Electronic Colloquium on Computational Complexity, Report No. 31 (1998)

Graph Properties that Facilitate Travelling

ECCC
*

DimiTRIS A. FOTAKIS'? Paul G. SPIRAKIS!?

L Computer Engineering and Informatics Department
University of Patras, 265 00 Rion, Patras, Greece

2 Computer Technology Institute — CTI
Kolokotroni 3, 262 21 Patras, Greece

Fax: +30-61-993973

Email: fotakis@cti.gr, spirakis@cti.gr

Abstract. In this work, we study two special cases of the metric Travelling Salesman Problem,
Graph TSP and TSP(1,2). At first, we show that dense instances of TSP(1,2) and Graph TSP
are essentially as hard to approximate as general instances of TSP(1,2).

Next, we present an A'C algorithm for TSP(1,2) that produces a tour of length at most n plus
the cardinality of the Maximum Independent Set of the input graph. Thus, it always achieves
a ratio of %, while the best known parallel algorithm achieves the same ratio in RA'C. More-
over, a variant of this algorithm achieves in A'C a constant approximation ratio for Maximum
Independent Set, if the optimal value of TSP(1,2) is at least (14 #)n, for some constant 3 > 0.

Then, we prove that, given a graph and a partition of the vertices into & cliques, optimal
solutions for both Graph TSP and TSP(1,2) can be found in time n@(%), Additionally, we
show that optimal solutions can be computed in time n®(*) for a certain class of instances, and
we conjecture that the time complexity can be improved to n®(*) for any partition of a graph
into & cliques.

17,7

Also, we obtain a %—approximation algorithm for TSP in graphs of diameter 3, and a (%)

approximation algorithm for TSP in graphs that have diameter 4(3) and contain a perfect,
triangle-free 2-matching.

1 Introduction

In the Travelling Salesman Problem (TSP), we are given n nodes, and for each pair of distinct
nodes {1, j} a distance d; ;. The objective is to find a tour (i.e. a cycle that visits each node exactly
once) of minimum length. TSP is a fundamental problem in combinatorial optimization, and the
most important algorithmic ideas have been applied to it during the past decades (cf. [LLRS85]).

Even very special cases of TSP are known to be N'P-complete [GJ79]. As for the approximability,
it is well known that the general version of 'SP is not approximable within any constant factor,
unless P = N'P. However, the metric TSP, where the nodes lie in a metric space (i.e. the distances
satisfy the triangle inequality) is approximable within % [Chr76]. In this work, we study two special
cases of metric TSP, Graph TSP and TSP(1,2). In both cases, the nodes are the vertices of an
unweighted graph. In Graph TSP, the distance metric is the shortest path metric, while in TSP(1,2)
the distance between a pair of vertices is either one, if they are connected by an edge, or two,
otherwise. Clearly, TSP(1,2) is the simplest special case of metric TSP.

* This work was partially supported by ESPRIT LTR Project no. 20244—ALCOM-IT.

ISSN 1433-8092

The best known approximation algorithm for general instances of Graph TSP is the %—algorithm
of Christofides [Chr76], and it has been a major open problem for more than two decades if this
bound can be improved. Recently, it was conjectured [Goe95] that the Held-Karp lower bound
can achieve a ratio of %. The best known approximation algorithm for TSP(1,2) achieves a ratio
of g [PY93]. Moreover, TSP(1,2) is MAX-SNP-hard [PY93], thus polynomial time approxima-
tion schemes (PTAS) do not exist for general instances, unless P = NP. Obviously, this result
generalizes to metric T'SP.

During the very last years, a few remarkable approximation algorithms for special cases of TSP
were invented. These algorithms are the PTAS for planar instances of Graph TSP [GKP95], the
PTAS for Euclidean TSP (where the nodes lie in IR?, and the distances are defined by the Euclidean
norm) [Aro96], and the PTAS for weighted planar graphs [AGKKW98|.

Initially, our motivation came from the recent success in approximating dense instances of many
combinatorial optimization problems (e.g. Max CuT, MAX k-SAT, MIN LINEAR ARRANGEMENT,
BanpwinTH, VERTEX COVER, STEINER TREE, see [Kar97] for a survey). In particular, Karpinski
[Kar97] stated the question on the existence of a PTAS for dense instances of TSP(1,2). In this
work, after answering this question in the negative for both TSP(1,2) and Graph TSP, we restrict
our attention to the approximability of other special classes of instances. We present (approximation
and exact) algorithms for several interesting special cases.

1.1 Definitions

The Travelling Salesman Problem with distances one and two ('T'SP(1,2)) is a special case of TSP
restricted to complete graphs, where all edge lengths are either 1 or 2; clearly, this satisfies the
triangle inequality. Alternatively, TSP(1,2) is a generalization of the Hamiltonian Cycle problem,
where each edge of the input graph has length 1, and each non-edge has length 2. In this case, we
seek the tour (a simple spanning cycle) with the fewest possible non-edges.

In Graph TSP, the input is an unweighted graph, and the distance between a pair of vertices is
the length of the shortest path from the first vertex to the second one.

A graph G(V, E) is called dense, if it is 6-dense. A graph G is §-dense, if the minimum degree
of G is at least 6|V, for some constant § > 0. By definition, there exists a correspondence between
graphs and instances of TSP(1,2) and Graph TSP. An instance of TSP(1,2)/Graph TSP is called
6-dense (or simply dense), if the corresponding graph is 6-dense.

1.2 Summary of Results and Comparison to Previous Work

In this work, we start with an approximation preserving transformation from general instances of
TSP(1,2) to dense instances of TSP(1,2) and Graph TSP. Thus, we prove that dense instances of
TSP(1,2) and Graph TSP are essentially as hard to approximate as general instances of TSP(1,2).
Therefore, we answer the question of [Kar97], by practically excluding the possibility of a PTAS for
dense instances of TSP(1,2) and Graph TSP. Very recently, a different proof appears independently
in [FVK98]

Then, we provide an NC algorithm that approximates TSP(1,2) within % The best known
parallel algorithm for TSP(1,2) is the algorithm of Christofides (an RAC implementation for metric
TSP is described in [DSST97]). However, since the latter algorithm requires the computation of
a perfect matching of minimum weight (maximum cardinality matching for TSP(1,2)), it is in
RNC, but it is not known to be in A/C. Qur algorithm is based on the local search paradigm,
and its performance on general instances matches the performance of a (sequential) 4-local search
algorithm presented in [KMSV94]. The sequential running time of our algorithm is quasi-quadratic,
that is significantly better than the running time of the 4-local search of [KMSV94].

Additionally, our NC algorithm performs remarkably well in instances with Independent Sets
of bounded cardinality. Namely, if the value of the Maximum Independent Set (MIS) of the input

graph G(V, F)is MISq, the algorithm produces a tour of length no more than |V|+ MIS¢. Thus, it
outperforms all known sequential approximation algorithms for the restriction of TSP(1,2)in graphs
G, such that MISgs < |61|. As a side effect, we show that a variant of this algorithm produces in
NC an Independent Set of cardinality at least TSPg — |V|, where TSP is the optimal value of
TSP(1,2) in the input graph G. This is a %-approximation for MIS, if TSP > (1 4 §)n, for
some constant 8 > 0. It is well known that, unless P = AP, only special cases of MIS can be
approximated within a constant factor, even in sequential polynomial time.

