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Abstract

We propose an information-theoretic approach to proving lower bounds
on the size of branching programs (b.p.). The argument is based on Kraft-
McMillan type inequalities for the average amount of uncertainty about (or
entropy of) a given input during various stages of the computation. We first
demonstrate the approach for read-once b.p. Then we introduce a strictly larger
class of so-called ‘gentle’ b.p. and, using the suggested approach, prove that
some explicit Boolean functions, including the Clique function and a particular
Pointer function (which belongs to ACY), cannot be computed by gentle pro-
gram of polynomial size. These lower bounds are new since explicit functions,
which are known to be hard for all previously considered reading-restricted
classes of b.p. (such as (1,+s)-b.p. or syntactic read-k-times b.p.) can be

easily computed by gentle b.p. of polynomial size.

1 Introduction

We consider the usual model of branching programs (b.p.). This model captures the

deterministic space in a natural way whereas nondeterministic branching programs
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(n.b.p.) do the same for the nondeterministic mode of computation. Despite consid-
erable efforts, the best lower bound for unrestricted (nondeterministic) b.p. remains
the almost quadratic lower bounds of order Q(n?/log® n) proved by Neéiporuk in 1966
[10]. In order to learn more about the power of branching programs, various restricted
models were investigated. Let us briefly sketch the progress in that direction (see,

e.g. [14] for more comprehensive survey).

One of the most intensively studied models was that of read-k-times programs (k-
b.p. or k-n.b.p.) where in each computation every input bit can be tested at most k
times. This model introduced in [9] corresponds to so-called eraser Turing machines,
and the first super-polynomial lower bounds for 1-b.p. were obtained in [19, 18]. In
fact, for a related model of ”regular resolution” (this is a 1-b.p. with more than two
outputs) exponential lower bounds were proved, already 30 years ago, by Tseitin in
1968 [16]. For non-deterministic read-once b.p. (1-n.b.p.) first exponential lower
bounds were proved in [4]. Now, there is a long series of exponential lower bounds
for 1-b.p. However, any attempts to get such bounds for, say 2-b.p., failed.

The case of syntactic k-b.p. where in every path, be it consistent or not, every
variable appears at most k times, is much easier to capture and analyze, and, indeed,
strong lower bounds for syntactic £-b.p. and syntactic k-n.b.p. (for £ = O(logn))
were established [2, 11, 6, 12, 13]. In particular, it was proved that the character-
istic functions of particular linear codes require k-b.p. ([11]) and k-n.b.p. ([6]) of
exponential size.

Another idea to go closer to the 2-b.p. case was to allow a limited number of
bits be tested more than once. More specifically, (1, +s)-branching programs are the
usual b.p. where in every consistent path at most s variables are tested more than
once. Exponential lower bounds for this model were proved in [20, 15, 7]. Again,
characteristic functions of linear codes were shown in [7] to require (1,+s)-b.p. of

super-polynomial size, as long as s = o(n/logn).

In this paper we describe one approach to proving lower bounds in which main
accent is made upon conditions on ‘information flow’ during the computations rather
than on prohibiting the machine to follow certain paths. The approach is based on a
more careful analysis of the "amount of uncertainty” about single inputs during the
computations on them.

Uncertainty. Given an input a € {0,1}", the computation comp(a) on a starts in

the source-node with no knowledge about this input. At each step the computation
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makes a test ”is a(i) = 0 or a(i) = 17”7, and after each test one bit of information
about the input a is obtained. However, this information about the a(¢) is lost at the
node v if there is another input b such that b(i) # a(7), the computation comp(b) on
b reaches the node v, and after the node v one of the following two events happen:
either comp(b) diverges from comp(a) immediately after the test of x;, or comp(b)
follows the computation comp(a) until they both reach the same sink. In both cases
the program is uncertain about the value a(4): in the first case it tests this bit once
more, whereas in the second - it forgets that bit forever.

We mark those bits a(i), i € {1,...,n} of the input a, for which at least one of
these two events happen, and call the resulting (marked) string a ‘window’ of the
input @ at the node v. The total number £(a) of marked bits measures the entropy
of (or uncertainty about) a at this node. This form to encode the uncertainty using
windows was proposed by the second author in [21].

The approach. We suggest the following general frame to prove lower bounds for
branching programs.

In the program P computing a given Boolean function f we stop each computation
at a particular node. This way we distribute the inputs among the nodes of P: each
class F' of this distribution corresponds to one node and consists of those inputs, the
computations on which where stoped at that node. Then, using the properties of f, we
show that, for each such class F, the average entropy £(F) = \17| Y aer €(a) is small
(this is the hardest step of the whole approach). Kraft-McMillan type inequalities
(proved in Sect. 4) immediately imply that then no of these classes F' can be large.
Hence, there must be many such classes and therefore we need many nodes in P.

The results. For read-once b.p. finding non-trivial upper bounds for the average
entropy £(F) is an easy task (see Proposition 4.6). Looking for larger classes of b.p.
where this task is still tractable, we define in Sect. 5 one general property of branching
programs — the ‘gentleness’. Roughly, a program P is gentle if at some of its nodes
some large set I’ of inputs is classified in a ‘regular’ manner, where the regularity
requires that windows of inputs from F' at these nodes have some special form. We

then prove the following.
1. Read-once branching programs are gentle (Sect. 6).

2. Explicit functions, which are hard for all previously considered restricted models
of b.p. (such as the characteristic functions of linear codes), can be easily

computed by small gentle b.p. (Sect. 7). This fact is not surprising — it just
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indicates that ‘gentleness’ is a new type of restriction. In our upper bound
proofs we use the following possibility: if a function is easy to compute by an
unrestricted b.p. and it has any combinatorial singularity hidden inside, then

this singularity can be hardwired into the program to make it ‘gentle’.

