @ = {¢1,492,...,g8}. Our aim is to apply Lemma 3. Build a table T with N rows where
we put (u,v) in row i if ¢; € f({q,u,v,k,z1,29,...,2,,)). Note that N < r(n)q?. We define row
i to be correct if ¢; € S. Notice that there are at most ||S<" || < r(n)p(r(n)) good rows in
the table T. Now we choose the constant ¢ (which determines the size of the field Fj) so that
g/r(n)p(r(n)) = nc/r(n)p(r(n)) > n, where we know that n > m.
Let Fsar(z1,22,...,2m) = @143 ...0y. Then a hidden polynomial specified by the table T is
™ a;x'~1. Applying the algorithm of Lemma 3 we can compute in time polynomial in n a list X
of at most N polynomials of degree m — 1. Each of these polynomials gives us an m-bit vector of
its coeflicients. We discard from this list those m-bit vectors which have a number of 1’s different
from k. In the pruned list exactly one m-bit vector is Fsar(x1,2,...,2y) and every other m-bit
vector has a 1 at a position where the corresponding formula in (21,2, ..., z) is unsatisfiable.
The FPNF[log] machine M can now find the unique correct m-bit vector in X by doing a
standard binary search guided by at most log N = O(logn) queries to a suitable NP oracle. This
completes the proof. [

It is an open question whether we can derive P = NP from the assumption that SAT is disjunc-
tively reducible to a sparse set. One direction is to consider disjunctive reductions from SAT to sets
of density lower than polynomial. It is already known that if SAT is disjunctively reducible to a
tally set then P = NP [Uk83, Ya83]. However, the proof technique of [Uk83, Ya83] does not work if
we assume that SAT is disjunctively reducible to a set S of polylog density. Reductions of SAT to
sets of polylog density were considered by Buhrman and Hermo [BH95] where they show that if SAT
is Turing reducible to a set of polylog density then NP(log* n) = NP for all k (where NP(log" n) is
the class of NP languages accepted by NP machines which make at most log* n nondeterministic
moves on inputs of length n). We also recall here the result of Jenner and Toran [JT95] that if
FPWP = FPNF[log] then NP(log® n) = P for each k > 0.

Combining the above-mentioned results of [BH95, JT95] with Theorem 4 immediately yields
the following corollary.

Corollary 5 If SAT is disjunctively reducible to a setl of polylog density then P = NP.

We next briefly consider consequences of SAT being conjunctively reducible to a co-sparse
set. By complementation, this is equivalent to SAT being disjunctively reducible to a sparse set.
We show that we can apply again the technique of [CNS96] to derive FPﬁIP = FP"F[log] as a

consequence.

Theorem 6 If SAT is disjunctively reducible to a sparse setl then FPWP = FPNPlog].

Proof. Suppose SAT is disjunctively reducible to a sparse set. Again, it suffices to show that Fsur
is in FPNP[log]. On input a list of formulas (z1, 2, . .., 2m), the cardinality k of {z1,z2,...,2,} N
SAT can be computed with an FPNF[log] computation.

We introduce some notation for conciseness. Let w denote an assignment to all variables in
{z1,22,...,2m}. Let &;(w) denote the value of formula z; at assignment w. We define the following
polynomial-time computable predicate:



U({g,u,v,k, 201,22, ..o, &), a,w) 1= (0 a5 = kA Ng,z1 2i(w) = LAY aju' ™ = 0) V(X2 a; #
F)V (g () = 0)

Consider now the following set Z = {(¢, u, v, k,z1,22,...,2m) |0 < u,v < ¢—1, and Ya € ¥™
V assignments w: U({q,u,v,k,21,22,...,&m),a,w)}

Since U is a polynomial-time predicate it follows that Z € coNP.

Observe that if k = |[{z1,22,...,2, } NSAT|| then a; = 1 implies z; € SAT for all ¢ iff a € ¥ is
the characteristic vector of z1,z3,...,2,,. We are interested in instances (¢, u,v,k,z1,%2,...,Tm)
of Z for ¢ picked to be a small prime. If |[(z1,22,...,2m,)| = n, we will pick ¢ to be a clogn bit
prime number, for an appropriate c.