Next, we show that, given a graph and a partition of the vertices into x cliques, both Graph
TSP and TSP(1,2) can be solved optimally in n®*) time. Moreover, we prove that optimal tours
can be computed in time n€®) for a certain class of instances, and we conjecture that the time
complexity can be improved to n®(*) for any partition of a graph into k cliques. Clearly, if the
number of cliques is constant, then we obtain optimal solutions in polynomial time. This algorithm
is applicable to the complements of graphs colorable with constant number of colors in polynomial
time (e.g. complements of planar graphs). Our motivation was from the study of TSP in some very
dense in average instances, such as the complements of planar graphs. We are not aware of a similar
algorithm that exploits a partition into cliques for solving TSP optimally. Other special cases of
TSP, which can be solved optimally in polynomial time, are presented in [LLRS85], Chapter 4.

Finally, we extend the ideas and the analysis of the %—algorithm for TSP(1,2) [PY93], so as to un-
derstand its performance for special cases of Graph TSP. As a result, we obtain a %—approximation
algorithm for T'SP in graphs of diameter 3, and a %(%)—approximation algorithm for TSP in graphs
that have diameter 4(3) and contain a perfect, triangle-free 2-matching. An algorithm presented in
[Har84] can be used for deciding this class of graphs in polynomial time.

2 The Approximability of Dense Instances

The reduction of [PY93] implies that TSP(1,2) and Graph TSP are MAX-SNP-hard for dense in
average graphs, namely graphs with 2(n?) edges. In this section, we provide an approximation
preserving transformation from general instances of TSP(1,2) to dense instances of TSP(1,2) and

Graph TSP.

Theorem 1. There exist a constant 6* > 0, such that, for all § < §*, §-dense instances of TSP(1,2)
do not admit a PTAS, unless P = N'P.

Proof. Let G(V, I/) be any graph of n vertices, and TSP be the optimal value of the corresponding
TSP(1,2) instance. Clearly, n < TSP < 2n. For any constant § > 0, let the X5 be the independent
set of én vertices. For any § > 0, we construct a graph G’ by adding X5 to G and connecting each
vertex of X5 to each vertex of V. Formally, the new graph is G'(V U X5, E’), where

E' = Eu{{u,v} :Y(u,v) €V x X5}

Obviously, GG’ is a §’-dense graph, ¢’ = > §—62%. Let TSP¢ be the optimal value of the TSP(1,2)
instance, that corresponds to G'.

By the construction of G, if we are given any spanning cycle Hg of G, we can find a spanning
cycle Hg of G of length I(Hg) < [(Hgr). (Shortcut the vertices of X in Her. This cannot increase
the length of the cycle). Obviously, both cycles traverse the vertices of G in the same order.

Moreover, given any spanning cycle Hg of G, we can construct a spanning cycle Hg of G’ that

traverses the vertices of GG in the same order with Hq, and has length

6
1+6

I(Hg) = n 4 max(én,n — l(Hg))

If u,v € V are joined by an edge of length 2 in Hg, then a vertex of Xs is imposed between them. If
H¢ consists of less than én edges of length 2, then all edges of Hg will be of length 1. Consequently,

[(He) = (14 é6)n. Otherwise ({(Hg) > (1 + 6)n), the vertices of X cannot increase the length of
the resultant cycle. Therefore, I(Hg) = I(H¢). The previous discussion justifies that the optimal
values TSPg and TSP fulfill the following inequalities:

TSP — én < TSP < TSPa < (1 + 5)TSPG

Let us assume that for some constant ¢ > 0, TSP(1,2) is approximable within (1 + ¢) for §'-
dense graphs. Given any graph G, we can construct a é’-dense graph G’ by adding én, § = 1E—I5'7
independent vertices, and find an (1 4 ¢) approximate solution H¢ to this instance. Then, we can
transform Hg to a solution Hg of the original instance by shortcuting the additional vertices.

Clearly, the following inequalities hold:
I(H(;) < l(Hgf) < (1 + €)TSPG/ < (1 + 6)(1 + 5)TSPG

Since TSP(1,2) is MAX-SNP-hard, there exist a constant ¢ > 0, such that TSP(1,2) is not
approximable within (1 + €*), unless P = NP [ALMSS92]. Let a > 0 be any small constant, and
& = 1-6|-*e:fa > 0. If 6-dense instances of TSP(1,2) admitted a PTAS for some § < §*, then general
instances would be approximable within (1 + €*). O

Moreover, the previous transformation implies that approximating TSP(1,2) in dense instances
is essentially as hard as approximating TSP(1,2) in general instances. This statement becomes clear
by considering instances with large optimal values, namely graphs G such that TSP > (1 + 6)n.
Then, the previous transformation is an L-reduction [PY91] from general instances to ¢’-dense
instances. However, Theorem 1 leaves open the possibility that there exist some constants 6 > 6%,
such that 6-dense graphs with optimal tours of length less than (1+6)n admit a PTAS for TSP(1,2).

It is trivial to check that the diameter of the graph G’ is equal to 2. Thus, the correspond-
ing instance of Graph TSP is a dense instance of TSP(1,2). This implies that the restriction of
Graph TSP to dense instances is essentially at least as hard to approximate as TSP(1,2) in general
instances.

Corollary 2. There exist a constant 6* > 0, such that, for all 6 < 6, §-dense instances of Graph
TSP do not admit a PTAS, unless P = N'P.

Remark. It easy to check that, independently of the structure of the original instance G, the graph
G' is an expander graph with expansion factor at least % = 24'. Therefore, the inapproximability
results also hold for dense expander graphs.

3 An NC Approximation Algorithm for TSP(1,2)

Let G(V, E) be any graph of n vertices, TSP be the optimal value of the corresponding TSP(1,2)
instance, and MISg be the cardinality of the Maximum Independent Set of G. Next, we show that
a simple NC algorithm produces a tour of length at most n + MISg, and an Independent Set of
cardinality at least TSPg —n. This A'C algorithm outperforms all known sequential approximation
algorithms for TSP(1,2), if the input is restricted to graphs with Independent Sets of cardinality
less than %. Moreover, it matches the performance of the best known RANC algorithm for general
instances.

Theorem 3. The following inequalities hold for any graph G(V, E) of n vertices:
2MISs < TSPg < n + MISq (1)

Moreover, a tour and an independent set that fulfill (1) can be computed in NC.

Proof. The main part of the proof consists of an algorithm that computes a tour and an independent
set of GG, that fulfill (1). Consider the following algorithm:

Algorithm TSP-MIS

Input: A graph G(V, E).

Output: A set P of edges that cover V with vertex disjoint simple paths.
A set S* of independent vertices.

P:=0;
1:=0;
repeat

=14 1; /* i'" phase */
Vi= {v eV :degp(v) = 0};
For any non-trivial path p € P, add exactly one of the end vertices of p to Vi,
Ei={{v,w}e E:veViAweV'};
Find a Maximal Matching M' in G*(V*, E*);
(*) P:=PUM?';

Sti={v e Vi:degy:(v) =0};

until M’ is empty or i > K;

S* =S5 of maximum cardinality;

return(P, S*);

Correctness: The algorithm proceeds in phases, such that the following holds for the i** phase:

For all vertices v, v € V' implies that degp(v) < 1. Moreover, for each path p € P, exactly one of
the end vertices of p is in V*.

Therefore, at the end of the algorithm, the set P consists of simple paths (of 1-edges) and

isolated vertices. If the isolated vertices are considered as paths of length 0 (trivial paths), the edge
set P covers V with vertex disjoint simple paths. Additionally, the vertex sets S* are independent
sets, because M* is a maximal matching in G*(V?, EY).
Performance: The performance of the algorithm is determined by the number of edges (of length
1) that are contained in the set P at the end of the algorithm. Initially, the set P is empty. At each
phase i, the edges of M' are added to P in step (*). Let |M?| be the number of edges of a maximal
matching M® of the graph G*. The algorithm runs for K 4 1 phases,ie.i=1,..., K + 1, where K
will be fixed later. Clearly, |P| = YK, | M.

