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Abstract

We prove an exponential lower bound for tree-
like Cutting Planes refutations of a set of clauses
which has polynomial size resolution refutations.
This implies an exponential separation between
tree-like and dag-like proofs for both Cutting
Planes and resolution; in both cases only super-
polynomial separations were known before [27,
18, 8]. In order to prove this, we extend the lower
bounds on the depth of monotone circuits of Raz
and McKenzie [24] to monotone real circuits.

In the case of resolution, we further improve
this result by giving an exponential separation of
tree-like resolution from (dag-like) regular reso-
lution proofs. In fact, the refutation provided to
give the upper bound respects the stronger restric-
tion of being a Davis-Putnam resolution proof.
This extends the corresponding superpolynomial
separation of [27].

Finally, we prove an exponential separation be-
tween Davis-Putnam resolution and unrestricted
resolution proofs; only a superpolynomial separa-
tion was previously known [12].

1 Introduction

The motivation to work on the proof length
of propositional proof systems comes from two
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sides. First, by the work of Cook and Reck-
how [10], we know that the claim that for ev-
ery propositional proof system there is a class of
tautologies that requires superpolynomial proof
size is equivalent to NP # co-N P. This connec-
tion explains the interest in developing combina-
torial techniques to prove lower bounds for differ-
ent proof systems. The second motivation comes
from the interest in studying efficiency issues in
Automated Theorem Proving. The question is
which proof systems have efficient algorithms to
find proofs. The most widely used proof sys-
tem in implementations is resolution or restric-
tions of resolution. What we will show in this
paper is that proving propositional proof com-
plexity lower bounds has something to say about
the non-efficiency of various strategies for finding
proofs.

Haken [15] was the first who proved expo-
nential lower bounds for unrestricted resolution.
Chvétal and Szemerédi [6] showed that in some
sense, almost all classes of tautologies require ex-
ponential size resolution proofs (see [3] for simpli-
fied versions of these results). These exponential
lower bounds are bad news for automated the-
orem provers, since they mean that many times
the time used in finding proofs will be exponen-
tially long in the size of the tautology, given that
the shortest proofs are. The next question is
what about the classes of tautologies that have
polynomial size proofs? Can we find these proofs
efficiently? [3, 7] give weakly exponential time
(2°) algorithms for finding resolution proofs.
But, can we do better? [17, 1] give weak evi-
dence that the answer is negative.

A commonly used strategy for finding proofs is
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to reduce the search space by defining restricted
versions of resolution that are still complete. One
possibility is to restrict to proofs that are tree-
like, which would be a good strategy, given that
[3, 7] have quasipolynomial algorithms for finding
tree-like proofs. Here we prove an exponential
separation between tree-like resolution and res-
olution, showing that finding tree-like resolution
proofs cannot be an efficient strategy for finding
resolution proofs. Until now only superpolyno-
mial separations were known [27, §8].

Many strategies for finding resolution proofs
are described in [26], but very little theoret-
ical work has been done until now. Goerdt
[13, 12, 14] gave several superpolynomial separa-
tions between resolution and some restricted ver-
sions of it. In particular, he gave a separation be-
tween Davis-Putnam resolution and unrestricted
resolution. We improve this result by giving an
exponential separation between Davis-Putnam
and unrestricted resolution, showing that using
the Davis-Putnam restriction is not, in general,
a good strategy for finding resolution proofs.

The Cutting Planes proof system (CP) is a
refutation system based on manipulating inte-
ger linear inequalities for which the task of find-
ing hard-to-prove tautologies is solved. [16] were
the first to show such a result in the restricted
case of C'P proofs whose underlying graph is a
tree. Pudlédk [23] and Cook and Haken [9] give
general circuit complexity results from which a
exponential lower bounds for CP follow. Noth-
ing is known about automatization of C' P proofs.
Since there is an exponential separation between
CP and Resolution (CP is more efficient) it
would be nice to find an efficient algorithm for
finding C'P proofs. A question to ask is if trying
to find tree-like C'P proofs would be an efficient
strategy for finding Cutting Planes proofs.

One of the authors [18] gave a superpolynomial
separation between tree-like C'P and dag-like C'P
(this was previously known for a restricted form
of CP from [4]). Here we improve that separa-
tion to exponential. This means again that try-
ing to find tree-like proofs is not a good strategy.

This exponential separation is a consequence
of extending the lower bounds of [24] to the case
of real monotone circuits. As in [24] we prove

an 2(n¢) lower bound on the depth of monotone
real circuits computing a certain monotone func-
tion GEN, in P. This also implies an Q(2™)
lower bound on the size of monotone real formu-
las computing GEN,. This latter result allows
us to obtain an exponential lower bound for the
size of tree-like C'P proofs for a formula associ-
ated to GEN,,, using the interpolation technique
of [21, 23].

The only propositional proof systems that we
know are automatizable are algebraic proof sys-
tems like Hilbert’s Nullstellensatz [2] and Poly-
nomial Calculus [7]. On the other hand Frege
proof systems (and any system that polynomi-
ally simulates Frege) are not automatizable, as-
suming factoring is hard [22, 5].