3. We isolate a new combinatorial property of Boolean functions — the ‘strong
stability’, and (using the bounds on the average entropy £(F) established in
Sect. 4) prove that any such function requires gentle b.p. of exponential size
(Theorem 8.2). This criterion implies that some explicit Boolean functions —
the Clique function and a particular Pointer function (which belongs to AC?) —

cannot be computed by gentle programs of polynomial size.

We note that the ”gentleness” is only a temporary phenomenon which reflects the
level of proofs which we are able to do at this time. The main motivation for studying
various restricted computational models is to build up techniques and intuitions about
what inherent properties of functions make them hard to compute. In this paper we
make one more step in that direction: we propose an information-theoretic technique
for proving lower bounds and identify a new combinatorial property (the stability) of

functions which make them hard to compute in a ”gentle” way.

2 Branching programs

Given a set of bits I C [n] = {1,...,n}, an assignment on I is a mapping a : I —
{0,1}; here I is the domain of a. Assignments on the whole set [n] are called input
vectors (or simply inputs). A projection of a onto a subset J C I is an assignment
al ; which coincides with a on all the bits in J. If a and b are two assignments with
disjoint domains I and J, then (a,b) is an assignment on I U J which coincides with
a on I, and with b on J. Given a boolean function f(z1,...,z,), every assignment
a: I — {0,1} (treated for this purpose as a restriction) defines the subfunction f, of
f in n — |I| variables which is obtained from f by setting z; to a(i) for all i € I.

We need also to fix some (standard) notation concerning branching programs.
A branching program (b.p.) is a directed acyclic graph with one source. The out-
degree of each (non-sink) node is 2. Every node is labeled by an input variable z; (or
equivalently: by a bit i) and the two out-going edges are labelled by tests "x; = 0”
and "z; = 1”7. The (two) sinks (out-degree 0 nodes) are labeled by 0 and 1. By the

size of a branching program P we mean the number |P| of its nodes. The computation
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comp(a) on an input a € {0, 1}" is a sequence of nodes of P which starts in the source
of P and at each node v labelled by i, comp(a) follows that edge going from v which
corresponds to the test z; = a(i). If the computation comp(a) goes through a node v,
then we also say that the input a reaches this node. By comp,(a) we will denote the
part of the computation comp(a) starting from the node v. The program computes a
Boolean function f if, for every input a € {0,1}", the computation comp(a) reaches
a sink labelled by f(a).

3 Windows

Let P be a branching program and v be a node in P. Let F' C {0,1}" be an arbitrary

subset of inputs, each of which reach the node v.

Definition 3.1 The window w(a, v, F) of input a € F' at the node v with respect to
the set F'is a string of length n in the alphabet {0, 1, 4+, #} which is defined according
to the following three rules (cf. Fig. 1). Let F'(a) be the set of those inputs b € F' for
which comp, (b) = comp,(a).

1. We assign a simple-cross (+) to the i-th bit of a if

— either there is a b € F such that the first divergency of comp,(a) and
comp, (b) is caused by a test on 4 (in this case we call that cross the down-

cross),

— or the bit 7 is not tested along any computation comp(b) for b € F(a) (in

this case we call that cross the up-cross).

2. We assign a double-cross (#) to the i-th bit of a if it was not crossed according
to the first rule, and if a(i) # b(4) for some input b € F(a).

3. The remaining bits of w(a, v, F') are non-crossed (i.e. specified) and their values

are the same as in a.

We have defined windows only at nodes but they can be easily extended to windows
at edges as well. Let e = (u,v) be an edge and a € F be an input, going through
this edge. By a window w(a,e, F) of a at the edge e with respect to F' we mean
the window w(a, v, F;) of a at v with respect to the set F, of all those inputs from
F, which go through the edge e. In this case we will also say that w(a,v, F,) is the

window of a immediately before the node v (with respect to F).
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Figure 1: Schematic picture for two types of crosses.

Remark 3.2 If some bit is double-crossed (#) in a window of a € F at some node
v with respect to F', then this bit is not tested and remains double-crossed in the
windows of a at each subsequent node w of comp(a) with respect to the set of all

inputs from F reaching w. (Double-crossed bits are ”forgotten forever”.)

Remark 3.3 The larger is F' the smaller is the number of non-crossed bits in the

windows relative to F.

Remark 3.4 If a,b € F and comp,(a) = comp,(b) then the windows of a and b (at
v with respect to F') have the same sets of down-crosses, of up-crosses (+) and of
double-crosses (#), and all non-crossed bits and down-crossed bits have the same

contents in both ¢ and b.

This observation implies that double-crossed bits may be used to ‘cut-and-paste’

computations in the following sense.

Proposition 3.5 If a,b € F and comp,(a) = comp,(b) then P(b[;,al7) = P(a)
where I = D(a) = D(b).

Proof. The fact that both a and b belong to F' means, in particular, that the
computations on these two inputs both reach the node v. Since after v these two
computations do not diverge, we have that P(a) = P(b). On the other hand, by
Remark 3.4, we have that comp(b[;,al7) = comp(b). Hence, P(b[;,al7) = P(b) =
P(a), as desired.m



4 General bounds for windows length

The number of crosses in the windows for inputs from F C {0,1}" measures the
amount of uncertainty about these inputs when the corresponding computations meet

in one node. The next theorem shows that the ‘average uncertainty’ is at least log, | F'|.