Since the vertices of V' that are not covered by a maximal matching M form an independent
set, and any independent set of G* contains at most MISq vertices, we obtain that:

< i< 21
2

[Vi| — MISq
2

Furthermore, for any pair of vertices of V* that are matched by M?, exactly one vertex is added to
Vi+1, Therefore, the following holds for the size of V**!:

V']

: : Vil 4+ MIS
— <V =V - l |+2 :

M| <

The following inequality holds for all 7 > 1, and can be proved by induction on .

Vi + (2 - 1)MISq

7+1
Vi < 5

If K = [logn], then inequality (2) implies that

V1 + (n—1)MISq

n

VEH| = |ylesnl +1) < < MISg + 1

By summing the equalities |Vit!| = |V?| — |M?|, for 1 < i < K + 1, we obtain that
K

-2

=1

VAR = V1 = Y = V] - [P

Therefore, we obtain that |P| > n — MISg, because if K = [log n], then |[VE+1| < MIS4. Since the
set P consists of simple paths of total length at least n — MIS¢, we can construct a tour from P
by adding no more than MIS¢q edges of length 2. The length of the resultant tour will be no more
than n + MISg. Therefore, TSPg < n + MISg.

Complexity: The algorithm runs for at most [logn] +1 phases. The basic operations of each phase
can be implemented in A'C (cf. Chapter 2 of [GR88]). The P-degrees of the vertices are updated
in step (*) in constant parallel time. Since the connected components of P are simple paths, the
computation of G* can be implemented in A'C. The total complexity of the algorithm is dominated
by the computation of the maximal matching. There exist a CRCW PRAM algorithm that produces
a maximal matching in O(log” n) time using O(n?) processors [[S86]. Thus, the TSP-MIS algorithm
can be executed in a CRCW PRAM machine in O(log*) time using O(n?) processors. Moreover,
it is straight forward to check that the sequential complexity of TSP-MIS is O(n?logn).

Next, we prove that 2MISg < TSPg. Let TSPg =n+v,forany 0 <y < m,and let 7 : [n] — V
be a permutation that corresponds to an optimal spanning cycle of G. Obviously, 7 defines a set
{p1,p2,...,py} of v simple paths, which consist of 1-edges and are linked to a tour by 2-edges.
Clearly, if a path p; consists of |p;| vertices, it cannot contribute to any independent set more

than % vertices, if |p;| is odd, and |p2—i| vertices, if |p;| is even. Therefore, the cardinality of any
independent set in G cannot be greater than the sum of the cardinalities of the independent sets
of p;’s. Consequently,

o
MISg < Z[W
o
<y
=1
< n+y TSP(;
- 2 2

It remains to prove that the algorithm TSP-MIS computes in NC an independent set of cardi-
nality at least TSPg —n. Assume that TSPg—n = v > 0. We run TSP-MIS for K = [log n| phases,
and we output the set S*, namely the set 5%, i = 1,..., K 4+ 1, of maximum cardinality. Clearly,
S¥s are sets of independent vertices. If [S*| = 4/ < 7, we can substitute the MISg with 4/ in the
analysis on the size of P. Therefore, if |5?| < 7, for all 1 < i < K + 1, the resultant set P would
contain more than n — 7 edges. This is a contradiction, because it implies that we can compute a
super-optimal tour. Consequently, the algorithm TSP-MIS always produces an independent set of
cardinality at least TSPg — n.

There exist instances such that TSPg = n + MISg — 1. For example, for any x > 1, consider a
graph G consisting of a clique of n — 2 vertices and an independent set of z vertices, all of them
connected to the same vertex of the clique. Clearly, MISg = z + 1, and TSPg = n + z.

Also, the inequality 2MISg < TSPg becomes tight for many instances. It is worth mentioning
the C,, graph (a simple cycle of n vertices), and the complete bipartite graph, where the sizes of
the classes are én and (1 — 6)n, for any 6§ > 0. O

The algorithmic consequences of Theorem 3 are summarized by the following corollaries:

Corollary 4. TSP(1,2) can be approzimated within % by an NC algorithm that runs in a CRCW
PRAM in time O(log* n) using O(n?) processors.

Corollary 5. TSP(1,2) restricted to graphs with Mazimum Independent Set no more than an is
(1 + a)-approzimable by an N'C algorithm that runs in a CRCW PRAM in time O(log* n) using
O(n?*) processors.

Corollary 6. Mazimum Independent Set restricted to graphs with optimal value of TSP(1,2)
greater than (1 + f)n is %-appmximable by an NC algorithm that runs in a CRCW PRAM
in time O(log" n) using O(n?) processors.

The algorithm TSP-MIS outperforms the algorithm of Papadimitriou and Yannakakis [PY93], if
we restrict our attention to graphs with Maximum Independent Set less than &. Furthermore, these
algorithms can be combined as follows: (1) Run the algorithm of Papadimitriou and Yannakakis;
(2) Initialize P to the set of paths produced by the step (1), and output the result of TSP-MIS.

Remark. TSP-MIS is based on the local search paradigm, that has been modified so as to be
implemented in the class N'C. Then, we show that the cardinality of the Maximum Independent
Set always bounds from above the distance between the length of any local optimum tour and
TSPg > n.

We use a sequential 4-local search algorithm for TSP(1,2) that has been analyzed in [KMSV94].
Their algorithm starts with an arbitrary tour, and in each iteration, it checks if the current tour
contains two disjoint edges (v, w) and (o', w’), such that replacing them with the edges (v, v’) and
(w,w’) yields a tour of smaller cost. Consider an arbitrary orientation of a local optimum tour ¢.
Let Sz, = {v € V : v is the left vertex of a 2-edge of ¢}, and Sgr be defined similarly for the right
vertices. Obviously, the local optimality of £ under the above neighbourhood implies that both 57,
and Sp are independent sets. Therefore, any local optimum tour cannot have more than MISg
2-edges. 0

4 Optimal Tours through Constant Number of Cliques

Then, we show that, given a graph G(V, F) and a partition of V into a constant number of cliques,
we can decide if G is Hamiltonian in polynomial time. This implies that the corresponding instances
of TSP(1,2) and Graph TSP can be solved optimally in polynomial time.

Let CCP (Constant number of Cliques in Polynomial time) be the class of graphs, such that a
partition of the vertices into constant number of cliques can be computed in polynomial time. The
class CCP consists of the complements of graphs, which can be colored with constant number of
colors in polynomial time. Thus, CCP is a non-trivial class. An interesting subclass of CCP consists
of the complements of planar graphs. In particular, we are able to prove the following theorem for
graphs in CCP.

Theorem 7. Given a graph G(V, E), |V

deterministic algorithm that runs in time (/)(n"’“(%_l)) and decides if G is Hamiltonian. If G is

= n, and a partition of V into k cliques, there exists a

Hamiltonian, the algorithm outputs a Hamiltonian Cycle.

Proof. Given a set M C FE of inter-clique edges, the cliqgue graph T(C, M) contains exactly &
vertices, that correspond to the cliques of C, and represents how the edges of M connect the different
cliques. For any spanning subgraph H(V, Ef) of G, there exists a clique graph Tg(C, M) that
corresponds to H. Obviously, if H is connected, then Ty is connected, and if H is a Hamiltonian
Cycle, then Ty is euclidean. However, the converse statements are not always true.