The paper is organized as follows: in Section 2
we give basic definitions of the proof systems we
consider. Section 3 has the definitions of mono-
tone real circuits, and the proof of the depth sep-
aration for them, extending the results of Raz
and McKenzie. Section 4 gives the exponential
separations between tree-like CP and CP, tree-
like Resolution and Resolution and tree-like C'P
and bounded-depth Frege systems, and also the
exponential separation between tree-like resolu-
tion and regular resolution. Finally section 5
has the exponential separation between Davis-
Putnam resolution and Resolution.

2 The Proof Systems

Resolution is a refutation proof system for for-
mulas in CNF based on the following inference

rule:
Cvz Dvz

CvD
A Resolution refutation for an inital set ¥ of
clauses is a derivation of the empty clause from
3} using the above inference rule. Several restric-
tions of the resolution proof system are known.
Here we consider the following two: (1) the reg-
ular resolution system in which the proofs are
restricted in such a way that any variable can
be eliminated at most once in any path from an
initial clause to the empty clause; (2) the Davis
Putnam resolution system in which the proofs
are restricted in such a way that there exists a
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sequence of the variables such that if a variable
z is eliminated before a variable y on any path
from an initial clause to the empty clause, then
z is before y in the sequence.

Cutting Planes (CP) is a proof system op-
erating with linear inequalities of the form
> icra;iz; > k, where the coefficients a; and k
are integers. The rules of CP are addition of
two inequalities, multiplication of an inequality
by a positive integer and the following division
rule:

Yicr @i > k
Sier §oi > [§]
where b is a positive integer that evenly divides
all a;, 7 € 1.

A CP refutation of a set E of inequalities is a
derivation of 0 > 1 from the inequalities in £ and
the axioms x > 0 and —z > —1 for every variable
x, using the rules of C'P. It can be shown that a
set of inequalities has a CP-refutation iff it has
no {0, 1}-solution.

Cutting Planes can be used as a refuta-
tion system for propositional formulas in con-
junctive normal form: note that a clause
Viepziv Vjen Z; is satisfiable iff the inequal-
ity 3iep @i — Xjen®j = 1 —|N| has a {0,1}-
solution. It is also well-known that C'P can sim-
ulate Resolution [11].

A proof system is tree-like if the proofs are re-
stricted so that every line in a proof is used at
most once as a premise of an inference. Other-
wise we will call it dag-like.

?

3 Monotone Real Circuits

A monotone real circuit is a circuit of fan-in 2
computing with real numbers where every gate
computes a nondecreasing real function. This
class of circuits was introduced by Pudlék [23].
We require that monotone real circuits output
0 or 1 on every input of zeroes and ones only,
so that they are a generalization of monotone
boolean circuits. Rosenbloom [25] shows that
they are strictly more powerful than monotone
boolean circuits.

The depth and size of a monotone real circuit
are defined as usual, and we call it a formula if

every gate has fan-out at most 1.

For a monotone boolean function f, we denote
by dr(f) the minimal depth of a monotone real
circuit computing f, and by sg(f) the minimal
size of a monotone real formula computing f.

The method of proving lower bounds on the
depth of monotone boolean circuits using com-
munication complexity was used by Karchmer
and Wigderson [19] to give an Q(log?n) lower
bound on the monotone depth of st-connectivity.
Using the notion of real communication com-
plexity introduced by Krajicek [20], one of the
authors [18] showed the same lower bound for
monotone real circuits.

The monotone function GEN, of n3 inputs
tape 1 < a,b,c < n is defined as follows: For
¢ < n, we define the relation - ¢ (c is generated)
recursively by

Fc iff ¢ =1 or there are a,b <n
with Fa,Fbandt,p.=1.

Finally GEN,(f) = 1 iff - n. From now on we
will write a,b ¢ for t5p . = 1.

Recently, Raz and McKenzie [24] gave a lower
bound of 2(n¢) for some ¢ > 0 on the depth of
monotone boolean circuits computing GEN,,. We
show that their method applies to monotone real
circuits:

Theorem 1 For some ¢ > 0 and sufficiently
large n

dg(GEN,) > Q(nf) and sg(GEN,) > 29

Real Communication Complexity

Let R C X XY x Z be a multifunction, i.e. for
every pair (z,y) € X x Y, there is a z € Z with
(z,y,2) € R. A real communication protocol for
R is executed by two players I and 11, where 1
computes a function f; : X x {0,1}* — R and
II computes a function frr : ¥ x {0,1}* — R
Given inputs z € X, y € Y, the players generate
a sequence w of bits as follows:

wo = A

wnrr e 4 WEOIE fr(,wp) > fri(y, wi)
LT el else
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If there is a function g : {0,1}¥ — Z such that
V.Z'EvaEY ('Tayag(wk)) €ER,

then we say that the protocol solves R in k
rounds. The real communication complezity
CCRg(R) is the minimal number & such that there
is a real communication protocol solving R in k
rounds.