Since Z € coNP there is a disjunctive reduction f from Z to a sparse set S of density ||S<"|| <
p(n) for some polynomial p. I.e. fis an FP function that on input = produces a set of strings f(x)
such that @ € Y iff f(z) N S # 0. Fix an instance (21, 22,...,&m) of Fsar. Let the length of this
instance be n. Let ¢ be a clogn bit prime number. It means that v and vin (q,u, v, k, 21, 22,...,&m)
will be picked from the finite field Fi,. As in the proof of Theorem 4 |{(¢,u, v, k,x1,x2,...,&n)| can
be bounded by 2n. There is a polynomial r such that r(n) bounds both || f({u, v, k, z1,22,...,2m))||
and the length of each query in f({q,u,v,k, 21, 22,...,2y)).

The crucial property that we exploit is the following claim that is easy to check from the
definition of Z.

Claim Ifk = [[{z1,22,...,2,} NSAT|| then (u,v,k,x1,29,...,2,) € Z iff 7, a;u*~' = v holds
fora= Fsar(z1,22,...,¢m).

Now, let @ = Uy ver, [({(w, 0, k,01,22,...,2m)). Write @ = {g1,¢2,...,¢n}. In order to apply
Lemma 3 we build a table T with N rows and put (u,v) in row ¢ if ¢; € f({(q,u, v, k,z1,22,...,Zm)).
Note that N < r(n)¢>. We define row i to be correct if ¢; € S. Notice that there are at most
|1S<7 (|| < r(n)p(r(n)) correct rows in T. Choose the constant ¢ (which determines the size of the
field F}) so that ¢/r(n)p(r(n)) = n/r(n)p(r(n)) > n, where we know that n > m.

As in the proof of Theorem 4 we can find a list of at most N m-bit vectors one of which is
Fsar(21,22,...,%,), which we can locate by doing a binary search with an FPNF[log] computation.

|

We have the following immediate corollary.

Corollary 7 IfSAT is disjunctively reducible to a sparse set then there is a solution of (1SAT, SAT)
in P, and consequently NP = RP.

We next consider disjunctive reductions from ModiP to sparse sets. We first briefly recall
the definition of ModiP. For an NP machine N let accy(z) denote the number of accepting
computations of N on input € ¥*. A language I is in the class ModyP if there is an NP machine
N such that z € L <= accy(2) # 0(mod k).

Theorem 8 For prime k, if a ModiP-complete set is disjunctively reducible to a sparse set then
there is a solution of (1SAT,SAT) in P.

Proof.  Let #F denote the number of satisfying assignments of the formula F. Consider the
following complete problem Mod;SAT for ModP:

ModiSAT :={F | #F =1 (mod k)}

Let Y be the language consisting of tuples (¢, u, v, F') satisfying the following two properties:



e Fis a boolean formula and 0 < u,v < ¢ — 1, for nonnegative integers ¢, «, and v.

e If Fis an m-ary boolean formula then ||[{a € ¥™ | F(a) = 1 and .7, a;u'~' = v (mod ¢)}|| =
1 (mod k)

The following easy claim is the crucial observation.

Claim: If F is an instance of (1SAT,SAT) then (q,u,v,F) € Y iff F is satisfiable and
S a;ui = v (mod q) holds for the unique satisfying assignment a.

Given an instance F' of (1SAT,SAT), we pick a clogn bit prime number ¢ (for appropriate ¢)
and consider the disjunctive reduction f from Y to a sparse set S, as applied only to instances
(¢,u,v, F), for u,v € F,. Similar to the argument in the proof of Theorem 4, we can choose the
constant ¢ appropriately large (depending on density of S and the reduction f) so that Lemma 3
can be applied to yield a polynomially bounded set of m-bit vectors one of which is the unique
solution of F, if F'is satisfiable. Thus, we can decide satisfiability for instances of (1SAT, SAT). m

4 Approximability and parallel queries to NP

In this section we show that if SAT is O(logn)-approximable then FPWP = FPW[log]. We prove
this result by applying the main technical idea in the recent paper by Sivakumar [Si98] where he
shows that if SAT is O(logn) approximable then the promise problem (1SAT,SAT) is in P.3

Theorem 9 If SAT is O(logn) approzimable then FPWP = FPNPlog].

Proof. Assume SAT is O(log n) approximable. In other words, there are a constant ¢ and an FP
function f such that f((x1,z2,...,2x)) is a k-bit vector different from Fsar (1, 22,...,2) for any
k-tuple of formulas (zq, 29, ..., zx) with & > clog(maz;|z;|).