Theorem 4.1 Let P be a branching program and v a node in it. Let FF C {0,1}" be
a set of inputs, each of which reaches the node v. For a € F, let k, be the number of

bits which are crossed in the window of a at v with respect to F'. Then

D 2 g (1)

acF

and
Y ko> |F|-log, |F|. (2)

a€F

Proof. Our first goal is to establish a 1-1 connection between the inputs from F' and
branches in a particular binary tree. By a binary tree we mean a branching program,
whose underlying graph is a tree. By a branch in such a tree we mean a path p from
the root to a leaf; its length |p| is the number of nodes in it minus 1 (i.e. the leaf is

ignored).

Claim 4.2 There is a binary tree T =T, p with |F| leaves, and there is a 1-1 corre-
spondence F' > a — p, between the inputs from F and the branches of T such that
|pa|l < ko for all a € F.

Proof of Claim 4.2. Starting at the node v, we develop the program P into the tree
rooted in v. In this tree we perform all computations starting from v which are given
by the inputs from F. We delete from this tree all the nodes which are reachable
by no of the inputs from F'. After that we omit all non-branching nodes. Observe
that for every input a € F, the bits tested along the corresponding branch of the
resulting tree 77 are exactly the bits which are down-crossed by (+) in w(a, v, F). To
capture the remaining crosses, we transform 7} into a tree 75, each leaf of which is
reachable by only one input from F'. At each leaf of T}, which is reached by two or
more inputs from F', we start a new subtree such that on each its branch there are
tests on bits, which are up-crossed (+), and then on bits which are double-crossed (#)

in the windows of corresponding inputs at v. This way, the length of every branch in
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T, is at most the total number of crossed bits in the windows of those inputs from F
which follow this branch. Since, by Remark 3.4, non-crossed bits of inputs going to
the same leaf of T}, are the same and have the same value in all windows, each leaf
of the transformed tree T is reached by only one input from F', as desired. m

To get the first inequality (1), we combine this claim with the well-known Kraft-
McMillan inequality from Information Theory about the codeword length for prefix
codes: if C = {ci,...,cn} are binary strings, no of which is a prefix of another, and
[; is the length of ¢;, then Z:’il 27k < 1. Since the branches of T = T, r clearly
form a prefix code (each of them ends in the leaf) and are in 1-1 correspondence
with the inputs from F', Kraft’s Inequality immediately yields the desired estimate:
S 2 P < Cper2 <L

To get the second inequality (2) (which was also derived in [21] using different
argument), we relate the length of branches in a binary tree with the number of its
leaves. For a binary tree T, let |T'| be the number of its leaves, and let A(T') be the
total length of its branches, i.e. A(T') = >_ |p| over all branches p in T'. By Claim 4.2,
Y wcr ka = AT), where T = T, p. Since |F| = |T|, inequality (2) follows directly

from the following simple claim.
Claim 4.3 For any binary tree T, \(T') > |T'| - log |T'|.

Proof of Claim 4.3. Induction on |T'|. Basis (|T| = 2) is trivial. Take now a binary
tree T" with more than 2 leaves and let 77 and 75 be the subtrees of T', whose roots

are immediate successors of the root of T'. By induction hypothesis

MT) AMTY) + |T1]) + (MTo) + | T3|)

> |Th|-log|Ty| + |T3| - log |T2| + |T1|.

For z > 0 the function f(z) = zlogx is convex (its second derivative is f”(z) =
(logye)/xz > 0). For convex functions Jensen’s Inequality says that f(>_, ox;) <
Y>;oif(z;) as long as ) ,a; = 1 and 0 < o; < 1. Applying this inequality to the

previous estimate with z1 = |T1|, zo = |T3| and oy = ap = 1/2, we get

|T1| + |T3|
2

AT) = (I +|T3]) - log + T

T
— (7108 L+ (7] = 7] 10g T

as desired.m
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The length of a window is the number of non-crossed bits in it. Theorem 4.1 can
be used to estimate the ‘average length’ of windows in terms of program size.

Let P be a branching program, V is the set of its nodes and A C {0,1}" be a
set of inputs. A distribution of A (among the nodes of P) is a mapping ¢ : A — V
which sends each input a € A to some node of the computation comp(a). Given such

a distribution, the average length of windows (of inputs from A) is the sum

Zﬁa,

aeA

where £, is the length of the window w(a, v, F') of a at the node v = ¢(a) with respect
to the set FF'= {b € A : ¢(b) = v} of all those inputs, which are mapped to the same
node; we call this set F' the class of distribution at v. We can also distribute the inputs
from A among the edges of P. In this case the average length of windows is defined
in the same way with ¢, being the length of the window of a at the corresponding

edge.

Theorem 4.4 Let P be a branching program, A C {0,1}" a set of inputs and ¢ be

any distribution of these inputs among the nodes of P. Then
H(A, ¢) <log|P|+n —log|Al

If ¢ distributes the inputs from A among the edges of P then the same upper bound
holds with | P| replaced by |E| where E = ¢~'(A) is the set of edges to which at least

one input is sent.

Proof. Let vy,...,v, be the nodes to which A is mapped by ¢, and let F; be the set
of those inputs from A which are mapped to v;. The sets Fi, ..., F, form a partition
of A. For every a € A, n—/{, is the number of crossed bits in the window w(a, v, F}) of
a at the node v; with respect to the set F; containing a. Thus, inequality (2) implies
that 3, cp o < |Fj|(n —log|F}|) for every j =1,...,r. Hence,

H(A,p) = ZZ a S |A‘Z‘F| log\F]D

j=1 a€Fj

12l
log —log|A| < n+logr —log|A|.
Z |A] \A\

The last inequality here follows from the fact that, for p; = |[Fj|/|A|, the sum
— Z;:1 p;logp; is exactly the entropy of the partition of A into r blocks, and hence,
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does not exceed logr, with the equality when blocks are of equal size. Since |P| > r,

we are done.m

In the proof above we use the fact that the sets Fi,..., F, are mutually disjoint,
so that we have a natural connection to the entropy function. Notice however, that
disjointness is not severe requirement. Although in this paper we will use only The-

orem 4.4, let us mention its modification for the case of non-disjoint sets ([21]).

