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1 Introduction

There was a dramatic progress recently in proving tight inapproximability
results for a number of NP-hard optimization problems (cf. [H96], [H97],
[TSSW96]). The goal of this paper is to develop a new method of reduc-
tions for attacking bounded instances of the NP-hard optimization problems
and also other optimization problems. The method applies to the num-
ber of problems including Maximum Independent Set (d-MIS) of bounded
degree, bounded degree Node Cover, and bounded occurrence MAX-2SAT
(cf. [PY91], [A94], [BS92], [BF94], [BF95], [AFWZ95]). Independently, we
apply this method to prove for the first time approximation hardness of the
problem of sorting by reversals, MIN-SBR, motivated by molecular biology
[HP95], and proven only recently to be NP-hard [C97]. Interestingly, it signed
version can be computed in polynomial time [HP95], [BH96], [KST97].

The core of the new method is the restricted version of the E2-LIN-2
problem studied in [H97]. We denote by E2-L.IN-2 the problem of maximizing
the number of satisfied equation for a given number of linear equations mod 2
with exact 3 variables per equation. We denote by 3-OCC-E2-LIN-2 the E2-
LIN-2 problem restricted to equations with every variable occuring in at most
three equations.

Denote by k-OCC-MAX-25AT the MAX-25AT restricted for formulas in
which no variable occurs more than & times.

The rest of the paper proves the following main theorem:

Theorem 1. For every ¢ > 0

(i) it is NP-hard to approzimate E2-LIN-2 within factor 332/331 —¢, even
if each variable occurs in at most three equations (3-OCC-E2-LIN-2);

(ii) it is NP-hard to approzimate J-MIS within factor 556/555 — ¢;
(iit) it is NP-hard to approzimate MIN-SRB within factor 1237/1236 — e.

Our proof can be easily extended to provide explicit inapproxibility con-
stants for many other problems that are related to bounded degree graphs.
E.g., we get 1676/1675 for 3-MIS, 332/331 for 5-MIS, 341/340 for NodeCover
in graphs of degree 5 and 668/667 for MAX-2SAT restricted to sets of clauses
in which no variable occurs more than six times (6-OCC-MAX-2SAT). We
provide the proof sketches in Section 7.

The technical core of all these results is the reduction to show (i), which
forms structures that can be translated into many graph problems with very
small and natural gadgets. The best to our knowledge gaps between the
upper and lower approximation bounds are summarized in Table 1. The

upper approximation bounds are from [GW94], [BF95], [C98], and [FG95].
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Problem Approx. Upper | Approx. Lower
3-OCC-E2-LIN-2 1.1383 1.0030
3-MIS 1.2 1.0005
4-MIS 1.4 1.0018
5-MIS 1.6 1.0030
MIN-SRB 1.5 1.0008
5-NodeCover 1.375 1.0029
6-OCC-MAX-25AT 1.0741 1.0014

Table 1: Gaps between known approximation bounds.

2 Sequence of reductions

We start from E2-LIN-2 problem that was most completely analyzed by
Hastad [H97] who proved that it is NP-hard to approximate it within a factor
12/11 —e. In the sequel we will use notation of this paper. In this problem we
are given a (multi)set of linear equations over Z; with at most two variable per
equation, and we maximize the size of a consistent subset. In our discussion,
we prefer to view it as the following graph problem. Given is an undirected
graph G = (V, E,[) where [ is a 0/1 edge labelling function. For S C V/,
Cut(S) is the set of edges with exactly one endpoint in S (as in the MAX-
CUT problem). We define Score(S,e) € {0,1} as follows: Score(S,e) = [(e)
iff e € Cut(S). In turn, Score(S) = Y..cp Score(S,e). The objective of
E2-LIN-2 is to maximize Score(S).

Our first reduction will have instance transformation 7, and will map an
instance G of E2-LIN-2 into another instance (' of the same problem that
has three properties: G’ is a graph of degree 3, its girth (the length of a
shortest cycle) is Q(logn), and its set of nodes can be covered with cycles
in which all edges are labeled 0. We will use 7 (E2-LIN-2) to denote this
restricted version of E2-LIN-2.