As before, we’ll prove the result by giving an FPNY [log] machine, call it M, that computes Fsar.
Let (2y,@2,...,%y) be an input instance for Fsy7. The first step of M is to compute via a binary
search guided by a suitable NP oracle the number k of the z;’s that are in SAT. As in the previous
proof we will pick a suitable constant ¢ and efficiently construct the finite field F},, where g is a clogn
bit prime number. For a binary vector ¢ = aqas...a, € X" let P, denote the univariate polynomial

™ a;z "t over F,. We define the following new language: Z = {(u,j, k,z1,22,...,2,,) | Ja € ¥™
with k 1’s such that if a; = 1 then z; € SAT and jth bit of P,(u) is 1}.

Clearly, this language is in NP and is therefore O(log n) approximable by hypothesis.

The next two technical steps are exactly as in [Si98].

It is not hard to see that we can apply [Si98, Corollary, page 5] to get in polynomial time for
each u € F, a set S, C F, such that ||S,|| < ¢/? and P,(u) € S,. Next, applying [ALRS92] (as
described in [Si98]) we can efficiently reconstruct a bunch of some N polynomials of degree m — 1
that includes P, and N is bounded by a polynomial in n, the length of (21, z3,...,2,).

We can recover from this list of N polynomials a list of N m-bit vectors. Afterwards we
discard those vectors which contain a number of 1’s different from k, we know that except
Fsar(z1,22,...,2,) which is in this list every other m-bit vector has a 1 in a position where
the corresponding formula in (21, 22,...,z,) is unsatisfiable.

®Both [Si98] and [BFT97] call the promise problem UniqueSAT which can be confused with USAT. In this paper
we have used Selman’s notation as in [ESY84]



As described in the earlier proof we can find this vector by doing a binary search with at most
log N queries to a suitable NP oracle. This completes the proof. [

In [BFT97] it is shown that if FPWP = FPNF[log] then SAT is O(log n) approximable. Combined
with the above theorem we have the following corollary.

Corollary 10 SAT is O(logn) approzimable iff FPWP = FPNPlog].
The following corollary is also an immediate consequence of Theorems 9, 4, and 6.

Corollary 11
o [f SAT or SAT are disjunctively reducible to a sparse set then SAT is O(logn)-approzimable.

5 Majority reductions to sparse sets

Finally, we have a couple of observations and an open problem regarding majority reductions
to sparse sets. Majority reductions to sparse sets are interesting because they generalize both
conjunctive and disjunctive reductions to sparse sets. A set A is majorily reducible to a set B
if there is an FP function f that on input z produces a set of strings f(«) such that @ € A iff
||f(z)N B|| > ||f(2)]|/2. In other words, the majority of strings in f(z) are in B.

The following lemma is easy to prove by appropriately padding the list of queries produced by
the reduction function f with a suitable number of strings (we pad with copies of either a fixed
string known to be in the sparse set or a fixed string known to be outside the sparse set).

Lemma 12 If a set A is conjunctively or disjunctively reducible to a sparse set, then in fact A is
magorily reductble to some sparse sel.

In [CNS96] bpp-reductions of SAT to sparse sets are considered. We recall the definition of
bpp reducibility: A set A is bpp-reducible to a set B if there is a polynomial-time function f and
polynomials p and ¢ such that for all z,

©r €A = Prob[f(z,w)e B] >1/24 1/p(|z]), and
v A = Prob[f(z,w) ¢ B] >1/2+1/p(|z]),

where the string w is chosen uniformly at random from the set $90%D), The success probability of
the reduction is 1/2 4+ 1/p(|z|).
The following result is shown in [CNS96].

Theorem 13 [CNS96] If SAT is bpp-reducible to a sparse set then NP = RP.

We next observe the following easy lemma connecting majority reductions to bpp-reductions in
the obvious way.

Lemma 14 If a set A is majority reducible to a set B then, in fact, A ts bpp-reducible to B, with
the reduction having success probability 1/2 + 1/n°1),

Combining this with the above stated theorem of [CNS96] we get the following corollary.
Corollary 15 If SAT is majority reducible to a sparse set then NP = RP.

We leave as an open question whether FPWP = FPNPlog] or even the weaker consequence that
(1SAT, SAT) has a solution in P, can be proved from the assumption that SAT is majority reducible
to a sparse set.



References

[ALRS92] S. Ar, R. LipToN, R. RUBINFELD, AND M. SUDAN. Reconstructing algebraic functions

from erroneous data. In Proc. 33rd Annual IEEE Symp. on Foundations of Computer
Science, 503-512, 1992.