Theorem 4.5 Let P be a branching program, and vy,...,v, be some of ils nodes.
Let F; be a set of some inputs reaching the node v;, j =1,...,r, and let
1 T
H(F,,...,F,) = NZZEW
j=1 a€Fj

where N = 375 |Fj| and £, ; is the length of the window w(a,v;, Fy). Then

H(Fy,...,F,) <log,|P|+n—log, N.

Proof. We have seen (cf. the proof of Claim 4.3) that the function f(z) = zlogz
is convex. So, by Jensen’s inequality, f(Zj \Fﬂ/r) < (Z] f(|F]|)>/r Hence,
(N/r)-log (N/r) < > (|Fj|log|F}|) /r and therefore, log N —log |P| < log N—logr =
log (N/r) < (X_ |Fj| -log |Fj|) /N < n— H(Fy,...,F,) where the last inequality fol-

lows from the inequality (2).m

Theorems 4.4 and 4.5 suggest the following general frame to obtain lower bound
on the size of P in terms of windows: if it is possible to distribute some large set of
inputs A C {0, 1}" among some nodes of P so that the average window-length is > h,
then the program P must have size exponential in log |A| — n + h.

In general, bounding the (average) window length is a hard task. On the other
hand, for read-once branching programs (1-b.p.) this can be done easily. A Boolean
function f is m-mized if for any subset I of m bits and any two different assignments
a,b: I — {0,1} we have that f, # f; here, as usually, f, denotes the subfunction
of f obtained by setting the variables z; with i € I, to a(). It is well known (see,
e.g. [4]) that any such function requires 1-b.p. of size 2™. Most of exponential lower
bounds for 1-b.p. were obtained using this criterion. Let us show how this result can

be derived using the proposed frame in terms of windows.

Proposition 4.6 If f is m-mized then any read-once branching program for it has

size at least 2™.
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Proof. Define the distribution ¢ of all inputs from A = {0,1}" among the nodes
of P by sending each input a to the (m + 1)-st node v = ¢(a) of the computation
comp(a). Let I(a) be the set of bits tested along the computation comp(a) until the

node v; hence |I(a)| = m.

Claim 4.7 For every a € A, no of the bits from I(a) is crossed in the window of a at

v with respect to the set F = ¢! (v).

To prove the claim, assume the opposite that some bit i € I = I(a) is crossed.
Since i was tested before v, this cross cannot be an up-cross; since P is read-once,
the bit 7 is not tested after v, and hence, this cross cannot be a down-cross. So,
bit ¢ is double-crossed, which means that some other input b such that b(i) # a(i),
also reaches the node v. Since P computes an m-mixed function, there must be an
assignment ¢ : T — {0,1} such that P(a[,,c) # P(b[,,c). But this is impossible
because (due to read-once condition), no bit from I is tested along the computation
comp(c) after the node v, and hence, the computations on both these two inputs
reach the same sink. m

By the claim, H(A,¢) > m, which, together with Theorem 4.4, implies that

|P| > 2H(Ap)—ntloglA]l 5 om ag desired.m

5 Gentle programs

We have seen that for 1-b.p., bounding the (average) window length is an easy task.
In this section we describe one more general situation where it becomes tractable.
This situation requires some additional knowledge about the form of windows.

Let P be a branching program and v be a node in P. Throughout this section, let
F C {0,1}" be an arbitrary (but fixed) set of inputs which reach the node v, i.e. the
computations on inputs from F' go through the node v; in this case we say also that
F' is classified at v. We will always assume that the set F'is closed in the following
natural sense: a € F, b € {0,1}" and comp(b) = comp(a) imply b € F.

Let a be an input from F. Depending on what is the window w(a, v, F) for this

input a at the node v with respect to F', we define the following subsets of {1,...,n}.

N(a) = the set of all non-crossed bits;

D(a) = the set of all double-crossed (#) bits;
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S(a) = the set of those bits i € D(a), which were non-crossed in the window for a
immediately before the node v. i.e. which were non-crossed in the window for a

at the corresponding edge, feeding into v.

Let also

N = the set of all bits which are non-crossed and have the same value in the

windows at v of all inputs from F' (the common specified part of F'), and

D = the set of all bits which are double-crossed in the windows at v of all inputs
from F' (the core of F)

Definition 5.1 We say that F' is classified at v in a reqular manner with fluctuation
v and deviation ¢ if its core D # () and, for every input a € F, [N(a) \ N| < v and
maz {|D(a) \ DI, [D(a) \ S(a)} < 6.

The fluctuation tells that the "mixed” non-crossed part of N(a) has at most 7 bits,
whereas the deviation ensures that at least |D(a)| — § bits of a where double-crossed

at the node v for the first time.

Definition 5.2 A branching program P is gentle on a set of inputs A C {0, 1}" with
fluctuation v and deviation ¢§ if there is a distribution ¢ : A — V of these inputs
among the nodes of P such that each (non-empty) class F' = {a € A : p(a) = v} of
this distribution is classified at the corresponding node v in a regular manner with
the fluctuation v and deviation §. We also say that a program is a-gentle if it is such

on some set of at least 2"~ inputs.