The second reduction will have instance reduction m; 71(72(G)) is an
instance of the maximum independent set with the graph of degree 4. The
reduction 7, will replace each node of 71 () with a small gadget.

The next problem we consider is a breakpoint graph decomposition, BGD.
This problem is related to mazimum alternating cycle decomposition, (e.g. see
Caprara, [C97]) but has a different objective function (as with another pair



of related problems, node cover and independent set, the choice of the ob-
jective function affects approximability). An instance of BGD is a so-called
breakpoint graph, i.e. an undirected graph G = (V, E,l) where [ is a 0/1
edge labelling function, which satisfies the following two properties:

(i) for b € {0,1}, each connected component of (V,17'(b)) is a simple path;

(i1) for each v € V, the degrees of v in (V,[7'(0)) and in (V,[7'(1)) are the

salne.

An alternating cycle C' is a subset of E such that (V,C,[|C) has the
property (ii). A decomposition of G is a partition C of F into alternating
cycles. The objective of BGD is to minimize cost(C) = 3|E| — [C|.

By changing the node-replacing gadget of 7 and enforcing property (i) by
“brute force”, we obtain reduction 73 that maps 75 (E2-LIN-2) into BGD. The
last reduction, 7, converts a breakpoint graph ¢ into a permutation 7(G),
an instance of sorting by reversals, MIN-SBR. We use a standard reduc-
tion, 1.e. the correspondence between permutations and breakpoints graphs
used in the approximation algorithms for MIN-SRB (this approach was ini-
tiated by Bafna and Pevzner, [BP96]). In general, this correspondence is not
approximation preserving because of so-called hurdles (see [BP96, HP95]).
However, the permutations in 7(73(7 (E2-LIN-2))) do not have hurdles, and
consequently for these restricted version of BGP, 7 is an approximation pre-
serving reducibility with ratio 1.

3 First Reduction

To simplify the first reduction, we will describe how to compute the instance
translation using a randomized poly-time algorithm (rather than determin-
istic log-space). In this reduction, every node (variable) is replaced with a
wheel, a random graphs that is defined below (some parts of this definition
will not be used to describe the reduction, but later, in the proof of correct-
ness). The parameter £ used here is a small constant; in this version of the
paper we sketch the proof that £ = 9 sufficiently large, in the full version we
show that k = 6 is also sufficient.

Definition 2. An r-wheel is a graph with 2kr nodes W = Contacts U
Checkers, that contains 2r contacts and 2kr checkers, and two sets of edges,
(' and M. (' is a Hamiltonian cycle in which with consecutive contacts are
separated by chains of k checkers, while M is a random perfect matching for
the set of checkers (see Fig. 1 for an example).
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For a set of nodes A C W let a4 be the number of contacts in A, b4 the num-
ber of contiguous fragments of of A in the cycle C (i.e. by = |[Cut(A)NC|/2)
and ¢y = [Cut(A)N M]|.

We say that A is bad iff r > aq > 2bsy + c4. A set B is wrong iff for some
bad set A we have B = AN Checkers. A set B C Checkers is isolated iff no
edges in M connect B with Checkers —B.

4-wheel

O checker node
® contact node

Figure 1

Consider an instance of E2-LIN-2 with n nodes (variables) and m edges
(equations). Let & = [n/2]. A node v of degree d will be replaced with a
kd-wheel W,. All wheel edges are labelled 0 to indicate our preference for
such a solution S that either W, C S or W, NS = 0. An edge {v,u} with
label [ is replaced with 2k edges, each of them has label [ and joins a contact
of W, with a contact of W,. In the entire construction each contact is used
exactly once, so the resulting graph is 3-regular.

We need to elaborate this construction a bit to assure a large girth of the
resulting graph. First, we will assure that no short cycle is contained inside
a wheel. We can use these properties of an r-wheel W: each cycle diferent of
length lower than 2kr must contain at least one edge of the matching M and
the expected number of nodes contained in cycles of length 0.2log,(xr) or
less is below (kr)™"® fraction). Thus we can destroy cycles of length below
0.2log, n by deleting matching edges incident to every node on such a cycle
and neglect the resulting changes in Score.