On the other hand, any clique graph 7'(C, M) corresponds to a family H of spanning subgraphs
of GG, that share M as the set of inter-clique edges. The graphs of H may differ from each other
with respect to the edges connecting vertices that belong to the same clique. A clique graph T is
an HC-clique graph, if the family H contains at least one spanning cycle (Figure 1.b).

Given a clique graph T(C, M), we color an edge RED, if it shares a vertex of G with another
edge of M. Otherwise, we color it BLUE. The corresponding edges of G are colored with the same
colors, while the remaining edges (F — M) are colored BLACK. Additionally, we color RED each
vertex w € V, which is the common end vertex of two or more (RED) edges. We color BLUE each
vertex w € V', which is adjacent to exactly one edge of M (RED or BLUE). The remaining vertices
of G are colored BLACK (Figure 1.a). Notice that the coloring of the vertices and the edges of G is
completely determined by the set M of inter-clique edges.

Let H be any spanning cycle of G and T be the corresponding HC-clique graph. Obviously,
RED vertices cannot be exploited for visiting any BLACK vertices belonging to the same clique. Let
H visit a clique C; through a vertex v, and leaves C; through w. Then v,w € C; consist a pair
of BLUE vertices. Clearly, H can use some BLACK edges for visiting some BLACK vertices of C;. A
BLUE pass through a clique C; is a simple path P of length at least one, that entirely consists of
non-RED vertices of C;. We say that a clique C; is covered by M, if all the vertices of C; have degree
at most 2 in M, and the existence of a non-RED vertex implies the existence of at least one BLUE
vertex pair. The following proposition, which is proved in the Appendix, characterizes the class of
HC-clique graphs.

Proposition 8. A connected, eulerian, clique graph T(C, M) is an HC-graph iff it fulfills the fol-
lowing property (HC-Property):

(HC1) For anyi=1,...,k, C; is covered by M; and

(HC2) There exists an eulerian trail R for T such that: For any RED vertex v € V, R traverses the
RED edges that are incident to v in consecutive order (i.e. R passes through any RED vertex
ezactly once using the corresponding RED edge pair).

Proof. By definition, if 7" is an HC-graph, then there exists a cycle H that spans V. Additionally,
the set of inter-clique edges of H is exactly M. Since any vertex of V has degree 2 in H, all the
cliques C; are covered by M. Also, for any RED vertex v, H traverses the RED edges that are incident
to v consecutively. Clearly, if we remove the BLACK vertices and edges from H, then we obtain a
traversal of the edges of M that fulfills (HC2). Moreover, since H is a spanning cycle, the resultant
traversal is an eulerian trail for 7T'.

Conversely, we will show that given a connected, eulerian clique graph T'(C, M), that fulfills
the HC-Property, we can easily construct a Hamiltonian Cycle H, such that the set of inter-clique
edges of H is exactly M. Let R be an eulerian trail for 7" that fulfills (HC2). The cycle H will follow
the trail R. Since T is connected and all the cliques are covered by M, the trail passes through all
the cliques C; € C, i = 1,...,k. The Property (HC2) implies that every time R visits a RED vertex
v, H passes through v using the corresponding RED edge pair. Since R is an eulerian trail, all the
RED vertices are included in H with degree 2. The first time that R passes through a BLUE vertex
pair v,w € C; (case (a)), a path consisting of all the BLACK vertices of C; is imposed between
v and w in H. The Property (HC1) implies that all the BLACK vertices are included in H with
degree 2. If R passes through a BLUE vertex pair v, w € C;, and C; does not contain any unvisited
BLACK vertices, then the BLACK edge {v, w} is added to H. Since R is an eulerian trail that fulfills
(HC2), all the BLUE vertices are included in H with degree 2. Moreover, H is connected and the
inter-clique edges of H are exactly the edges of M. 0

The proof of Proposition 8 implies a polynomial time, deterministic procedure for deciding if a
clique graph T(C, M) is an HC-clique graph. Moreover, in case that 7" is an HC-graph, this pro-
cedure outputs a Hamiltonian Cycle. The time complexity of this deterministic decision procedure
is polynomial in n and x. For convenience, we consider that an HC-clique graph can be decided in
time O(n").

It remains to show how to exploit the partition of G into k cliques so as to decide Hamiltonicity.
Intuitively, if G is Hamiltonian, there should exist a spanning cycle H that takes advantage of the
cliques of G. Namely, H is not expected to pass through the cliques many times. Clearly, if we
prove that G is Hamiltonian iff it contains a spanning cycle that passes through the cliques a small
number of times, then this cycle could be found using exhaustive search. The previous discussion
implies that this is equivalent to the existence of an HC-clique graph with a small number of edges.
The following technical lemmas formalizes the aforementioned intuition.

Lemma9. Let B,, > 2 be some integer only depending on k, such that the following is true for any
graph G(V, E), any partition of V into k cliques: If G is Hamiltonian and |V| > By, G contains at
least one Hamiltonian Cycle not entirely consisting of RED vertices (inter-clique edges).

Then, for any graph G(V, E) and any partition of V into x cliques, G is Hamiltonian iff it contains

a Hamiltonian Cycle with at most B, inter-clique edges.

Proof. Let H be the Hamiltonian Cycle of G containing the minimum number of inter-clique edges
and M be the corresponding set of inter-clique edges. Assume that |M| > B,. Because of (i), H
cannot entirely consist of RED vertices. Therefore, H should contain at least one BLUE vertex pair.

We substitute any BLUE pass of H through a clique C; with a single (RED) super-vertex #, that
is also considered to belong to the clique C;. Hence, # is connected to all the remaining vertices
of C;. These substitutions result in a cycle H’ that entirely consists of RED vertices, and contains

exactly the same set M of inter-clique edges with H.

Obviously, the substitutions of all the BLUE passes of H with single RED super-vertices belonging
to the corresponding cliques result in a graph G'(V/, £') different from . However, since H' is a
Hamiltonian Cycle, G’ is also Hamiltonian, and V' is partioned into k cliques. Moreover, it is not
hard to verify that, if #’is any Hamiltonian Cycle of G’, then the reverse substitutions of all the
RED super-vertices # with the corresponding BLUE passes result in a Hamiltonian Cycle of GG, that
contains exactly the same set of inter-clique edges with H' (Figure 1).

Since H' is a Hamiltonian Cycle that entirely consists of RED vertices and contains more than
B, inter-clique edges, the statement (i) implies that there exists another Hamiltonian Cycle of G,
that contains strictly less inter-clique edges than H’. Therefore, there exists a Hamiltonian Cycle
of GG, that contains strictly less inter-clique edges than H. Qbviously, this contradicts the selection
of H. 0

Consequently, for proving that G is Hamiltonian iff there exists a Hamiltonian Cycle using at
most By inter-clique edges, it only suffices to prove the same bound for RED Hamiltonian Cycles
(i.e. Hamiltonian Cycles that entirely consist of inter-clique edges). Intuitively, the class of graphs
for which all the Hamiltonian Cycles entirely consist of inter-clique edges should be very restricted.

Lemma 10. Given a graph G(V, E) and a partition of V into k cliques, G is Hamiltonian iff there
exists an HC-clique graph T(C, M), such that |M| < k(k — 1).

Proof. By definition, the existence of an HC-clique graph for G implies that G is Hamiltonian
(independently of the number of edges of M). Thus, (2) implies (1) trivially.