Parameters «, v and § range between 0 and n, and reflect the ‘degree of gentleness’:
the smaller they are the more gentle the program is. In the next section we will show
that read-once branching programs (1-b.p.) are very gentle: for them o < 1 and
v=10=0.

6 Read-once programs are gentle

Recall that a branching program is read-once (1-b.p.) if along every path every bit
is tested at most once. Let I(p) be the set of bits that are tested along some path p.
A 1-b.p. is uniform if: (i) for a path p beginning at the source, the set I(p) depends
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only on the terminal node v of p (accordingly, we denote it by I(v)), and (ii) for every
sink v, I(v) contains all variables. As observed in [11], the uniformity is actually not
a serious restriction. Namely, by adding some ”dummy tests” (i.e. tests where both
out-going edges go to the same node), every 1-b.p. can be made uniform; the size

increases by at most a factor of n.

Theorem 6.1 Let P be a uniform read-once b.p. Then, for every set A C {0,1}",
|A| > 3, the program P is gentle on all but two inputs from A with deviation § = 0

and fluctuation v = 0. In particular, P is gentle with o < 1.

Proof. Let V be the set of nodes of P. Define the distribution ¢ : A — V inductively
as follows: ¢(a) = v if v is the first node along the computation comp(a) at which
comp(a) meets another computation comp(b) on some input b € A\ {a} which follows
a different path from the source to v and which is still not mapped (by ¢ to a node
before v).

Since P is uniform, each of the (two) sinks can be reached by at most one input
which is not mapped to no of the nodes along its computation (including the sink).
Hence the number of mapped inputs is at least |A| — 2.

We want to prove that each class of the distribution ¢ is classified at the corre-
sponding node in a regular manner with the fluctuation 0 and deviation 0.

Let F' be a class of the distribution at a node v. We are going to describe the
window on each input from F' (with respect to F at v). At first we see that there are
no up-crosses since P is uniform. Let I be the set of bits tested along at least one
computation comp(a), a € F, on the path from the source to v. All bits outside [
are down-crossed (in windows of all inputs from F') since P is uniform. No bit from
I is tested at v and below v since P is read-once. Hence the bits in I can be only
double-crossed or non-crossed.

Let us define D = {i € I : Ja,b € F a(i) # b(3)}. By the definition of F, D # ().
It is also clear that for any input from F the bits in I \ D are non-crossed. We want
to prove that for each input a € F', D is the set of its double-crossed bits. For any
i € D there must be a b € F such that a(i) # b(i). Let us consider the combined
input ¢ = (b[;,al7). This input follows b from the source to v, hence is in F, too.
After v, it follows the computation on a till the sink. Hence a has a double-cross on
i. This shows that D is the (nonempty) core of F' and that the fluctuation of F is 0

(since all inputs from F' have the same set of noncrossed bits).
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It remains to verify that the deviation of F' is 0, i.e. that S(a) = D(a) for all
a € F. This follows directly from the fact that the window on each a € F immediately
before v has no double-crosses, since otherwise the computation on a would have to
be met before v by the computation on some other input and therefore a would be

distributed before v.m

7 Functions with small gentle programs

For a branching program to be gentle it is sufficient that it has some ‘gentle enough’
fragment — a node (or a set of nodes) at which some large set of inputs is classified
in a regular enough manner. Assume that the function f can be represented in the
form f = gAh (or f =gV h) so that h has a (unrestricted!) b.p. of size ¢t whereas
the first component g has a b.p. of size s which is gentle on some subset A of ¢g~1(0)
(resp., of g7*(1)). Then, by connecting the 1-sink (resp., 0-sink) of the (gentle) b.p.
for g to the source of the b.p. for h, we obtain a b.p. for the original function f which
is a-gentle for & < n —log|A|, and has size s + t. Thus, to design the desired gentle
b.p. for f, it is enough, by Theorem 6.1, that its first component g has small uniform
1-b.p. and the set g=*(0) (or g7*(1)) is large enough.

These simple observations allows one to design small gentle b.p.’s for a lot of known
functions. In particular, it is easy to show (see Proposition 9.1 in the appendix) that,
if a function f has at least one minterm or maxterm of length [, then f can be
computed by an (I + 1)-gentle b.p. of size 2l + 1 + ¢ where ¢ is the unrestricted b.p.
size of f.

Here we restrict ourselves by one particularly important class of Boolean function
— characteristic functions of linear codes (see Appendix for more examples). Let
C C {0,1}" be a linear code (i.e. a linear subspace of GF[2]"), and let fo(x) be its
characteristic function, i.e. fo(z) = 1iff x € C. It is known that for some explicit
linear codes C' C {0,1}", their characteristic functions fc require syntactic k-b.p.
([11]), syntactic k-n.b.p. ([6]) and (1, +s)-b.p. ([7]) of super-polynomial size, as long
as k = o(logn) or s = o(n/logn). Thus, these functions are hard for all restricted

models of branching programs, considered so far.

Proposition 7.1 For every linear code C C {0,1}", the function fc(x) has an a-
gentle branching program of size O(n?) with o < 2 and v =6 = 0.
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Proof. Let R C {0,1}" be the set of rows in the parity-check matrix of C; hence
z € Ciff (x,ry =0 for all r € R. Fix arow r € R, and let g = (z,7) & 1. Since the
scalar product (z,r) is just a parity function, it has a (standard) uniform 1-b.p. of
linear size. Since |g~'(0)| = 2", Theorem 6.1 implies that this program is a-gentle
with o < 2 and v =6 = 0. Since fo = gA fc and fe has an obvious unrestricted b.p.

of size O(n?), the combined program computes fc and is also gentle, as desired.m

8 Stable functions are hard

What functions are hard for gentle programs? We have seen that functions, which
were hard for previous restricted models of b.p., can be easily computed in a gentle
manner. This is not surprising because for gentleness the presence of any ‘gentle
enough’ singularity is sufficient. This fact just means that gentleness is a new property
of b.p., and that combinatorial properties of Boolean functions, which make them
hard for known restricted models of branching programs — like ‘mixness’ for 1-b.p.
[4], ‘degree’ for 1-n.b.p. [4, 7], or ‘density’ and ‘rareness’ for (1,+s)-b.p. [7] and
syntactic k-n.b.p. [6] — do not work for gentle b.p.