For a natural number n, let [n] denote the
set {1,...,n}. Let f : {0,1}" — {0,1} be
a monotone boolean function, let X := f~1(1)
and Y := f71(0), and let the multifunction
R; C X xY x [n] be defined by

(z,y,i) € Ry iff z;=1andy; =0

The Karchmer-Wigderson game for f is defined
as follows: Player I receives an input z € X and
Player II an input y € Y. They have to agree
on a position i € [n| such that (z,y,i) € Ry.
Sometimes we will say that R; is the Karchmer-
Wigderson game for the function f. There is a
relation between the real communication com-
plexity of R; and the depth of a monotone real
circuit or the size of a monotone real formula
computing f, similar to the boolean case:

Lemma 2 (Kraji¢ek [20]) Let f be a mono-
tone boolean function. Then

CCr(Ry) < dr(f) and CCr(Ry) < logsz/s sr(f) -

For a proof see [20] or [18]. Hence to establish
Theorem 1, it suffices to prove:

Theorem 3 For some ¢ > 0 and sufficiently
large n

DART games and structured protocols

Raz and McKenzie [24] introduced a special kind
of communication games, called DART games,
and a special class of communication protocols,
the structured protocols, for solving them.

For m, k € N, the set of communication games
DART(m, k) is defined as follows:

e X = [m]*. That is the inputs for the Player
I are k-tuples of elements z; € [m].

e Y = ({0,1}™)*. That is the inputs for the
Player IT are k-tuples of binary colorings y;
for [m].

e Foralli=1,... &k let e; = y;(z;) (ie. e is
the z;-th bit in ;). The relation R(z,y,z) C
X XY x Z defining the game, only depends
onei,...,e, and z. This means that we can
describe R(z,y,z) by R((e1,... ,ex),2)

e R((e1,...,ex),z) must be a DNF-Search-
Problem. This means that always exists
a tautology Fpr defined over the variables
e1,...,e such that Z is the set of terms
defining Fi and R((eq,... ,eg),2) is true if
and only if z € Z is the satisfied term of Fg.

A structured protocol for a DART game is a
communication protocol for solving the relation
R, where player I gets input z € X, player 17
gets input y € Y, and in each round, player I re-
veals the value x; for some 7, and I1 replies with
yi(z;). The structured communication complex-
ity of R € DART(m, k), denoted by SC(R), is
the minimal number of rounds in a structured
protocol solving R.

The main theorem of [24] showed that for
suitable m and k, the deterministic communi-
cation comlexity of a DART game cannot be
much smaller than that of a structured proto-
col. We shall show the same for its real com-
munication complexity. Obviously, a structured
protocol solving R in r rounds can be simulated
by a real communication protocol solving R in
7+ ([logm] + 1) rounds. Conversely, the follow-
ing holds:

Theorem 4 For every relation R €
DART (m, k), where m > k'4,

CCr(R) > SC(R) - Q(logm)
The proof is similar to the proof of the corre-

sponding theorem in [24] and is given in Ap-
pendix A.

A DART game related to GEN,

The communication game PYRGEN(m, d) is de-
fined as follows:
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Let Pyrq := {(i,7); 1<j<i<d}. We re
gard the indices as elements of Pyrg, so that
the inputs for the two players I and I are re-
spectively sequences of elements z;; € [m]| and
vi,j € {0,1}™ with (4, j) € Pyrg, and we picture
these as laid out in a pyramidal form with (1, 1)
at the top and (d, j), 1 < j < d and the bottom.
The goal of the game is to find either an element
colored 0 at the top of the pyramid, or an el-
ement colored 1 at the bottom of the pyramid,
or an element colored 1 with the two elements
below it colored 0, i.e. to find indices (¢, j) such
that one of the following holds:

1. 14 :j =1 and yl,l(:vl,l) = 0, or

2. yi,j(mi,j) = 1 and yi+1,j($i+1,j) = 0 and
Yit1,j+1(Tiv1,541) =0, or

3. 1 =d and yd,j(xd,j) =1.

Obviously, PYRGEN(m,d) is a game in
DART(m, (*$')). The following lower bound
on the structured communication complexity of
PYRGEN(m, d) was proved in [24]:

Lemma 5 SC(PYRGEN(m,d)) > d.

Hence by Theorem 4, we get
CCgr(PYRGEN(m,d)) > Q(dlogm) for m > d?8.

The following lemma shows that the real
communication complexity of PYRGEN(m,d) is
bounded by the real communication complexity
of the Karchmer-Wigderson game for GEN,, for
a suitable n.

Lemma 6 Forn:=m- (dgl) +2,
CCgr(PYRGEN(m, d)) < CCr(GEN,,).

This is proved by the same reduction used in
[24], which is presented in Appendix B. Now
Lemma 6 together with the lower bound on
CCr(PYRGEN(m,d)) obtained from Lemma 5
and Theorem 4 immediately imply Theorem 3
with € = + by taking m = d%8.

Let ¢ be an input to GEN,,. We say that n is
generated in a depth-d pyramidal fashion by ¢ if
there is a mapping m : Pyrqy — [n] such that
1,1+ m(d,j) for every j < d, m(i+1,7),m(i +
1,7+ 1) - m(i,j) for every (i,5) € Pyry 1 and

m(1,1),m(1,1) F n (recall that a,b F ¢ means
tape =1).