Later, we must prevent creation of short cycles when we introduce edges
between the wheels; this can be done using a construction described by Bol-
lobas [B78]. While Bollobas described how to build a graph of large girth
from scratch, his construction can assure the following: given a graph of de-
gree 3 with girth at least 0.5log, n and two n-element disjoint sets of nodes
of degree 2, each of size n, say A and B, one can increase the set of edges by
a perfect bipartide matching of A and B without increasing the girth above
0.5log, n. Note that we are indeed replacing an edge of the original graph
with a perfect matching with at least n edges, which allows us to use the
construction of Bollobas.

The solution translation is simple. Suppose that we have a solution §
for a translated instance. First we normalize S as follows: if the majority
of contacts in a wheel W belong to S, we change S into S U W, otherwise
we change S into S — W. A normalized solution S can be converted into a
solution S’ of the original problem in an obvious manner: a node belongs to
S” iff its wheel is contained in S. Assuming that G has m edges/equations,
we have Score(S) = 2k((3k + 2) + Score(S’)). Hastad [H97] proved that for
E2-LIN-2 instances with 16n equations it is NP-hard to distinguish those
that have Score above (12— ¢;)n and those that have Score below (11 + ¢€3)n,
where the positive constants €1, e can be arbitrarily small. By showing that
our reduction is correct for kK = 6 we will prove

Theorem 3. For any positive €1, €3, it is NP-hard to decide whether an in-
stance of 7 (E2-LIN-2) with 336n edges (equations) has Score above (332 —
e1)n or below (331 + e3)n.

The latter claim uses the assumption that Score(.S) is not decreased by
the normalization. Because the reduction uses a random matching, it actually
does not have to be the case, i.e. the normalization may fail. Obviously, if
the normalization fails, than one of its step, say dealing with wheel W, fails.
Let us inspect closer what such a failure means. For some d, W is a kd-wheel,
so 1t contains 2kd contacts. Let A be the subset of W consisting of nodes
that change membership in S during the normalization step. Tt is easy to
see that Score(S,e) changes iff ¢ € Cut(A). According to our definition, the
size of Cut(A)is as+2bs + c4. The edges counted by 2b, and ¢4 are inside
W, so their score is changed to 1 (from 0); the edges counted by a4 are
connecting the contacts in A with contacts of other wheels, pessimistically
we may assume that their score changes to 0. As a result, Score(S) decreases
by at most a4 — 2bs — ¢4; the normalization step fails only if ay > 2b4 + ¢4,
i.e. only if A is a bad subset of the wheel W. To show that our reduction
preserves the approximation with a high probablility we need to show that



the probablility that a wheel contains a bad subset is very low. Note that
when we try to find a bad set A in a wheel, it is very easy to obtain any
possible combination of the values of a4 and b4. However, the number ¢y
is establish by a random matching, so we need to use the fact that with a
very high probability C'ut(A) N M contains many edges. We start with the
following lemma.

Lemma 4. Assume that Q) is a cliqgue, P C Q, 2q = |Q| and 2p = |P]|.
Choose, uniformly at random, a perfect matching M for (). Then the proba-
bility that Cut(P) N\ M is empty equals

()G <2(5)

Proof. Let p, be the number of perfect matchings in a complete graph with
2r nodes. By an easy induction, g, = [[i_ (2t — 1) = (2r)1/(2"r!). The
probability of our event is
polta—p _ (2p)0 (2(¢ —p))! 2%¢" _ (2p)!(2p —2¢)! ¢!
o 2vpl 2077(q — p)! (29)! (29t plg—p)!

The second part of the claim follows from standard estimates.

Consider now a bad set A. Suppose that a node v € A has two neighbors
in W — A. Tt is easy to see that after removing u from A the expression
as — 2by — ¢4 increases, so A remains bad. Similarly, if v € A has two
neighbors in A we may insert u and A again remains bad. Therefore W
contains a bad set only if it contains such a bad set A that neither A nor
W — A contains fragments of size 1.

