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Abstract

We survey some upper and lower bounds established recently on the
sizes of randomized branching programs computing explicit boolean func-
tions. In particular, we display boolean functions on which randomized
read-once ordered branching programs are exponentially more powerful
than deterministic or nondeterministic read-k-times branching programs
for any k& = o(n/logn). We investigate further computational power of
randomized read-once order branching programs (OBDDs) and their ba-
sic manipulation properties for verification of boolean functions and for

testing graphs of arithmetic functions.
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1 Introduction

The model of restricted branching programs has recently been found very use-
ful in a number of applications. Its special variant, ordered read-once branching
programs become an important computational model and a technical tool in
the fields of circuit design and hardware verification. They are also known as
“OBDDs” (ordered binary decision diagrams). The approach used depends on
converting independently the circuit description, and the function specification
to a common intermediate representation (being the OBDD), and then testing
whether the two representations are equivalent (c.f., e.g. [W94]). This approach
has an apparent shortcoming, in that we cannont hope in general for a polyno-
mial size intermediate representation in the form of an OBDD. It turns out in
fact that many important elementary functions do not have polynomial size read-
once branching progams. Examples are: multiplication, squaring, and inversion
[P95a]. During the last decade there were several attempts to find generalization
of OBDDs model more powerful computationally and still algorithmically ma-
nipulable. In this paper we are concerned with the randomized extension of the
read-once branching programs and analize their computational power compared

with deterministic and nondeterministic models.

2 Randomized Branching Programs

A deterministic branching program P for computing a boolean function
f:{0,1}™ — {0,1} is a directed acyclic multi-graph with a distinguished source
node s and a distinguished (accepting) sink node ¢. The outdegree of each non-
sink node is exactly 2, and the two outgoing edges are labeled by “z; = 0” and
“r; = 1”7 for a variable associated with this node. Call such a node an z;-node.
The label “x; = §” indicates that only inputs satisfying x; = § may follow this
edge in the computation. The branching program P computes a function f in
the obvious way: for each o € {0,1}" we let g(o) = 1 iff there is a directed s-t
path starting in the source s and leading to the accepting node ¢ such that all
labels z; = o; along this path are consistent with ¢ = 0105 ...0,. The size of P
is its number of internal nodes.

A branching program becomes nondeterministic if we allow “guessing nodes”



that is nodes with two outgoing edges being unlabeled. Unlabeled edges allow
all inputs to proceed to the next node. A nondeterministic branching program
P computes a function f, in the obvious way; that is, f(o) = 1 iff there exists
(at least one) computation over o starting in the source node s and leading to
the accepting node ¢.

Define a probabilistic branching program as a branching program which has in
addition to its standard (deterministic) inputs especially designed random (“coin-
toss”) input nodes. When these random inputs are chosen from the uniform
distribution, the output of the branching program is a random variable.

We say that a probabilistic branching program P (a, b)-computes a function f
if it outputs 1 with the probability at most a for an input o such that f(o) =0,
and it outputs 1 with the probability at least b for an input o such that f(o) = 1.
A probabilistic branching program is called randomized if it (¢,1 — £)-computes
the function f for some ¢ < 1/2. ¢ is called an error probability of P.

For a branching program P, we define size of P size(P) (complezity of P) as
the number of its internal nodes of P.

For a probabilistic branching program P, size(P) is the sum of numbers of its
internal and random nodes.

The size of a nondeterminstic branching program is the number of its internal
nodes (without “quessing” nodes).

A read-once branching program is a branching program in which no variable
appears more than once on any computation path. An ordered read-once branch-
ing program is a read-once branching program which respects a fixed ordering 7
of variables, i.e., if an edge leads from an z;-node to an z,-node, the condition
7(i) < m(j) has to be fulfilled.

A read-k-times branching program is a branching program with the property
that no input variable z; appears more than &k times on any consistent computa-
tion path in the program (a path is consistent if for all i the labels “z; = 0” and
“r; = 1”7 do not both appear on the path).

A syntactic read-k-times branching program [BRS93] is a branching program
with the property that no input variable x; appears more than k£ times on any
path (consistent or not) in the program.

An ordered read-k-times branching program is a read-k-times branching pro-

gram which is partitioned into k layers such that each layer is an ordered read-once



branching program respecting the same ordering 7. Ordered branching programs
can be layered. In this case all nodes that test the same variable should have
the same distance from the source node. This can be accomplished easily by
introducing redundant nodes. In the case of probabilistic branching programs we
stipulate additionally that the deterministic and probabilistic layers alternate.

The width of such programs is the maximum size of a layer.

3 Explicit Boolean Functions

In this section we define some explicit boolean functions for which we are going
to prove computational upper and lower bounds on different types of branching
programs.

Firstly, we define a boolean function F,:{0,1}*™ — {0,1} as follows. For
z € {0,1}*™ we shall call the odd bits, the “type” bits, and the even bits, the
“value” bits. We say that the even bit z;, i € {2,4,...,4m} is of “type” 0(1) if
the corresponding odd bit z; ; is 0(1). For z € {0,1}*™, we denote by z°(z') a
subsequence of z that consists of all even bits of type 0(1).

Now we define a boolean function f,:{0,1}"* — {0,1} as follows: f,(z) =1
iff 20 = !

We are going to define now the second class of boolean functions. For a given
integer n denote by p[n| the smallest prime greater or equal to n. For every

integer s, define

wn(s) = {j if j = s mod p[n] and 1 < j < p[n],
" 1 otherwise.