As the reduction in Lemma 6 produces only
inputs from GEN,,; (1) which have the additional
property that n is generated in a depth-d pyrami-
dal fashion, we can state the following strength-
ening of Theorem 1:

Corollary 7 Let n,d be as above. Every mono-
tone real formula that outputs 1 on every input
to GEN,, for which n is generated in a depth-d
pyramidal fashion, and outputs 0 on all inputs
where GEN,, is 0, has to be of size Q(27°).

The other consequences drawn from Theo-
rem 4 and Lemma 5 in [24] apply to monotone
real circuits as well, e.g. we just state without
proof the following result:

Theorem 8 There are constants e,c > 0 such
that for every function d(n) < n¢, there is a fam-
ily of monotone functions f, : {0,1}" — {0,1}
that can be computed by monotone boolean cir-
cuits of size n®Y) and depth d(n), but cannot be
computed by monotone real circuits of depth less
than c - d(n).

The method also gives a simpler proof of the
lower bounds in [18], in the same way as [24]
simplifies the lower bound of [19].

4 Separation between tree-like
and dag-like versions of Res-
olution and Cutting Planes

Cutting Planes refutations are linked to mono-
tone real circuits by the following interpolation
theorem due to Pudldk:

Theorem 9 (Pudlik [23]) Let 5,q,7 be dis-
joint vectors of variables, and let A(p,q) and
B(p,7) be sets of inequalities in the indicated
variables such that the variables P either have
only nonnegative coefficients in A(p,q) or have
only nonpositive coefficients in B(p,T).

Suppose there is a CP refutation R of A(p,q)U
B(p,7). Then there is a monotone real circuit
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C(p) of size O(|R|) such that for any vector d €
{0,1}17

C(a
Cla) =
Furthermore, if R is tree-like, then C(p) is a
monotone real formula.

0 — A(a,q) is unsatisfiable
1 — B(a,7) is unsatisfiable

We now define an unsatisfiable set of clauses
related to GEN,,. The variables p, . for a,b,c €
[n] represent the input to GEN,,. Variables ¢; j o
for (i,j) € Pyrq and a € [n] encode a pyramid
where the element a is assigned to the position
(7,7) by a certain mapping m : Pyry — [n] (cf.
Corollary 7). Finally the variables r, for a € [n]
represent a coloring of the elements by 0, 1 such
that 1 is colored 0, n is colored 1 and the elements
colored 0 are closed under generation.

The sets of clauses Gen(p, §) and Col(p,T) are
defined in Table 1. Obviously, if Gen(t, §) is sat-
isfiable for a fixed vector i € {0,1}"°, then n is
generated in a depth-d pyramidal fashion, and if
Col(t,7) is satisfiable, then GEN() = 0. Since
the variables p’ occur only positively in Gen(p, )
and only negatively in Col(p,7), Theorem 9 is
applicable, and the formula obtained from this
application satisfies the conditions of Corollary 7.
Hence we can conclude:

Theorem 10 For some ¢ > 0, tree-like CP
refutations of the clauses Gen(p,q) U Col(p,T)
have to be of size 29n°)

On the other hand, there are polynomial size
dag-like resolution refutations of these clauses.

Theorem 11 There are (dag-like) resolution
refutations of size n®Y) of the clauses Gen(p, §)U
Col(p, ).

As the proof is very similar to that of Theorem 14
below, we omit it. The following corollary fol-
lows by the last two Theorems and well-known
simulation results:

Corollary 12 The clauses Gen(p, q) U Col(p,T)
exponentially separate the following proof sys-
tems: Tree-like from dag-like Resolution, tree-
like Cutting Planes from dag-like Cutting Planes
and tree-like Cutting Planes from bounded-depth
Frege systems.

Separation of tree-like CP from regular
resolution

We now modify the clauses Col(p, 7), so that the
modified clauses allow small regular resolutions,
but in such a way that the lower bound proof still
applies. We replace the variables r, by r4; p for
a €n],1 <i<dand D € {L, R}, giving the
coloring of element a, with auxiliary indices ¢ be-
ing a row in the pyramid and D distinguishing
whether an element is used as a left or right pre-
decessor in the generation process.

The set RCol(p, ) is defined in Table 2. Due
to the clauses (11) and (12), the variables 7, p
are equivalent for all values of the auxiliary in-
dices i, D. Hence a satisfying assignment for
RCol(p,T) still codes a coloring of [n] such that
elements that can be generated from 1 are col-
ored 0, the elements from which n can be gen-
erated are colored 1, and the 0-colored elements
are closed under generation. Hence if RCol(t, )
is satisfiable, then GEN(Z) = 0.

Hence any interpolant for the clauses
Gen(p,q) U RCol(p,T) satisfies the assumptions
of Corollary 7, and we can conclude

Theorem 13 Tree-like C'P refutations of the

clauses Gen(p,q) U RCol(p,T) have to be of size
29,

On the other hand, we have the following up-
per bound on (dag-like) regular resolution refu-
tations of these clauses:

Theorem 14 There are (dag-like) regular res-
olution refutations of the clauses Gen(p,q) U
RCol(p,7) of size nPW.