Mixness is quite universal property: it is known that almost all Boolean functions
in n variables are m-mixed for m = n — (1 + ¢)logn. Besides mixness, a stronger
property of ‘stability’ was introduced in [3, 4]. A function f is m-stable if for any
subset I of m bits and for any bit i € I there is an assignment ¢ : I — {0,1} on the
remaining bits and a constant € € {0, 1} such that f. = z; D¢, i.e. the subfunction f,
depends only on the i-th variable (and does not depend on variables z;, j € I\ {i}).

Every m-stable function is also m-mixed, and hence, requires 1-b.p. of size 2.

8.1 The general lower bound

In this section we prove that similar result holds also in the case of gentle branching
programs with a somewhat stronger stability condition. Namely, we additionally
require that the condition f. = z; & ¢ cannot be destroyed by toggling some small
number of bits of c.

The Hamming distance dist(z,y) between two assignments z : I — {0,1} and
y:J — {0,1} is the number of bits ¢ € I N J for which x(7) # y(4).

Definition 8.1 Say that f is strongly (m,d)-stable if for any subset of bits I with
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|I| < m and any bit i € I there is an assignment ¢ : T — {0,1} and a constant
e € {0,1} such that fo = x; ® ¢ for any assignment ¢ : T — {0,1} of Hamming

distance at most d from c.

Theorem 8.2 If f is strongly (m,d)-stable for some d > v + 6, then any a-gentle
branching program P computing f with fluctuation v and deviation 0, has size larger

than 2m—a—0-1

Proof. Since P is a-gentle, there is a set of inputs A C {0,1}" of cardinality
|A| > 2" and a distribution ¢ : A — {v1,...,v,} of these inputs among some nodes
v1,...,v, of P such that every class F; = {a € A : ¢(a) = v;} of this distribution
is classified at the corresponding node v; in a regular manner with fluctuation  and
deviation .

Let us first consider one of these classes F' € {F},..., F,}, and let v € {v1,...,v.}
be the corresponding node, at which this class is classified. Let also N = N be the

common specified part of F.

Claim 8.3 For every input ¢ € {0,1}" there is an input w € F which outside the set
D(w) U N differs from c in at most 7y bits.

Proof. We construct the desired input w as follows. Starting at the node v, we
develop the program into the tree rooted in v. In this tree we perform all computations
starting from v which are given by the inputs from F'. We delete from this tree all the
nodes (together with corresponding subtrees) which are reachable by no of the inputs
from F'. Let T be the resulting tree. One branch p. of this tree is consistent with c if
we take into account only the tests made at outdegree-2 nodes (the branching nodes
of T). Let L C F be the set of all inputs from F which follow p.. By Remark 3.4,
these inputs have the same sets of double-crossed bits, of up-crossed bits, of down-
crossed bits and of non-crossed bits. On down-crossed bits they have the same value
as ¢ has. Since up-crossed bits are free bits of these inputs and since F' is closed,
there is an input w € L which equals ¢ also on up-crossed bits. Therefore, the inputs
w and ¢ may differ only on bits, which were either double-crossed or non-crossed (in
the window of w at v with respect to F'). Hence, outside the set D(w) U N, these
inputs can differ in at most |N(w) \ N| < « bits.m

Let F be the set of edges entering the node v, and consider a new distribution

¢ : F — FE which sends every input a € F to the edge 1(a) which the input a
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goes through before it comes to v. Let S(a) stand for the set of those bits in D(a),

which were non-crossed in the window of a immediately before the node v, i.e. in
the window of a at the incoming edge e = v (a). Let as before, N = N be the
common specified part of F. Since S(a) NN = 0, |S(a)| + |N| does not exceed the
total length ¢, of the window of a at the corresponding edge e. This gives a lower
bound H(F,) = |_1{“\ > uerla = |N|+ |17| > ucr [S(a)| on the average window length
of inputs from F' at edges feeding into the node v. We will use this to prove the

following lower bound.

Claim 8.4 H(F,v¢)>m —34.

Proof. In fact, we will prove a stronger fact that all the windows are long enough,
namely that |S(a)| > m—0—|N|, for every input a € F. By the previous observation,
this immediately gives the desired lower bound on H(F, ).