Conversely, let H be the Hamiltonian Cycle of G' that contains the minimum number of inter-
clique edges, and T(C, M) be the corresponding HC-clique graph. If |M| < k(x — 1), then we are
done. Otherwise, Lemma 9 implies that it suffices to consider only Hamiltonian Cycles H, that
entirely consist of inter-clique edges.

Consequently, assume that the coloring of V' under M entirely consists of RED vertices, and
consider an arbitrary orientation of the Hamiltonian Cycle H (e.g. a traversal of the edges of H in
the clockwise direction). If there exist a pair of cliques C; and C; and four vertices v, v € C; and
u1,uy € Cj, such that both v, are followed by u, (z = 1,2) in a traversal of H, then the (BLACK)

(a) A graph partitioned into 3 cliques

(c) A red Hamiltonian Cycle

@ A black vertex
@ A redvertex
@ A bluevertex

— — A blueedge
—— Avrededge
------- A black edge
--- A black edge of the cycle
An edge that may be removed

(d) A Hamiltonian Cycle using less red edges (e) An HC-graph with less edges

Fig. 1. A decrease in the number of inter-clique edges contained by a Hamiltonian Cycle.

edges {vy,v2} and {uy,us} can be exploited in order to obtain a Hamiltonian Cycle containing
less inter-clique edges than H. Clearly, this would be a contradiction to the selection of H. The
previous situation can be avoided, only if for all ¢ = 1,...,k,and j = 1,...,K, j # i, at most
one vertex »; € C; is followed by a vertex u of the clique C; in a traversal of H. Obviously, this
restriction results in Hamiltonian Cycles H that contain at most x(x — 1) inter-clique edges. Hence,
any Hamiltonian Cycle containing more than k(x — 1) inter-clique edges cannot be a Hamiltonian
Cycle with the minimum number of inter-clique edges. This contradicts the selection of H and the
corresponding HC-clique graph 7. 0

2"_1)), because the

number of the different edge sets containing at most x(x — 1) inter-clique edges is at most n2r(k=1),

and we can decide if a clique graph is an HC-graph in time O(n"). O

Lemma 10 implies that we can decide if G is Hamiltonian in time (’)(n"‘(

Then, we prove that if G contains a BLUE Hamiltonian Cycle (i.e. a Hamiltonian Cycle that
does not contain any RED vertices and edges), then there exists a BLUE Hamiltonian Cycle using
at most 2(k — 1) inter-clique edges.

Lemmall. Given a graph G(V,FE) and a partition of V into k cliques, if G contains a BLUE
Hamiltonian Cycle, then there exists a (BLUE) HC-clique graph T(C, M), such that |M| < 2(k—1).

Proof. Let H be the BLUE Hamiltonian Cycle of G' that contains the minimum number of inter-
clique edges, and T(C, M) be the corresponding HC-clique graph. If |M| < 2(kx — 1), then we are
done. Notice that, since RED vertices cannot be created by removing edges, any eulerian, connected,
spanning subgraph of T is an HC-graph that corresponds to a BLUE Hamiltonian Cycle of G.

10

(- ==

Fig. 2. An HC-graph that contains exactly 2(kx — 1) inter-clique edges.

Let S7(C, Ms) be any spanning tree of T. Since Mg consists of k—1 edges, the graph T(5)(C', M —
Mg), obtained by removing the edges of the spanning tree from 7', contains at least x edges.
Therefore, T(%) contains a simple cycle L. The removal of the edges of I does not affect connectivity
(the edges of L do not touch the spanning tree), and subtracts 2 from the degrees of the involved
vertices. Clearly, the graph T'(C, M — L) is an HC-graph with less edges than 7". This contradicts
to the selection of 17" and H. 0

There exist HC-graphs that contain exactly 2(k — 1) edges and correspond to a Hamiltonian
Cycle using the minimum number of inter-clique edges (Figure 2). Therefore, the bound of 2(k —1)
is tight. However, even if we allow RED vertices, we are not able to construct examples of HC-clique
graphs that contain more than 2(x — 1) edges, and correspond to Hamiltonian Cycles using the
minimum number of inter-clique edges. Therefore, we conjecture that the bound of 2(x — 1) holds
for any graph and any partition into s cliques. An inductive (on the cardinality of V') application
of Lemma 9 suggests that this conjecture is equivalent to the following:

Conjecture 12. For any Hamiltonian graph G(V, E) of 2k — 1 vertices and any partition of V into
k cliques, there exists at least one Hamiltonian Cycle not entirely consisting of inter-clique edges.

The previous conjecture is very similar to a theorem proved by C.A.B. Smith in 1946. It states

that the number of Hamiltonian Cycles that contain any given edge of a cubic graph (i.e. a simple
regular graph of degree 3) is even. A simple algebraic proof of this theorem can be found in [Ber85]. If
we only consider Hamiltonian graphs, Smith’s Theorem can be applied to graphs G(V, F) consisting
of a Hamiltonian Cycle and a perfect matching. On the other hand, Conjecture 12 has a weaker
conclusion than Smith’s Theorem, but it is applicable to the graphs consisting of a RED Hamiltonian
Cycle and & cliques of arbitrary cardinalities.
Remark. Notice that our algorithm works for all graphs, integers x > 1, and partitions into &
cliques. Also, any graph can be partitioned into a (non-constant) number of cliques in polynomial
time (e.g. maximum matching). Hence, any (deterministic) algorithm that (i) exploits a partition
into k cliques for deciding Hamiltonicity, and (ii) works for all graphs, integers £ > 1, and partitions
into k cliques (as our algorithm does), should run in time exponential in & (e.g. nC), 20("‘)), unless
NP has (deterministic) subexponential simulations.

The proof of Lemma 11 is related to the Minimum Kulerian Subgraph problem. Given a con-
nected, eulerian (multi)graph G(V, £), the Minimum Eulerian Subgraph problem is to find a con-
nected, eulerian, spanning subgraph of G with the minimum number of edges. Clearly, G con-
tains a Hamiltonian Cycle iff there exists a connected Fulerian Subgraph with exactly |V| edges.
Thus, Minimum Eulerian Subgraph is A"P-complete, because any connected graph becomes eule-
rian (multigraph), if we double its edges. Clearly, this transformation does not affect the size the
longest simple cycle. Consider the following heuristic: delete the edges of a minimum spanning tree
from G, and while the residual graph contains more than n — 1 edges, delete the edges of a simple
cycle. This simple heuristic can be implemented in polynomial time. Additionally, the resultant
graph is connected, eulerian and contains at most 2(n — 1) edges. Thus, it is a 2-approximation for
the Minimum Kulerian Subgraph problem. 0

11

4.1 A Reduction from TSP to Hamiltonian Cycle

Next, we prove that, given a graph G(V, £) and a partition of V into constant number of cliques,
the corresponding instances of TSP(1,2) and Graph TSP can be reduced (in polynomial time) to
the Hamiltonian Cycle problem.

Theorem 13. Given a connected graph G(V, E) of n vertices and a partition of V into x > 1
cliques, an optimal solution to the corresponding Graph TSP/TSP(1,2) instance can be found in

time O (n“(2”+3)) /O (n”(z""'l)) .

Proof. Let A be the algorithm of Theorem 7. At first, we prove the claim for Graph TSP. Let
T(C, M) be the clique graph of G, and Ts(C, Mg) be any spanning tree of 7". Since 71" is connected,
the total length of the edges of Tg is k — 1. For each edge e € Mg, we add an edge e’ parallel to e.
Namely, if the cliques C; and C; are joined in T's by an edge e = {v,w}, v € C;,w € C;, we add
an edge ¢/ = {w',v'}, v € Cy,w' € C;, where v/, w' are different from v, w, if |Cy|, |C;| suffice. The
length of €’ is at most 3 (at most 1 for {v’, v}, 1 for {v, w}, and at most 1 for {w, w'}). Let Mg be
the resultant edge set. The Minimum Spanning Tree heuristic results in a tour of length no more
than the total length of the edges of Mg. Therefore, TSPs < n + 2(k — 1), and any optimal tour
contains at most 2(k — 1) non-edges of G.