Proof : First we resolve clauses (2) and (8) to get
d,j,aV Ta,d,D (13)

for1<j<d,1<a<mnandDe€{L,R}. Next
we resolve (3) and (9) to get

d1,1,aVTa1,D (14)

for 1 <a <nand D € {L, R}. Finally, from (4)
and (10) we obtain

Qi+1,5,aV Gi+1,j41,6 Vi j.eVTai+1,L VThi+1,RV Teci,D
(15)
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\/ 9i5,a

1<a<n

4d,j,aV P1,1,a

q1,1,a vV Pa,a,n

Git+1,5,0V Gi+1,j41,6 V Qi j,c V Pab,c
T

Tn

TaVThVPapeVTe

Table 1: The set Gen(p,q) is given by (1) - (4), and Col(g,7) by (5) - (7).

P1,1,aV Tad,D

ﬁa,a,n VTa,l,D
Tayi+1,LVThi+1,RV Pab,cVTci,D

'ra,i,D \4 lra,i,D

Ta,i,D V Ta,j,D

for (i,7) € Pyrq (1)
for 1 <j<dandac€[n| (2)
for a € [n] (3)
for (i,7) € Pyry—1 and a,b,c € [n] (4)
(5)
(6)
for a,b,c € [n] (7)
for a € [n] and D € {L, R} (8)
for a € [n] and D € {L, R} 9)
for (i,7) € Pyrq—1, a,b,c € [n] (10)
and D € {L,R}
for1<i<dand D€ {L,R} (11)
for 1 <i4,j<dand D € {L,R} (12)

Table 2: The set of clauses RCol(p,T).

for1 <j<i<d 1<abc<nandD €
{L, R}.

Now we want to derive g; j V74 p for every
(i,7) € Pyrg, 1 < a < nand D € {L,R}, by
induction on ¢ downward from d to 1. The in-
duction base is just (13).

For the inductive step, resolve (15) against the
clauses

Git1,4,aVTair1, . and  Giy1,j4+1,0V Thit LR >

which we have by induction, to give
Gi+1,5,a Vv Qit+1,j+1,b V Tirj,ec V Tei, D

for every 1 < a,b <n.

All of these are then resolved against two
instances of (1), and we get the desired
Qi,j,cV Tei,D-

Finally, we have in particular qi,1,4V7q,1,L,
which we resolve against (14) to get gi,1,, for ev-
ery a < n. From these and an instance of (1) we
get the empty clause. O

A proof of the upper bound in Theorem 11
can be obtained from this by simply omitting
the auxiliary indices from the variables 7,; p.
Note that the refutation given in the proof of
Thm. 14 is actually a Davis-Putnam refutation:
It respects the following elimination order

P1,1,1 --- Pn,nn

T,d,L T1,d,R Tnd,L Tn,d,R

91,d,1 ---91dmn --- 49d,d,1 --- 9d,d,n

",d-1,L --- "n,d—1,R 91,d—1,1 --- 9d—1,d—1,n

T,1,L T1,1,R Q1,11 --- Q11,0 -

5 Lower bound for Davis-

Putnam resolutions

Goerdt [12] gives a superpolynomial separation
of Davis-Putnam resolution from unrestricted
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resolution. The lower bound he gives is of the
order nfloglogn) - By applying his method to a
modification of the clauses Gen(g, q) U Col(p, ),
we can improve the separation to exponential.

We modify the clauses Gen(p, ¢) in such a way
as to make small Davis-Putnam resolution refu-
tations impossible, while still allowing for small
unrestricted resolutions. The lower bound is
proved by a bottleneck counting argument sim-
ilar to that used in [12], which is based on the
original argument of [15].

Let d > 8 be divisible by 4 and let n = d?,
and choose a mapping y : [d] x [2] — Pyr, such
that no element from column 7 is mapped to rows
between i —1 between i+1, i.e. if u(i,5) = (¢,5),
then ' ¢ {i —1,4,7 + 1}, and such that no two
elements from the same column are mapped to
the same position, i.e. if j; # jo, then p(i, 1) #
p(i,72). Such mappings are easy to construct;
note that we do not require y to be injective.

The set of clauses DPGen(p,q) is built from
Gen(p,q) by adding additional literals to some
of the clauses (2) and (4). The clauses (2) for
1<j<danda< % are replaced by

it j' bV Qdyja V P1,1,a (16)

for every b € [n], where (i',j') = u(d,a). The
clauses (4) for (i,5) € Pyrq_1, a,b € [n] and
1<c< % are replaced by

Git j'e V Qit1,5,a V Git1,541,0 V GisjeV Pab,c
(17)

for every e € [n], where (i,5') = p(i,c). Al
other clauses remain unchanged.

Proposition 15 There are (dag-like) wunre-
stricted resolution refutations of the clauses
DPGen(p,§) U Col(p,7) of size nOW).