[AKM96] V. ArvinD, J. KOBLER AND M. MuUNDHENK. Upper bounds for the complexity of
sparse and tally descriptions. In Mathematical Systems Theory, 29:63-94, 1996.

[BDGS8R] J. BaLcAzAR, J. Diaz, AND J. GABARRO. Structural Complexity I. Springer-Verlag,
1988.

[BDGI0] J. BALCAZAR, J. Diaz, AND J. GABARRO. Structural Complexity I1. Springer-Verlag,
1990.

[BKS95] R. BEIGEL, M. KUMMER, AND F. STEPHAN. Approximable sets. Information and
Computation, 120(2):304-314, 1995.

[BH77] L. BERMAN AND J. HARTMANIS. On isomorphisms and density of NP and other complete
sets. SIAM Journal on Computing, 6(2):305-322, 1977.

[BCGKT96] N. BsuouTy, R. CLEVE, R. GAVALDA, S. KaANNAN, AND C. TaMoNn. Oracles and
queries that are sufficient for exact learning. Journal of Computer and System Sciences,
52:421-433, 1996.

[BFT97] H. BuHRMAN, L. FORTNOW, AND L. TORENVLIET. Six hypotheses in search of a theo-
rem. In Proc. 12th Annual IEEFFE Conference on Computational Complexily, 2-12, IEEE
Computer Society Press, 1997.

[BH95] H. BuarMAN AND M. HERMO. On the sparse set conjecture for sets with low density.
In Proc. 12th Annual Symp. on Theoretical Aspects of Computer Science, Lecture Notes
in Computer Science 900, 609-618, Springer Verlag 1995.

[CNS96] J. Y. Car1, A. Naik, aAND D. SivaAKUMAR. On the existence of hard sparse sets under
weak reductions. In Proc. 13th Annual Symp. on Theoretical Aspects of Computer Science,
307-318, 1996.

[CO97] J. Y. CA1 AND M. OGIHARA. Sparse sets versus complexity classes. Chapter in Com-
plexity Theory Retrospective I, .. Hemaspaandra and A. Selman editors, Springer Verlag
1997.

[CS96] J. Y. Car aND D. SivAKUMAR. The resolution of a Hartmanis conjecture. In Proc. 36th
Foundations of Computer Science, 362-373, 1995.

[ESY84] S. EVEN, A. SELMAN, AND Y. YacoBIl. The complexity of promise problems with
applications to public-key cryptography. Information and Control, 61:114-133, 1984.

[IM89] N. IMMERMAN AND S. MAHANEY. Relativizing relativized computations. Theoretical
Computer Science, 68:267-276, 1989.

[JT95] B. JENNER AND J. TORAN. Computing functions with parallel queries to NP. Theoretical
Computer Science, 141, 175-193, 1995.



[KL80] R. M. Karp anxD R. J. LipTON. Some connections between nonuniform and uniform
complexity classes. In Proc. 12th ACM Symposium on Theory of Computing, 302-309.
ACM Press, 1980.

[KW95] J. KOBLER AND O. WATANABE. New collapse consequences of NP having small cir-
cuits. In Proceedings of the 22nd International Colloquium on Automata, Languages, and
Programming, Lecture Notes in Computer Science #944, 196-207. Springer-Verlag, 1995.

[Ma82] S. MAHANEY. Sparse complete sets for NP: Solution of a conjecture of Berman and
Hartmanis. Journal of Computer and System Sciences 25(2):130-143, 1982.

[0g95] M. OGIHARA. Polynomial-time membership comparable sets. STAM Journal of Comput-
ing, 24(5):1168-1181, 1995.

[OW91] M. OciHARA AND O. WATANABE. On polynomial time bounded truth-table reducibility
of NP sets to sparse sets. SIAM Journal on Computing 20(3):471-483 (1991).

[Pa94]  C. PapapimiTrIOU. Computational Complexity. Addison-Wesley, 1994.

[Si198] D. SIVAKUMAR. On membership comparable sets. To appear in the 15th IEEE Compu-
tational Complexity Conference 1998.

[Uk83] E. UKKONEN. Two results on polynomial time truth-table reductions to sparse sets.
SIAM Journal on Computing, 12(3):580-587, 1983.

[VV86] L. VALIANT AND V. VAZIRANI. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85-93,1986.

[Ya83] C. Yapr. Some consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science, 26:287-300, 1983.

10

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