We can find an optimal tour, by calling A at most K = (’)(n‘*("_l)) times with input the graphs
Gi(V,EUN;),i=1,...,K. The sets N; are all possible subsets of non-edges of G with at most
2(k — 1) elements, including the empty one. Let G; be a Hamiltonian graph, such that the edges
contained in the corresponding set N; are of minimum total length. Then, the Hamiltonian Cycle
produced by A(G;) is an optimal tour for G.

It is easy to check that the length of an optimal tour for the corresponding TSP(1,2) instance
is at most n + £ — 1. Therefore, at most (’)(nQ(”_l)) calls to the algorithm A are required for

computing an optimal tour for TSP(1,2). 0

Remark. Obviously, Conjecture 12 implies that, given a graph G(V, F) and a partition of V into &

cliques, optimal solutions for TSP(1,2) and Graph TSP can be computed in time n@),

5 Approximating TSP in Graphs with Small Diameter

In this section, we extend the ideas of the %—approximation algorithm for TSP(1,2) [PY93] so as to
improve the approximation ratio for T'SP in graphs with diameter 3 and 4. First, we study graphs
that contain a perfect, triangle-free 2-matching, and we obtain a %-approximation algorithm, if the

%—approximation, if the diameter is 4. Also, we obtain a 22-approximation

diameter is 3, and a =
algorithm for general graphs with diameter 3. Qur algorithms are based on the use of 2-matchings
as a relaxation for TSP.

A 2-matching M, of a graph G(V, E) is a subset of edges (My C F), such that any vertex of V'
has degree at most 2 in M, (cf. [Har84] for a detailed study). A 2-matching is called simple, if no
edge of F is included in M; more than once (i.e. My does not contain cycles of length 2), and it is
called perfect, if all the vertices of V' have degree exactly 2. The computation of a maximum simple
2-matching of a graph is a combinatorial optimization problem, that has been extensively studied.
If the edges of F are weighted, then we seek a simple 2-matching of maximum weight, otherwise we
seek a simple 2-matching of maximum cardinality. Hartvigsen [Har84] described polynomial time,
primal-dual algorithms for the computation of a maximum weighted, simple 2-matching, and a
maximum cardinality, simple, triangle-free 2-matching. Moreover, he conjectured that there exists
a polynomial time, primal-dual algorithm for the computation of a maximum weighted, simple,

triangle-free 2-matching (cf. [CW9T]).

12

Fig. 3. An example of cycle patching.

Obviously, matchings of maximum weight can be translated to matchings of minimum length
(and vice versa), by setting w;; = W —d,;, for some large enough W. It is well known that a perfect,
simple, k-cycle-free, 2-matching of minimum length is a natural relaxation for 'SP, since any tour
is such a 2-matching by itself. Moreover, the relaxation becomes tighter as s tends to |V| — 1.

The algorithm of Papadimitriou and Yannakakis for TSP(1,2) uses the well-known technique
of subtour patching. Two cycles (subtours) can be patched together by picking one edge in each,
deleting these two edges, and connecting the four end vertices in any one of the other two ways
(Figure 3). The fact that cycles with 2-edges can be patched together at no additional cost is crucial
to the analysis of [PY93]. Clearly, this is not true for instances of Graph TSP with diameter greater
than 2. However, in case of Graph TSP, the extra cost incurred can be bounded if the diameter of
the graph is very small (i.e. 3 or 4);

Next, we obtain improved approximation algorithms for TSP in graphs, that have diameter 3
or 4, and contain a triangle-free 2-matching. This class of graphs is decidable in polynomial time
and strictly includes the class of Hamiltonian graphs with diameter at most 4.

Theorem 14. Let G(V, F) be a graph of diameter }(3), such that F contains a perfect, simple,

triangle-free 2-matching. Then Graph TSP in G is approximable in polynomial time within %(%)

Proof. Wlog. we consider connected input graphs G(V, E), |V| = n. We can use the algorithm of
Hartvigsen [Har84] for computing a perfect, simple, triangle-free 2-matching of length n, because GG
is assumed to contain such a 2-matching. Let L be the set of the cycles of an optimum 2-matching.
We assume that |L| > 1, otherwise we are done. We form a bipartite graph B with vertex classes
L and V. The graph B contains an edge from a cycle [€ I to a vertex v € V, if v does not belong
to | and there exists an edge {w,v} € F from a vertex w of [to v.

We start with the case that GG is Hamiltonian, and TSPg = n. Since GG is Hamiltonian, we can
find a matching in B covering all cycles in L. Then, we construct a directed graph D(L, A). The
vertex set of D corresponds to the cycles of L, and an arc (I,I') € A, if | is matched in B with a
vertex v of I’. Obviously, since any cycle of I is matched with exactly one vertex v, the graph D is
a function, i.e. any vertex of D has outdegree 1. The following lemma is proved in [PY93]:

Lemma 15 [PY93]. Any function D has a spanning subgraph consisting of vertez-disjoint in-trees
of depth 1 and paths of length 2. Moreover, such a decomposition can be found in polynomial time.

By the construction of D, any arc (I,I') € A corresponds to an edge {v,v'} € F, such that »
is in cycle I, and v’ is the vertex of I’ to which [is matched. Therefore, if two arcs have the same
head !’ in D, then the corresponding edges are incident to distinct vertices of GG. Clearly, this may
not be the case if " is the head of one arc and the tail of another one.

We decompose D as indicated by Lemma 15. All the cycles that belong to the same component
are merged together. If a component is an in-tree, then it consists of a cycle [(the root), and other
cycles Iy, ... I, each of them adjacent to a different vertex vy, ..., v; of [. We go around the cycle
lin a clockwise direction, starting from any vertex of [, that is not connected to a cycle [;, if such a
vertex exists, or from an arbitrary vertex of [, otherwise. Whenever we encounter a vertex v; (the

13

43)

Fig. 4. The three cases of cycle merging.

mate of a cycle /;), we look at the next vertex of [. If the next vertex is not a mate of a cycle /;,
1 <j <k j#1i,then we merge the cycle I; with [as shown by Figure 4.a. Otherwise (the next
vertex is the mate of a cycle /;), we merge [; and [; with [as shown by Figure 4.b.

If a component is a path of length 2, it corresponds to three cycles. If the two edges are incident
to the same vertex of the middle cycle (because it is the head of one arc and the tail of another
arc), then the three cycles are merged as shown by Figure 4.c. Otherwise, this case can be handled
as a special case of either Figure 4.a or Figure 4.b.

In the case of Figure 4.b, the non-edge may be of length 5. However, since the diameter of GG
is at most 4, the non-edge has length at most equal to the diameter of the graph. In the case
of Figure 4.c, one of the non-edges is of length at most 4 (3, if diam(G) = 3). Also, in case of
Figure 4.a, the non-edges are of length at most 3. Then, if the graph has diameter 3, all the cycles
can be patched together at no additional cost, because they contain at least one edge of length 3.
Otherwise, we have to add 1 to the cost of the merging of Figure 4.a. Then, we can patch all the
cycles together at no additional cost.

Lemma 16. The resultant tour is of length at most 1in (at most in if diam(G) = 3).