Proof : First, from the clauses (16) and (1) derive
the original clauses (2), and from (17) and (1)
derive (4). Then apply the refutations from the
proof of Theorem 11, which of course work for
any values of n and d. O
Definition: A critical assignment « is given by

e a coloring col, € 2™ such that col,(1) =
0 and coly(n) = 1. The values a(r,) are
assigned according to col,(a).

e a set of triples G, C [n]® such that for no
triple (a,b,c) € G, cola(a) = coly(b) = 0
and coly(c) = 1. Values a(pyp.) are as-
signed according to G.

o A position (ia, jo) € Pyrq with a(gi, j,.q) =
0 for every a € [n].

e A mapping mq : Pyrg\ {ia, jo} — [n] such
that

— every triangle is counsistent with G,
i.e. for every (i,j) € Pyry 1 such that

(tarja) ¢ {(2,5), (1+1,7), (i+1,5 +1)}
(ma(i+1aj)ama(i+1’j+1)ama(iaj))

is in G,.

—if  (ia,Ja) #* (1,1), then
(ma(1,1),mq(1,1),n) € G,.

- (1,1,mq(d,j)) € G4 for every j such
that (d,j) # (ia,Ja)-

Then a(g; jm,(i,j)) = 1 and a(g;jp) = 0 for
all b # M (i, ), for every (i,7) # (ia, ja)-

A critical assignment satisfies all clauses from
Col(p,7), and all clauses from DPGen(p,q) ex-

cept for Ve (n] Gia,jaa-

Theorem 16 (Dag-like) Davis-Putnam resolu-
tion refutations of the clauses DPGen(p,q) U
1

Col(p,7) have to be of size Q(ﬁ”g).

Proof: Let an elimination order (z1,... ,zy) be
given, where N = n?® + (dgl)n + n is the number
of variables, and a Davis-Putnam refutation R of
DPGen(p, q) U Col(p,T) respecting this elimina-
tion order be given. For (i,j) € Pyrgand s < N,
let S(i,j,8) = {a < % i Qija € {z1,. .. ,xs}}.
Let (ig,70) denote the unique position in Pyry

such that there is an index sgp < N with
|S(Z'07j0a80)| = %7 and for all (Za.]) 7é (IiOajO)a
|S(i, 5, 80)| < 4. In other words, (ig,jo) is the

first position in Pyr, for which % variables g, jo,a

2
denote S(ig,jo,80)- For each 1 < k < %, let
(ik,jx) denote u(ig,a), and define Ry, = [2] \

with a < ¢ are eliminated. Let {ai,...,aq}
4
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S(ik, jk, S0), 1-e. Ry is the set of those a < % for
which g;, j, o is eliminated later than any g;, jo.q,
for1 << %. Note that |Rg| > % by definition
of (ig,jo) and by the first requirement for p.

A critical assignment « is O-critical if (iq, jo) =
(%0, jo) and my (ik, ji) € Ry, and furthermore the
following conditions hold

o (mqa(io +1,50), malio + 1,50 + 1), a) ¢ Ga
leO ;édOI‘ (1,1,ak) ¢ Ga leO =d

b iinajO > 17 then (ma(iOajO_l)aakama(iO_
17j0 - 1)) € Ga

e if 50 > 1 and jy < %9, then (ak,ma(’io,jo +
1)7ma(i0 - 15.70)) € Ga

for every 1 <k < fzi.
The next lemma shows that there are many
0-critical assignments.

Lemma 17 For every choice of pairwise distinct

values by,... ,ba with by € Ry, there is a 0-
4

critical assignment o with my(ix, jx) = by for

1<k<4

Proof: The assignment « is constructed as fol-
lows:

1. If iy < d, then values my(io + 1,750) = 1
and mq(ig+1, jo+1) = co are assigned with
% <cp,c9 < d.

2. For each (i,5) # (io,jo) for which no value
mq(7,7) has been assigned yet, i.e. (i,7) ¢
{(ilajl), Ty (i%,j%)a (ZO =+ 1,j0)3 (ZO +1,j0+
1)}, assign a value n —id < my(4,j) < n —
(1—1)d, such that no value is assigned twice.

3. Put all triples occurring in the pyramid and
those required by the definition of 0-critical
into G,, and no others, i.e. G, contains
the triple (m4(1,1),m4(1,1),n), all triples
(1,1,mqa(d, j)) for (d,j) € Pyrg \ {(ia;Jjo)}
and all triples (mq(i + 1,7),ma(i + 1,7 +
1),mq(4,7)) such that {(z,7), (¢ + 1,7), (i +
1,7+ 1)} C Pyrg\{(ta,Ja)}, and for ig > 1,
all triples (mq (30,70 — 1), ak, ma(io — 1, 5o —
1)) if jo > 1 and (ag, mq (i, Jo + 1), ma(io —
l,jo)) if jo < 19.

Figure 1: the black dot indicates (i, jo)-

4. Color all elements in rows i4,... ,d by 0,
and also all elements that are thereby forced
to have color 0 by the second clause in
the definition of critical assignment, i.e. if
(a,b,c) € G4 and a, b have already been col-
ored 0, then also c¢ is colored 0. Color all
remaining elements by 1.

To verify that « is O-critical, observe that the
only elements < % appearing in the pyramid are
the bg, so this is the only way that the values
ar can occur in the pyramid.. If 49 < d, then
as n = d® > d? + d, the elements ci,co do not
appear in the pyramid anywhere else but at (ig+
1,70), (0 + 1,70 + 1), hence no triple (¢, co, a)
gets put into G,. If ig = d, then iy # d for every
k, so no triple (1,1, ax) gets put into G,.