Consider now set B C Checkers. Let B; be the set of contacts that have
exactly ¢ neighbors in B. According to our last remark, B is wrong iff for
some B’ C B; the set A = BU By U B is bad. Clearly, whatever the choice
of B, we have ay = |By| 4 |B’|, ba = bpup, and ¢4 = cg. Thus if |By| > r
then B cannot be wrong, else if |By| + | By| > r we can assume that a4 = r,
and in the remaing case we can assume that a4 = |By| + |B;|. Later we will
use notation ag, bg and cg to denote these reconstructed values of a4, by
and cy.

The probability that W contains a bad subset can be estimated with a
sum, over every B C Checkers, of the probability that B is wrong. Instead
of computing this probability, we will estimate it, using three parameters of
this set.

The first parameter of B is «, defined by the equality ag = ar. Because
B is wrong only if ag < r, we may assume that o € (0,1]. The second
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parameter is 3, defined by bp = Par. Because B can be wrong only if
ap > 2bg, B is a fraction in the range (0, %)

Before we define the third parameter, we will use the first two to count
then number of ways in which B can be generated. The sets B and
Checkers —B together contain 23ar fragments which can be described by
indicating, for each of them, the fist element (say, if we move in clockwise di-
rection). This description leaves ambigous which is set B and which is W—B,
this can be decided using the property ag < r. Thus we can generate B in

20Bar
2KT 1
< 2Bar | —
(o) <o () =
many ways.

After we generated a set B, we need to estimate the probability that it
is wrong. To do so, we need to make an assumption conerning its size. It
is easy to see that a fragment of B that contributes, say, a, to ag, must
contain a — 1 complete chains of checkers, each of length &, so it contributes
at least (a — 1)k to the size of B. Additionally, this fragment may contain
two “fringe” chains of length between ( and k — 1, so it contributes less than
most (@ + 1)k to the size. After adding such inequalities together over Sar
fragments we see that

akr — Bakr < |B| < akr + Bakr

hence for some v € [—1,1] we have |B| = (1 + y8)akr. Note that B will
become isolated if we remove the endpoints of the matching edges that con-
nect B with W — B; if B is wrong, then the number of such endpoints is at
most cg < (1 —23)ar. We can estimate the probability that B is wrong by
multiplying the number of ways in which we can remove (1 — 28)ar nodes
(call it p) with the probability that the result is isolated. The former can be
estimated as

(1—}—’yﬁ)aﬁr (1-28)ar 1+7ﬂ (1—2ﬁ)0‘r_
((1—2/3>ar) < (o) (1—2/3) ¢

To express the latter, we define §(3,v) so that the size of our candidates for
an isolated set is 26(3,v)ar, one can see that 6(3,v) = [(1+v8)k—(1—-20)]/2
and the probability that the candidate set is indeed isolated is below

(5(&,7)(1) §(Byy)ar _y
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We need to show (i << 1; it suffices to show that (£¢)V(7) < 1. We

easily can compute that

26 1-26 5(6:7)
oty (1 1 +98 6(3,7)a

One can quickly check that the above formula is an increasing function of a.

Because we want to estimate it from above, we can put @ = 1. Now it remains
to check that the simplified function is always smaller than 1 for g € (0,%
and v € [—1,1]. Using the fact that the partial derivative is bouded, one can
accomplish it by evaluating this function in a limited number of points. For
k = 9 we checked that 0.72 is an upper bound. With a more complicating
argument, and more accurate estimates than Lemma 4, one can also show
that k = 6 is sufficient as well.

4 Reductions to 4-MIS

We can reduce instances of E2-LIN-2 with 3-regular graphs to MIS instances
with graphs of degree 4 (we will use 4-MIS to denote this subproblem). Con-
sider an instance of E2-LIN-2, a 3-regular graph &' with 2n nodes and 3n
edges. The gadget used to replace each node of G'is a 2 x 4 grid, parti-
tioned into 0-nodes and 1-nodes, as shown Fig. 2a. Three pairs of nodes,
each containing a 0-node and a 1-node form contacts. A pair of gadgets cor-
responding to an edge of G is connected as follows: we choose one contact
pair in each of the gadgets. If the edge is labelled with 0, we identify the
0-node of one contact pair with the 0-node of the other; if the edge is labeled
with 1, then we switch the order of identification. Note that the nodes of the
contacts representing the edges of the main (Hamiltonian) cycle of a wheel
have degree 4, and the other contacts have degree 3.