Proof. The length of the resultant tour is n (the length of the 2-matching) plus the cost of all
mergings. The extra cost of the merging of Figure 4.a is 2. This cost is charged to the vertices of
the cycle [; (at least 4), to v;, and to the neighbour of v; in [, which is not charged by any other
merging. Therefore, each vertex is charged with at most 15 The merging of Figure 4.b costs 3 (2
if the diameter of GG is 3), and the vertices of the cycles I; and [; are charged. Thus, each vertex
is charged with at most 2 (g, if diam(G) = 3). Finally, the merging of Figure 4.c costs 4 (3, if
diam(G) = 3) and at least 12 vertices are involved. Each vertex is charged with at most £(%).
Clearly, no vertex is charged by two mergings.

If the diameter of G is 3, the resultant cycles can be patched together at no additional cost.
Since, each vertex is charged with at most %, the bound on the length of the tour follows.

If the diameter of GG is 4, two cycles can be patched together at no additional cost, only if they
both contain edges of length 4. Thus, we have to add 1 to the cycles produced by the merging 4.a.
Let the cycles [and [q,...,[; form an in-tree, such that all mergings fall in case 4.a. If £ = 1, then

14

at least 8 vertices are involved, and the total cost is 3. Otherwise, at least 4k + 2k = 6k vertices
are involved, and the total cost is 2k + 1. Obviously, each vertex is charged with at most %, and

the claim about the length of the tour follows. 0

Next, we consider the case that G is not Hamiltonian, and TSPg > n. As before, we start with
an optimum 2-matching, we form the bipartite graph B, and we find a maximum matching in B.
Since G is not Hamiltonian, this matching may not cover all the cycles. Again, we construct the
directed graph D(L, A), with (1,1') € A, whenever [is matched to a vertex of /. In this case, the
graph D may be a partial function, i.e. the unmatched cycles have outdegree 0. We can decompose
D asindicated by Lemma 15. The resultant spanning subgraph consists of in-trees of depth 1, paths
of length 2, and some trivial components (isolated vertices), which are unmatched cycles. We merge
the cycles of the non-trivial components as before. The produced cycles can be patched together to
one large cycle /1 at no additional cost. Let nq be the number of vertices that are included in /7. The
analysis of Lemma 16 implies that each vertex of [; is charged with at most 3 (3, if diam(G) = 3).

Let I be the set of cycles associated with the trivial components of the decomposition of D. Let
[,I' be any cycles in I. Obviously, there do not exist 1-edges that join a vertex of [to a vertex of I,
because the members of I are unmatched cycles. Since the graph G is connected, any cycle [€ [is
joined by an 1-edge to the cycle /[y produced by the non-trivial components of D. If we merge two
cycles connected by an edge of length 1, the additional cost is at most 2 (Figure 3). Thus, we can
merge all the isolated cycles with {1 at a cost at most 2|7].

Let vq,...,v,, v be an optimum tour and U be the set of vertices v; such that the edge {v;, v;41}
has length at least 2 (non-edge), v; belongs to a cycle [, and v;41 belongs to a different cycle /’. Let
z be the number of cycles that contain a vertex from U. Obviously, the optimum tour has length
at least n 4+ z. Moreover, given the optimum tour, we can easily obtain a matching in B with at
most z cycles unmatched. Therefore, |I| < z. Additionally, if ng = n — ny is the number of vertices
belonging to the isolated cycles of I, then |I| < Z2.

Since the length of the 2-matching is n, the total length of the resultant tour Hg is:

5
I(Hz) < n+ En1+2|1|

< n—}—in —}—in —I—lz

= 1271712773
17

< TSP

< 1 SPe

It is straight forward that, if the diameter of G is 3, the same arguments provide a ratio of % 0

If the input graph does not contain a perfect, simple, triangle-free, 2-matching, we only know
how to compute (in polynomial time) an optimum perfect, simple 2-matching, that may contain
triangles. Consequently, a careful analysis is needed so as to obtain an improved approximation
algorithm for the graphs of diameter 3, that do not contain a perfect, triangle-free 2-matching.

Theorem 17. Graph TSP restricted to graphs of diameter 3 is approzimable in polynomial time
within a factor of %

Proof. We assume that G(V, E), |V| = n, is a connected graph that does not contain a perfect,
simple, triangle-free 2-matching. Otherwise, we can use the %-approximation algorithm of The-
orem 14. Let dg(v,u) be the length of the shortest path between a vertex pair » and u in G,
and G be a complete weighted graph on vertex set V', such that, for all vertex pairs v,u € V,
w(v,u) = W — dg(v,u). We start with computing an optimum weighted, simple 2-matching in G
(polynomial time algorithms are described in [Har84, PM94]).

15

Proposition 18. If W > diam(G) + 1, then any mazimum weighted, simple 2-matching of G is
also perfect.

Proof. Let M} be a maximum weighted, simple 2-matching of G, and V; C V be a set of vertices
that does not belong to a cycle of Mj. Clearly, if V; = (), then we are done. It is easy to verify
that if |V3| > 3, then we can connect the corresponding connected components to a cycle by adding
edges/weight to MJ. Moreover, this can be performed without creating any cycles of length 2.

By connectivity of GG, any vertex v € V7, that is isolated in M7, is connected by an edge e, € £
to a cycle | of M}. Therefore, if we use e, for merging v with [, the weight of M} increases by at
least W — 2. If v, w € V; are matched to each other by an edge of F, then at least one of them
(wlog. v) is connected by an edge e, € E to a cycle [of Mj. Therefore, if we use e, for merging v
and w with [, the weight of M7 increases by at least W — diam(G). O

Let an optimum perfect, simple 2-matching of G that contains ny edges of length 2, and ng
edges of length 3. Obviously, such a matching covers all the vertices of V' with vertex disjoint,
simple cycles. A cycle is called non-pure, if it contains an edge of length more than 1. Otherwise, it
is called pure. Additionally, TSPg > n 4+ ny 4+ 2n3. Clearly, if two non-pure cycles contain 3-edges,
then they can be patched together at no additional cost. The same holds, if an 1-edge connects a
vertex of a pure cycle with an end vertex of a 3-edge of a non-pure cycle. Therefore, we can assume
that we start from a 2-matching with the following properties: (i) all the 3-edges are included in
a single non-pure cycle I3, and (ii) no 1-edge joins an end vertex of a 3-edge of /3 to a vertex of a
pure cycle.

Again, we form the bipartite graph B, but the first vertex class of B only contains vertices
corresponding to the pure cycles. As before, we find a maximum cardinality matching in B, but
since (G is not Hamiltonian, such a matching may not cover all the pure cycles. Similarly to the
non-Hamiltonian case of Theorem 14, we construct the directed graph D, which may be a partial
function. Again, we decompose D as indicated by Lemma 15 into in-trees of depth 1, simple paths
of length 2, and isolated vertices. We also merge the cycles in the non-trivial connected components
as in Figure 4, but we amortize the merging costs in a different way.

Notice that some pure cycles of I, may be matched to a vertex of a non-pure cycle. However,
a non-pure cycle cannot be the tail of an arc, and the proof of Lemma 15 implies that a non-pure
cycle cannot be involved in a path of length 2. Therefore, a non-pure cycle can be either the root
of an in-tree, or an isolated vertex.