The elements m, (79, jo — 1) and mq(ig, 50+ 1),
if defined, cannot occur adjacent to any ai, and
so the elements mq (g — 1, jo — 1) and mq(ig —
1, 7o) are not forced to be colored 0, hence they
get colored 1. Therefore everything that is above
these positions in the pyramid gets colored 1 also,
as indicated in Figure 1.

In particular, if m,(1,1) is defined, it is colored
1, and thus n is colored 1. Hence « is critical,
and by the remarks above, O-critical. O

Now we map O-critical assignments to cer-
tain clauses in the proof. For a O-critical
assignment «, let C, be the first clause

in R such that o does not satisfy C,,
and {a < % 3 io,jo,a OCCUIS in Ca} = [%] \
{ai,... ,a%}. This clause exists because a de-
termines a path through R from V;<,<, gi,jo,a
to the empty clause such that o does not satisfy

any clause on that path. The variables g, jo.a
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with a < % are eliminated along that path, and
Tig,jo,ars - - - Qio,josaass BTYE the first among them
in the elimination order. The following lemma
shows that the clauses C,, have a certain com-
plexity, which implies that the mapping a — C,,
does not map too many 0-critical assignments to
the same clause.

Lemma 18 Let « be a 0-critical assignment and
b := mq(ik,jx). Then for every 1 <k < %, the
literal @, j, b, occurs in Cyq.

Proof: Let o be the assignment defined by
' (Gip,jo,ar) = 1 and & (z) := a(z) for all other
variables x. As gj; jo,a, does not occur in Cy, o
does not satisfy C, either. If iy < d, the only
clause from DPGen(p,q) U Col(p,7) that is not
satisfied by o/ is

qZk Tk sb v qi0+1,j0,01 v qi0+17j0+1502 v in:jOaak Vp01,02,ak

where ¢1 1= mq(ip + 1,70) and ¢y := mq(ip +
1,50 +1). If ip = d, then the only clause not
satisfied by o is

Qikvjkvbk v qio;jo:“k VplaLak :

The first item in the definition of O-critical guar-
antees that these clauses are not satisfied, and
the other two make sure that the other possi-
ble candidates, i.e. instances of (4) or (17) with
(70, 70) at the bottom of the triangle, are satis-
fied.

In both cases there is a path through R leading
from the clause in question to C,. The variable
that is eliminated in the last inference on that
path must be one of the g, jy.q, for 1 < £ < %.
Since by € Ry, the variable ¢;, j, 5, is later in the
elimination order, so it cannot be eliminated on
that path. Hence the literal g;, j, p, still occurs
in Cl,. O

Now let «, 8 be two 0-critical assignments such
that by := mq(ik, ji) # mg(ik,jk) for some 1 <
k< %, so that 3(g;, j, b,) = 0. By Lemma 18, the
literal g;, ;. b, occurs in C,, therefore 3 satisfies
Co and hence Cg # C,.

By Lemma 17, there are at least %! distinct
O-critical assignments that differ in the values

ma(ik, jk). Thus R contains at least 4! >
1

(4%)% = Q(ﬁ"?’) different clauses of the form

C,, which proves the theorem. |
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Appendix A: Proof of Theorem 4

First we need some combinatorial notions and re-
sults from [24]. Let A C [m]* and 1 < j < k. For
z € [m]F 1, let deg;(z, A) be the number of £ €
[m] such that (z1,... ,2;-1,&,2j,... ,2k—1) € A.
Then we define

Alj] = {x € [m]Ft; deg;(z,A) > O}

A
MINDEG;(A) := m}‘ILlj] deg;(z, A)
T€
Thickness(A) :== min MINDEG;(A) .
1<j<k

The following lemmas about these notions were
proved in [24]:

Lemma 19 For every A' C A and 1 < j <k,

!
AVDEG;(4") > A AVDEG;(A)
|4 (18)
Thickness(A[j]) > Thickness(A)
(19)
Lemma 20 If for every 1 < 5 < k,

AVDEG ;(A) > ém for some 0 < § < 1, then for
every a > 0 there is A’ C A with |A'| > (1—a)| 4]
and

1—a)ém
Thi Al > ( .
hickness(A") > R+ ol In(31)

In particular, setting a = % and § = 4m_ll4, we
get

Corollary 21 Ifm > kli‘L and for every 1 < j <
k, AVDEG;(A) > 4m1s, then there is A’ C A
with |A'| > 1| A| and Thickness(A) > mii.

For a relation R € DART(m, k), A C X and
B CY, let CCr(R, A, B) be the real communi-
cation complexity of R restricted to A x B.

Fix a large m € N. A triple (R, A, B) is called
an (q,3,£)-game if R € DART(m,k) for some
k < mit with SC(R) > £, A C X with |4| >
27 X| and Thickness(A) > mﬁ, and BCY
with |B| > 27°|Y|.

Lemma 22 For every a,(3,£ > 0 with 8 < m7
and every («, 3,£)-game (R, A, B),

1. if for every 1 < j < k, AVDEG;(A) >
8m%, then there is an (o +2,8+1,£)-game
(R',A', B") with

CCR(R',AI,BI) < CCr(R,A,B)—1.