Assume the opposite and take an input a € F' for which |S(a)] < m — 0 — |N]|.
Consider the set of bits I = D U N where D = (,.r D(a) is the core of F. Since
S(a) € D(a) and |D(a) \ S(a)| cannot exceed the deviation d, we have that |D(a)| <
|S(a)| +d. Hence, |I| < |D(a)| + |N| < [S(a)| +0 4+ |N| < m. Since F is classified
at v in a regular manner, its core D is non-empty. Take an arbitrary bit ¢ € D.
Since |I| < m and our function f is strongly (m, d)-stable, there must be an input
c € {0,1}" and a constant € € {0, 1} such that

flz,d)=z(i) e (3)

for any assignment x : I — {0,1} and any assignment ¢’ : T — {0,1} such that
dist(c, c[7) < d. According to Claim 8.3 there is an input w € F, which outside the
set J = D(w) U N differs from ¢ in at most y bits. On the other hand, since the bit
1 belongs to the core D, it was double-crossed also in the window for the input w.
Hence, there must be an input b € F such that b(:) # w(i) and comp,(b) = comp,(w).
By Proposition 3.5, the program P must output the same value on both inputs w and
(b ;,w]7) (because inputs w and b coincide on N). But outside the set I = DU N
both these inputs differ from ¢ in at most dist(w|7,c[7) + |[D(w)\ D] < v+ < d
bits. This gives the desired contradiction because then, taking ¢’ = w[; and setting
r=w(; and z = b[, in (3), we have that f(w) = w(i) ®e #b(i) De = f(b[,;, w|7).m

Using this claim we complete the proof of the theorem as follows. Let Ey, ..., E,

be the sets of edges, feeding into the nodes vi,...,v,, and let Fi,..., F, be the
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corresponding classes, distributed (by ¢) to these nodes. Theorem 4.4 together with
Claim 8.4 implies that log|E;| > m — 0 — n + log |F}| for every j = 1,...,r. Since
the sets E; of edges are mutually disjoint and 3%, [Fj| = [A] > 2"7%, the desired
lower bound on the total number |P| of nodes in P follows: 2|P| > 7%, |Ej| >
gmotn S Fy| > 2meie

8.2 Explicit Stable Functions

The clique function Clique,, ; has (g) Boolean variables, encoding the edges of an
n-vertex graph, and outputs 1 iff this graph contains at least one complete subgraph

on k vertices.

Proposition 8.5 Clique,, ; is strongly (m, d)-stable for any m and d such that d <
k—2,m+d< (%) and 2m + (d+1)(k - 2) < n.

Proof. To show the desired stability, take a set I of m edges and an edge e =
(u,v) € I. Our goal is to find a set of edges C' C I such that, for any a set of edges
J C 1, |J| <d, theset (C\ J)U{e} has a k-clique but (C U J)U (I \ {e}) has no
such clique.

Take d+ 1 mutually disjoint (k — 2)-cliques Uy, . .., Uqgy1, and join them with both
ends of the edge e = (u,v). Condition n —2m > (d + 1)(k — 2) ensures that we can
choose these cliques so that, for every 1 <7 < d+ 1, no vertex of U; is incident with
an edge of I. Let C' = Q1 UQU- - -UQ4y1 where (); is the set of all edges, connecting
the vertices of U; with each other and with both ends v and v of the edge e. Note
that each of the graphs @); is "almost k-clique”: it lacks only the edge e. We claim
that the graph C has the desired properties.

We have to verify that (i) deleting the edges J we cannot destroy all the k-cliques
Q1U{e},..., Q41 U{e}, and (ii) adding the edges of J to the set C U (I'\ {e}) we do
not get a k-clique. The first item (i) holds because e ¢ J and, due to the condition
|J| < d, some of the cliques @; U {e} has no edge in J. For the second item (ii),
recall that e ¢ J. So, the graph (I \ {e}) U J cannot have a k-clique because there
are to few edges: |[(I\{e})UJ| < |[TUJ|-1<m+d—-1< (’2“) Hence, the only
possibility to get a k-clique in (I'\ {e}) UJUC is to take some vertex w ¢ {u,v} and
connect it (using the edges of J) with one of the ends u or v of the edge e and with

all the vertices in some (k — 2)-clique U;. This requires at least k£ —1 new edges. (The
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alternative would be to take two different vertices w; and w, and connect them with
some of U;; this would require 2k — 3 new edges). But we do not have enough edges
in J to do this because |J| < k — 2.m

Corollary 8.6 For k < /n/2 and a < k*/4, any a-gentle program computing
Clique,, , with parameters v+ < k —2, has size 2K*) . For mazimal k, the bound is
29 with o = Q(n) and v+ § = Q(y/n).

Proof. Ifk < 4/n/2 then, by Proposition 8.5, Clique,, ; is (m, d)-stable for m = BE

k+2 and d = k — 2, and the desired lower bound follows directly from Theorem 8.2.m

The Clique function is NP-complete. Bellow we describe an explicit strongly stable
function which belongs to AC°.

Let s and k be such that ks> = n and k¥ > logn. Arrange the n variables
X = {zy,...,7,} into a k x s matrix; split the i-th row (1 <7 < k) into s blocks
B;1, B, ..., Bjs of size s each, and let ¢; be the OR of ANDs of variables in these
blocks. The pointer function m(X) is defined by: n(X) = x; where j is the number

(between 1 and n), whose binary code is (g1, ..., &x).

Proposition 8.7 The pointer function m(X) is strongly (m, d)-stable for any m and
d such that m +d < s — 1.

Proof. Take a set of bits I with [I| < m and a bit i € I. Let (1,...,¢x) be the
binary code of ig. Define an assignment ¢ : T — {0,1} as follows: for j & I, set
c(j) = e, where t is the number of a row containing the variable z;.

Now, take an arbitrary set of bits J C I with |J| < d. Since |I U J| is strictly
less than s, we have that: (i) in every row at least one block is disjoint from I U J,
and (ii) each block contains at least one bit outside the set by I UJ. So, independent
of actual values of bits in I U J, the values of £4,...,¢; remain the same. Thus,
for any two assigments a,b : I — {0,1} and any assignment ¢ : I — {0,1}, with
dist(c,¢) = |J| < d, both inputs (a,c) and (b, ') point to the same variable z;,.
Hence 7(X) is stronly (m, d)-stable.m

Corollary 8.8 For s = [(n/ logn)l/Q] any gentle program computing the function
7(X) with parameters o + v + 6 < n'/>¢, has size exp (Q(n/logn)'/?).
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9 Appendix: More upper bounds

A 1-term (0-term) of a Boolean function f is a (partial) assignment a : I — {0,1}
for which f[, = 1 (f[, = 0, respectively). A minterm (mazterm) of f is its 1-
term (O-term) a which is minimal in the sense that unspecifying every single value

a(i) € {0, 1} already violates this property.