In case of a path of length 2, the merging cost is amortized to all the vertices involved, and each
vertex is charged with at most %. In case of Figure 4.b, the additional cost is 2, and it is amortized
to the vertices of the cycles [; and [; (at least 6). In case of Figure 4.a, the additional cost is 2.
Each vertex of the cycle [; is charged with %, and the vertices v and v; are charged with at most %

The cycles obtained from the non-trivial components of D), and the non-pure cycle I3 can be
merged to a single cycle /1 at no additional cost, because each of them contains at least one 3-edge.
Let I, be the set of the remaining isolated non-pure cycles, and I; be the set of the remaining
isolated pure cycles. Fach cycle I € I; can be merged to [; at a cost at most 1, because it contains
at least one edge of length 2. This cost is amortized to the vertices of [(at least 3). Each cycle of I
can be merged to the current partial tour at an additional cost at most 2, because it is connected
by an 1-edge to a vertex of the partial tour.

Notice that, if the non-pure cycle I3 is the root of an in-tree of D, then the property (ii) implies
that each vertex charged is preceded by an edge of length at most 2. If I3 is isolated in D), then it
is merged at no additional cost. Therefore, at least n3 vertices do not charged at all. Furthermore,
the remaining vertices of the non-pure cycles (at least ny) are charged with at most 15 Let ny be
the number of the vertices of the isolated pure cycles of I. Clearly, at most n’ = n —ny — ny — n3
vertices are charged with at most %, by the mergings of the cycles associated with the non-trivial
components of D.

16

The cardinality of I; cannot be more than %-. Additionally, if U and z are defined as in the
proof of Theorem 14, then |I1| < z, and TSPg > n + max{ny + 2n3, z}. Clearly, the length of the
resultant tour Hq is:

4 n
I(He) < ndng+2n34 -0+ — + 2|0

9 3
< n+4ng+2n3+ n—}———}—ln —}—gz
- PTER T Ty T T s
< n+7(n +ne+mn +n)+n<+——l>+2n<1_l>+gz
- B : 15 \" 730/ " 15
22 13 23 9
< pnt Ene tog(2ne) + 22
22 3 9
< 5" + 15(712 + 2n3) + 157
< 22(n + max{ng + 2n3, z})

15
g

Remark. 1t is not hard to verify that Proposition 18 also holds for maximum weighted, simple,
triangle-free 2-matchings. In [Har84], a polynomial time algorithm for the weighted case of maxi-
mum simple, triangle-free 2-matching was conjectured (see also [CW97]). If this conjecture is true,
we can extend the proof of Theorem 14 so as to obtain a %(7) approximation algorithm for TSP
in graphs with diameter 4(3).

6 Conclusions

An interesting open problem is to consider the approximability of dense instances of Graph TSP
comparing with the approximability of general instances. The proof of Theorem 1 only implies
that dense instances of Graph TSP are essentially as hard to approximate as general instances of
TSP(1,2). Hence, it may be possible for dense instances of Graph TSP to be approximated within
factors less than %

The major obstacle in obtaining an approximation preserving reduction from general instances
of Graph TSP to dense ones is to relate the distances on the resultant graph with the distances on
the original graph. In particular, some vertex pairs may be very close in the resultant dense graph,
while they are far apart in the original one. If we try to start from graphs of constant diameter
(because a dense graph always has a constant diameter), it seems that we have to solve a problem
similar to PARTITION INTO CLIQUES, which is NP-complete.

On the other hand, we prove that a variant of the algorithm of Papadimitriou and Yannakakis
for TSP(1,2) achieves an improved approximation ratio for TSP in graphs of very small diameter.
However, this algorithm requires some additional ideas so as to be applied to dense instances of
Graph TSP.

Another direction for further research is the conjecture that, given a graph G(V,FE) and a
partition of V into k cliques, G is Hamiltonian iff there exists a Hamiltonian Cycle containing at
most 2(k — 1) inter-clique edges. In this paper, we prove the conjectured bound for graphs and
partitions that contain at least one Hamiltonian Cycle H, such that any vertex of V has degree
at most 1 in the set of inter-clique edges of H. Moreover, we show that the conjectured bound
is equivalent to a generalized version of Smith’s Theorem on the number of Hamiltonian Cycles
contained by cubic graphs.

17

References

[Aro96] S. Arora. Polynomial Time Approximation Schemes for Euclidean TSP and Other Geometric Prob-
lems. Proc. of the 37th IEEFE Symposium on Foundations of Computer Science, pp. 2-12, 1996.

[AGKKW98] S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. Polynomial Time Approximation
Scheme for Weighted Planar Graph TSP. To appear in Proc. of the 9th ACM-STAM Symposium on
Discrete Algorithms, 1998.

[ATMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of
approximation problems. Proc. of the 33th Annual IEEFE Symposium on Foundations of Computer
Science, pp. 14-23, 1992.

[Ber85] C. Berge. Graphs (second edition). North Holland, 1985.

[Chr76] N. Christofides. Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem. J.F.
Traub (editor) Symposium on new directions and recent results in algorithms and complerity, page

441, 1976.

[CW97] W.H. Cunningham and Y. Wang. Restricted 2-Factor Polytopes. A preliminary version is available
from http://math.uwaterloo.ca/7Ewhcunnin/preprint.html, 1997.

[DSSTY7] J. Diaz, M.J. Serna, P. Spirakis, and J. Tordn. Paradigms for Fast Parallel Approzimability.
Cambridge University Press, 1997.

[FVK98] W. Fernandez de la Vega and M. Karpinski. On Approximation Hardness of Dense TSP and other
Path Problems. Available from http://cs.uni-bonn.de/info5/publications/CS-1998-en.html,
1998.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of N'P-
Completeness. Freeman, San Francisco, 1979.

[GR88] A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University Press, 1988.

[Goe95] M. Goemans. Worst-case Comparison of Valid Inequalities for TSP. Mathematical Programming 69,
pp. 335-349, 1995.

[GKP95] M. Grigni, E. Koutsoupias, and C.H. Papadimitriou. An Approximation Scheme for Planar TSP.
Proc. of the 36th IEEE Symposium on Foundations of Computer Science, pp. 640-645, 1995.

[Har84] D.B. Hartvigsen. Exiensions of Matching Theory. PhD Thesis, Carnegie-Mellon University, 1984.

[1S86] A. Israeli and Y. Shiloach. An improved algorithm for maximal matching. Information Processing
Letters 33, pp. 57-60, 1986.

[Kar97] M. Karpinski. Polynomial Time Approximation Schemes for Some Dense Instances of A"P-hard
Optimization Problems. Invited Talk in School and Workshop on Randomized Algorithms in Sequen-
tial, Parallel, and Distributed Computing, October 1997. See also Proc. of the 1st Symposium on
Randomization and Approzimation Techniques in Computer Science, pp. 1-14, 1997.

[KMSV94] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On Syntactic versus Computational Views
of Approximability. Proc. of the 35th IEEE Symposium on Foundations of Computer Science, pp.
819-830, 1994.

[LLRS85] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. The Travelling Salesman
Problem: A Guided Tour of Combinatorial Optimization. John Wiley, 1985.

[PY91] C.H. Papadimitriou and M. Yannakakis. Optimization, Approximation and Complexity Classes.
Journal of Computer and System Sciences 43, pp. 425-440, 1991.

[PY93] C.H. Papadimitriou and M. Yannakakis. The Traveling Salesman Problem with Distances One and
Two. Mathematics of Operations Research 18(1), pp. 1-11, 1993.

[PM94] J.F. Pekny and D.L. Miller. A Staged Primal-Dual Algorithm for Finding a Minimum Cost Perfect
Two-Matching in an Undirected Graph. ORSA Journal on Computing 6(1), pp. 68-81, 1994.

ECCC ISSN 1433-8092
18 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