2.4f £ > 1 andfora;rg)mel < 3 < k&
AVDEG;(A) < 8mii, then there is an
(a+3—1—()1g4ﬂ,ﬂ—l—1,€—1)—game (R, A", B")
with

CCr(R',A',B') < CCr(R,A,B) .

To prove Theorem 3 from the lemma, we show
that for every («, 3,£)-game (R, A, B),

logm 4)_a—l—ﬁ

CCR(R,A,B)2£-< - 5
(%)

42 3

The case a = 3 = 0 gives ’Ehe theorem.

For £ = 0 and 8 > m7, (%) is trivial, since
the right hand side gets negative for large m.
We proceed inductively: Let (R, A,B) be an
(e, B, £)-game, and assume that (*) holds for all
(o, 0, ¢')-games with £/ < £ and 8’ > (. For sake
of contradiction, suppose that CCr(R, A, B) <

L. (1—(’4€2ﬂ — %) - # Then either for every 1 <

j < k, AVDEG,(A) > 8mi, and Lemma 22
gives an (a+ 2,8+ 1,£)-game (R', A’, B') with

CCr(R,A'",B") < CCr(R,A,B) —1<

(@+2)+(B+1)
3 7

logm B é) _

<£'< 42 3

or for some 1 < j < k, AVDEG;(A) < 8m1i,
then Lemma 22 gives an (a+3—"%6" 3+1,/—1)-
game (R', A, B') with

logm_é)_a—i-ﬁ
42 3 3

logm 4 3 — logm 1
= (-1)(22 _g)_(a+ 1§)+(ﬁ+ )

both contradicting the assumption.
Proof of Lemma 22: For part 1, we first show
that CCr(R, A, B) > 0. Assume otherwise, then

CCr(R',A',B') < £ (
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there is a term C, in the DNF tautology defin-
ing R that is satisfied for every (z,y) € A x B.
Therefore y;(z;) is constant for some 1 < j < k.
If v denote the number of possible values of xz;
in elements of A, then this implies that |B| <
2™E=7 On the other hand, |B| > 2™ hence
it follows tha‘f B > ~v, which is a contradictiolgl
since § < m7, whereas AVDEG;(A) > 8m11
implies vy > 8mii.

Now let an optimal real communication proto-
col solving R restricted to A x B be given. For
a € A and b € B, let p, and op be the real num-
bers played by I and I7 in the first round on in-
put a and b, respectively. W.l.o.g. we can assume
that these are |A| + |B| distinct real numbers.

Now consider a {0, 1}-matrix of size |[A| x |B|
with columns indexed by the p, and rows indexed
by the o, where the entry in position (pg,0p) is
the outcome of the first round when these num-
bers are played. Then it is obvious that either
the upper right quadrant or the lower left quad-
rant must form a monochromatic rectangle.

Hence there are A° C A and B’ C B with
|A°| > 1|A| and |B'| > £|B| such that R re-
stricted to A° x B’ can be solved in one round
fewer than the original protocol. By Lemma 19
(18), AVDEG;(A°) > Am1i for every 1 < § < k,
hence by Corollary 21 there is A’ C A° with
|A’| > 1|A°| > 1|A| and Thickness(A’) > mii.
Thus (R, A',B') is an (a + 2,8 + 1,£)-game.

Part 2 is proved exactly like the correspond-
ing lemma in [24], with the numbers slightly ad-
justed. a

Appendix B: Proof of Lemma 6

We now present the reduction from
PYRGEN(m, d) to Raex,, where n = (“51)m+2.
We interpret the elements between 2 and n—1 as
triples (4,7, k), where (i,5) € Pyrq and k € [m].

Now player I computes from his input z :
Pyrq — [m] an input t, to GEN, with
GEN, (#;) = 1 by setting the following:

1, 1 l_ ad,j
ai1,01,1 - n

Qit1,5y Git1,5+1 F a;,j for (’L,j) € Pyrg_1

for1<j<d

where a;; := (4,7,2;). This completely deter-
mines ty.

Likewise Player II computes from his input
y : Pyrq — (2l™) a coloring ¢ of the elements
from [n] by setting col(1) = 0, col(n) = 1 and
col((z,7,k)) = vi (k). From this, he computes
an input f;, by setting a,b F ¢ iff it is not the
case that col(c) = 1 and col(a) = col(b) = 0.
Obviously GEN,(t,) = 0.

Playing the Karchmer-Wigderson game for
GEN,, now yields a triple (a, b, c) such that a,b -
cinty and a,b cin f;, By definition of f;/, this
means that col(a) = col(b) = 0 and col(c) = 1,
and by definition of #, one of the following cases
must hold:

e a=b=1andc=ay; for some j < d. By
definition of col, yd,j(IEd,j) = 1.

ec=mnand a = b = ay,;. In this case,
y1,1(z1,1) = 0.
® a=ait1,, b=a;r141 and ¢ = a;;. Then
we have yi,j(a;i,j) = 1, and yi+1,j(mi+1,j) =
Yit1,j+1(Tit1,541) = 0.
In either case, the players have solved

PYRGEN(m, d) without any additional commu-
nication.
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