Fragment of a wheel of gadgets,
one of the gadgets is shaded,
its contacts are darker.

O 0-node ® 1-node

Figure 2a: a part of a 4-MIS instance



The solution translation starts from normalizing the independent set I of
the new graph. After the normalization, each gadget is “pure”, i.e. the inter-
section of I with the gadget consists of one type of nodes only. If this type
is 1, we include the respective node of G'in S (in terms of linear equations,
we set the value of the variable to 1). It is easy to see that a normalized
I contains 1 node for each node of GG plus 1 node for each edge of GG that
scores 1. In other words, the correspondence between the score s obtained for
71 (E2-LIN-2) with n nodes and ¢ = |I| is ¢ = n + s. Moreover, the resulting
4-MIS instance has 5n nodes.

To normalize I, we “purify” gadgets one at the time. To describe a
normalization of a gadget I', we assume that I' = {a,b,... h}, as shown in
Fig. 2a. We consider several cases. Assume first that {b,c¢} NI = (. Then
[' N I contains at most 3 nodes. If only one of them (or none) is a l-node,
we change I by inserting b and removing its neighbor (if any), the gadget
becomes pure and [ is not smaller than before. If I' N I contains more than
one l-node, we can achieve the same effect by using ¢ instead of b. Now we
consider the case when b € I (the case of ¢ € I is symmetric). If T' is not
pure, then h € I while f,g & I. If the neighbor of ¢ in the adjacent gadget
is not in I, we change I by replacing h with g; otherwise the neighbor of f
is not in I and we can replace {b, e} with {c, f}.

Given and instance G of 7 (E2-LIN-2) with 2n nodes and 3n edges, our
construction creates 4-MIS instance G' with 10n nodes, and the correspon-
dence between the size 7 of an independent set in G' and s, Score of the
corresponding solution of (G is ¢ = 2n + s. Together with our previous theo-
rem this implies

Theorem 5. For any posilive €1, ¢y, il is NP-hard to decide whether an
instance of 4/-MIS with 1120n nodes has the maximum size of an independent
set above (556 — €1)n or below (555 + €;)n.

An instance of 4-MIS can be modified to became an instance of BGD
in a simple manner: each node can be replace with an alternating cycle of
length 4; adjacent nodes will be replaced with a pair such cycles that have an
edge in common. If we are “lucky”, after the replacement we indeed obtain
a breakpoint graph.

Unfortunately, if we apply such translation to a graph from Fig. 2a, we
will get a graph violates part (ii) of the definition of BGD. However, this
approach is succesful if we apply a somewhat larger gadget shown in Fig. 2b.

It is easy to see that the size of the resulting 4-MIS graph is 9n, and that
the correspondence between the size of the pure solution and the score in the
original 71 (E2-LIN-2) instance is ¢ = 3n + s. The “purifying” normalization
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Fragment of a wheel of gadgets,
one of the gadgets is shaded,
its contacts are darker.

O 0-node ® 1-node

Figure 2b: a part of a 4-MIS instance made of larger gadgets

has to proceed somewhat different, however. We do it in two stages. The
result of the first stage is that gadgets are either pure, or contain no nodes
of I in their contacts.

If an impure gadget contains only 4 nodes of I (or less), we replace these
nodes with the (unique) independent set of size 4 with no contact nodes
(i.e. contained in the light gray area of Fig. 2b). A gadget that contains 6
nodes of the independent set is already pure. If an impure gadget contains 5
nodes of I, then it must contain one of the two “central” points (note that
the non-central nodes form a cycle of length 10). Suppose that this central
node has label 0. Then [ cannot contain neither of the 4 adjacent 1-nodes,
and the remaing 7 nodes form two isolated 0-nodes and a chain of the form
0-1-0-1-0, where the final 0-1 is a contact. If the chain contains 3 nodes of
I, the gadget is pure. Otherwise we can set the intersection of I with this
chain to contain two 0-nodes that do not belong to the contact; afterward
the gadget becomes pure.