22

Proposition 9.1 Let f be a Boolean function whose (unrestricted) branching pro-
gram P has size s. Leta:1 — {0,1} andb: J — {0,1} be O-terms (or 1-terms) of f
such that there is ani € INJ with a(i) # b(i). Then f can be computed by an a-gentle
b.p. of size at most s+ |I U J| with parameters o < [T U J|, § < max{|I\ J|,|J\ I|}
and v = 0.

Proof. By the observation, made in Section 7, it is enough to design a gentle b.p.
P’ such that sticking one sink of P’ with the source of P we still obtain a branching
program computing f. Assume w.l.0.g. that a, b are 0-terms of f (the case of 1-terms
is dual). Let F' be the set of all inputs from {0, 1} which are consistent with at least
one of the 0-terms a and b, and let P’ be the 1-b.p. computing the Or of these two 0-
terms. It is clear that P’ computes f on F. Moreover, the whole program P’ consists
of two paths which split at the source on the test on ¢ and then meet only at the 0-leaf
v. Since these paths meet at v for the first time, for all f € F' at v the double-crosses
(#) appear on the same set of bits D = (IUJ)\{j € INJ : a(j) = b(j)}, and each of
these bits was either non-crossed or up-crossed (+) immediately before v; moreover,
at each of the two immediate predecessors of v, at most max{|I \ J|,|J \ I|} of the
bits from D could be up-crossed. Hence, at v F'is a regular set with fluctuation v = 0
and deviation 6 < max{|I\ J|,|J \ I|}. Since |F| > 2" the whole program is
a-gentle with o < [T U J|, and has size s + |P'| < s+ [ITU J|.m

9.1 Exact-Perfect-Matching

The ezact-perfect-matching function is a Boolean function EPM,, in n = m? variables,
which, given an m x m matrix X = (x;;) with entries in {0,1}, computes 1 iff X is a
permutation matrix, i.e. if there is a permutation o of {1,...,m} such that z; ; =1
iff o(¢) = j. This function is in AC® but is known to require (even semantic) 1-n.b.p.
of size 2°v® ([5, 8, 7]).

Proposition 9.2 The function EPM, has a 4-gentle branching program of size
O(n®?) with fluctuation v = 0 and deviation &§ = 0.

Proof. The function EPM,(X) has a trivial unrestricted b.p. of size O(n%?) (test

if every row has at least one 1, and then test if every column has at least n — 1
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zeroes). S0, it is enough to take two maxterms - and - on the first
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x
four variables ( 2 ) and apply Proposition 9.1.m
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9.2 Balanced Strings

Let a € {0,1}" be a binary string, with each bit coloured in Red or Blue. The red
substring [blue substring] of a is obtained from a by deleting all blue [respectively, all
red] bits. We say that such a string is balanced if its red and blue substrings are equal.
Coloured bits can be encoded by a strings of the length two {00, 10,01, 11} where the
first bit represents the bit itself and the second one represents its colour. This way
we get a Boolean function f on 2n variables, which outputs 1 iff the corresponding
(coloured) string is balanced.

In [1] it is proven that the four-letter variant of f requires 1-b.p. of size at least

Proposition 9.3 The function f is computable on a 4-gentle branching program P

of size O(n?®) with fluctuation v =0 and deviation § = 0.

Proof. There is a branching program P of size O(n3) which computes f by the
following trivial procedure: Search for the next red bit and search for the next blue
bit, and compare. So, it is enough to take two maxterms 0011 and 1001 on the first

four variables, and apply Proposition 9.1.m

9.3 The Isolated Point Function

Let us consider the functions fy, s, which where used in [12, 13] as the witness functions
for the hierarchy of syntactic read-k-times branching programs with respect to k.

A hypergraph over a set of points [m] = {1,...,m} is a family F of subsets of [m].
The hypergraph is s-uniform if each its member contains exactly s points. A point
1 is isolated in F if i ¢ S for all S € F. Given a hypergraph F, we ask if it has
an isolated point. The Boolean function f,, ; has n = (’:) variables g, one for each

s-element subset S of [m], and outputs 1 iff the corresponding s-uniform hypergraph
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has no isolated points. That is

m
fm,s‘:\/\( \/ 375).
i=1 \ieSeF
For every s < m,s|m, this function has an obvious syntactic read-s-b.p. of size
m(T__ll) = S(T) = sn. On the other hand, it is proved in [13] that, as long as

k< Clnn/Inlnn (C < 1/2) and k < s/logs, the function f,, s cannot be computed

by a k-n.b.p. of size smaller than 2% *).
Proposition 9.4 The function f,, s is computable by an a-gentle branching program
of size O(sn) with « = O((logn)/s), deviation § < 1 and fluctuation v = 0.

Proof. Take any m + 1 s-element sets 77,54, ...,5,, such that T} # 57, 1 € T1 NS,
and 7 € S; for all 7+ = 2,...,m. The corresponding monomials zg,xg, - --xg, and

Ts,T1Ts, * * * Tg,, are l-terms of f,, s and their union has only 2m + 1 = O((logn)/s)

literals. Proposition 9.1 yields the desired gentle b.p. for f,, ;.m

Some other upper bounds can be deduced from results in [21].
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