At this point, we have “pure” gadgets, with 0 or 1 values, and at least
5 nodes of I, and “undecided” gadgets that contain only 4 nodes of 7. If
an undecided gadget is adjacent to two gadgets that are either 0-pure or
undecided, then we can incease I by increasing the number of nodes of I to
5, all of them 0. There is also symmetric case for 1, and one of the two cases
must hold.

5 Reduction to BGD

The idea of reducing MIS problem to BGD is very simple and natural. Ob-
serve that the set F of all edges forms an alternating cycle (AC for short), a
disjoint union of ACs is an AC, and a difference of two ACs, one contained in
another is also an AC. Thus any disjoint collection of ACs can be extended to
a decomposition of AC. Consequently, the goal of BGD is to find a collection
of disjoint ACs as close in size to the maximum as possible.
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Second observation is that the consequences of not finding an AC diminish
with the size of AC. Suppose that the input has n breakpoints (edges of one
color), and that we neglect to find any AC’s with more than k& breakpoints.
The increase in the cost of the solution is smaller than n/k, while the cost
is at least n/2. Thus if & = Q(logn), such oversight does not affect the
approximation ratio.

The strategy suggested by these observation is to create instances of BGP
in which alternating cycles that either have 2 breakpoints, or Q(log n). Then
the task of approximating is equivalent to the one of maximizing the size of
independent set in the graph G of all ACs of 4; we draw an edge between two
ACs if they share an edge.

More to the point, we need to find a difficult family of graphs of degree 4
which can be converted into breakpoint graphs by replacing each node with
an alternating cycle of size 4. To this end, we can use the results of the
second reduction described in the previous section. Fig. 3 shows the result
of this replacement applied to the long cycles of gadgets. The union of ACs
used in the replacements is also a disjoint union of 5 ACs (in Fig. 3 these ACs
are horizontal zigzags). To apply the resoning of the previous sections, we
need to establish that no cycles of length larger than 4 have to be considered.
In the short version we only sketch this argument.

The cycles in question fall into three categories. The first kind of cycles are
included in an adjacent pair of gadgets, identified on their diagonally placed
corners. By an easy case analysis one can show that we can replace such
cycles with a larger collection of cycles of size 4. The second kind traverses
a collection of gadgets that is cycle-free (if each gadget is considered to be
a node). Such a cycle has a defined interior; the union of the cycle with
its interior can be easily decomposed into 4-cycles. The third and last kind
traverses a cycle of gadgets. Then it must be at least as long as such a cycle,
i.e. Qlogn).

At this point the translation is still not correct, as the resulting graphs
MUST violated property (i) of BPG: edges of one kind form a collection of
cycles: in Fig. 3 such edges form diagonal lines consisting of 5 edges each;
such a line crosses to another strip of gadgets and then proceeds without end.
However, these cycles induce cycles of gadgets, hence have length Q(logn),
moreover, they are disjoint. Therefore we can remove all these cycles by
breaking O(n/logn) contacts between the strips.

Given and instance G of 7 (E2-LIN-2) with 2n nodes and 3n edges, this
construction creates BGD instance G’ with 20n breakpoints (edges of one
color), and the correspondence between the cost ¢ of a cycle decomposition
in G’ and s, Score of the corresponding solution of GG is ¢ = 20n — 3n — s.
Together with Theorem 3 this implies
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Fragment of a wheel of gadgets,
one of the gadgets is shaded,
its contacts have darker shade,
dash lines show the contact
with another wheel.

Figure 3: a part of a BPG instance

Theorem 6. For any positive €1, ¢y, it is NP-hard to decide whether an in-
stance of BGD with 2240n breakpoints has the minimum cost of an allernating
cycle decomposition below (1236 + ¢1)n or above (1237 — ¢3)n.

6 Reduction to MIN-SRB

Our reduction from BGD to MIN-SRB is straightforward, in particular we
can use the procedure GET-PERMUTATION of Caprara [C97, p.77] to ob-
tain permutation () from a given breakpoint graph G. It is easy to show
that if G is the result of reduction 74 0o 7 applied to E2-LIN-2, then 7 has
o(n) hurdles. The basic reason is that all ACs of length 4 that may belong
to a normalized solution (decomposition into ACs) for a single connected
component in the interleaving graph (cf. [BP96, HP95]), because the number
of longer cycles in a cover is O(n/logn), this implies that the total number
of connected components of the interleaving graph is O(n/logn). Because
hurdles are defined as connected components with a special property, we can
conclude that there are O(n/logn) = o(n). As a result, the number of re-
versals needed to sort 7 is exactly equal (modulo lower order terms) to the
minimum cost of a decomposition of G into alternating cycles. Therefore

Theorem 6 apllies also to MIN-SRB.

7 Bounded MIS, NodeCover and MAX-
2SAT

The hardness bound of 1676/1675 for 3-MIS follows directly from the con-
struction in Theorem 5 for 4-MIS.

To show that it is hard to approximate 5-MIS within a constant factor
better than 332/331, we can reduce E2-LIN-2 to MIS, and then apply The-
orem 3. An edge {z,y} is replaced with two nodes, each with a pair of
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labels; if [({z,y}) = 1 (i.e. the edge stand for z # y), the pairs of labels are
{z',y°} and {z° y'}, otherwise (when the edge stands for x = y) this pairs
are {z',y'} and {2° y°}. Then we introduce an edge between nodes u and
v if for some z, u has label ! and v has label z°.

The solution translation is computed as follows. We start with an inde-
pendent set [ for a 5-MIS instance. For each variable/node z of the original
instance of 3-QCC-E2-LIN-2 we define a set of nodes V,, that have label z° or
x'. If VNI contains a node with label z', then the implied solution S for the
original instance contains z. We further normalize the solution by inspecting
each edge e of the original instance such that Score(S,e) = 1. Suppose that
{z,y} is such an edge, and that it has the label 0. Then V, NV, consists
of two nodes, with label sets {z°, y"} and {z° y°}. One can see that either
this pair contains exactly one node of I, or one of these two nodes can be
inserted; if x,y € S, then we can insert the node with label set {z',y'}, and
if v,y € 5, we can insert the other node. The case of label 1 is similar. One
can see that the normalization may only increase the set S, and after the
normalization, Score(S) = |I|. Therefore every approximation ratio which is
hard for 3-OCC-E2-LIN-2 is also hard for 5-MIS.

To show that it is hard to approximate 5-NodeCover within a constant
factor better than 341/340, we can use the same instance reduction. One can
observe that if the original graph of 3-OCC-E2-LIN-2 had 336n edges, the
new graph has 772n nodes, and it is hard to distinguish between instances
with MIS larger than (332 — ¢;)n nodes and those with (331 + €;)n; equiv-
alently, it is hard to distinguish between instances with minimal node cover
size below (340 + ¢ )n from those above (341 — €;)n.

The reduction of 3-OCC-E2-LIN-2 to 6-OCC-MAX-2SAT with variables
occuring at most six times is very simple: an equality (equivalence) is re-
placed with the corresponding pair of implications. One can see that for a
fixed truth assignment, an equality is satisfied iff both of the corresponding
implications are satisfied, otherwise exactly one implication is satisfied. Be-
cause it 1s difficult to decide whether in a given set of 336n equations we may
have only (4 + ¢;)n unsatisfied ones, or we must have at least (5 — ¢3)n, the
same is true for the the corresponding 6-OCC-MAX-2SAT instance, thus it is
difficult to distinguish between instances with score at least (2-336 —4 —¢;)n
and those with score at most (2 -336 — 5 + tg)n.

8 Further Research and Open Problems

It would very interesting to improve still huge gaps between approximation
upper and lower bounds for bounded approximation problems of Table 1.
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The lower bound of 1.0008 for MIN-SRB is the first inapproximability result
for this problem. The especially huge gap between 1.5 and 1.0008 for the
MIN-SRB problem reflects a great challenge for future improvements.
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