Define a boolean function g,:{0,1}" — {0,1} as follows. g,(z) = z; for j =
wn (241 02)-

We define a function PERM,, (cf. [KMWS88], [J89]) on a boolean n x n ma-
trix = [zi]1<ij<n, PERM,:{0,1}*" — {0,1}. For a given z € {0,1}",
PERM,,(z) = 1 iff x is a permutation matrix, i.e., each row and each column
of x contains exactly one 1 entry.

We introduce now a boolean function DMULT: {0,1}*" — {0,1} of testing
integer multiplication such that DMULT(z,y, 2) = 1 iff zy = z (x,y, and z are

binary representations of integer numbers, and |z| = |y| = n, |z| = 2n).



Further, we define the integer multiplication function MULT as follows. The
function MULT%: {0,1}?* — {0,1} computes the kth bit of the product of two
n-bit integers, i.e., MULTy(z,y) = 2z, where x = 2, 1...Z0, Y = Yn_1---Yo,
and 2z = z9p_1...29 for 0 < k < 2n — 1. Now define MULT to be MULT,,_;
computing the middle bit in the product xy. It is known that the middle bit is
the “hardest” bit in the multiplication (cf., e.g., [P95al). It is also well known
that MULT besides being hard for many arithmetic functions is also reducible
under read-once reductions to other arithmetic functions like squaring, inversion,
and division (cf. [P95b]).

4 Randomized Upper Bounds and Determinis-

tic Lower Bounds

We are going to characterize the computational power of randomized OBDDs on
the explicit boolean functions introduced in Section 3, and formulate also corre-
sponding lower bounds on the deterministic branching programs. The techniques
for randomized upper bounds and first separating deterministic lower bounds
were introduced by Ablayev and Karpinski [AK96], [AK98a]. The other bounds
were proven by Sauerhoff [S97a], Krause, Meinel and Wack [KMW88], and Jukna
[J89], [J95].

Theorem 1. ([AK96], [AK98a])

1. The function f, can be computed by an e(n)-error randomized OBDD of

0 (¥ )

2. The size lower bound on any nondeterministic ordered read-k-times branch-

size

ing program computing f, is 254"/)
Theorem 2. ([S97a], [AK98a], [KMWS88], [J89])

1. The function PERM,, can be computed by an e(n)-error randomized OBDD

of size
nd
1 3
0 ()




2. The size lower bound on any nondeterministic read-once branching program
computing PERM,, is 2™,

The first part of the next theorem formulates a surprising fact on the power

of randomized OBDDs for testing graphs of arithmetic functions.

Theorem 3. ([AK98b], [J95])

1. The test function for integer multiplication DMULT can be computed by

an €(n)-error randomized OBDD of size

Sy )

2. The size lower bound on any nondeterministic syntactic read-k-times
1/4/k2k))

branching program computing DMULT s 0(29(”

5 Randomized Lower Bounds

The following randomized lower bounds of [A97], and [AK98b] were established
using the property of the entropy function, and the one-way probabilistic com-

munication complexity arguments.

Theorem 4. ([A97])

1. The size lower bound on any randomized OBDD computing the function g,
is QQ(n/logn)‘

2. The function g, can be computed by a nondeterministic ordered read-once
branching program in size O(n?).
Theorem 5. ([AK98b])

The size lower bound on any randomized OBDD computing the integer mul-
tiplication function MULT is 29%(n/legn)



6 Manipulability and Satisfiability Problem for
Randomized OBDDs

It is easy to see that randomized OBDDs are closed under boolean combinations,
and that various boolean model checking combinations of randomized OBDDs
stay in the class of randomized OBDDs. In particular, equivalence problem for
randomized OBDDs can be reduced to the satisfiability problem.

We call a width of a randomized OBDD to be a maximum number of nodes
in a layer of a program.

The following recent results of Agrawal and Thierauf [AT97] relate the compu-
tational complexity of the satisfiability problem for randomized OBDDs to their
error probability.

Theorem 6. ([AT97])
1. The satisfiability problem for randomized OBDDs is NP-complete.

2. Given a randomized OBDD P with an error probability e < (1/W + 2) for
W the width of P. There is a polynomial time algorithm for solving the
satisfiability problem for P.

7 Randomized Read-i-Times Branching Pro-

grams

It was observed by Borodin, Razborov and Smolensky [BRS93] that there are
two different types of read-k-times branching programs, the first, syntactic type
where the restriction on readings applies to all paths in the program, and the
second, semantic type where the restriction on readings applies only to consis-
tent computational paths. The corresponding classes of functions are potentially
different. The two classes coincide for £ = 1. For k£ > 2, up to now no non-
trivial lower bounds are known for semantic read-k branching programs. In the
sequel we deal only with syntactic read-k-times branching and their randomized,
deterministic, and nondeterministic variants.

For a number p we call a branching program p-way if its outgoing edges are

labeled with “x; =07, “2; =17, ..., and “ax; =p—1".
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We define now the function SIP: Z§ x Zj — {0, 1} (Silvester inner product)
for n = 2¢, by
SIP(z,y) =1 iff 2'Ay=0

for A = [ai;]1<; j<o¢ the Sylvester matriz of dimension 2¢ x 2¢,

ig1js1 = (—1)Em@:bn()

for 0 < 4,5 < 2¢— 1, and with bin(i) the binary representation of 4, and (,) the
inner product in Z5.

A boolean variant SIP g of SIP can be obtained by a straightforward encoding
of Z3 over {0,1}? (see for details [S97a]).

Using a modified technique of rectangles of Borodin, Razborov and Smolen-
sky [BRS93], and combining it with the communication complexity arguments,

Sauerhoff [S97a] was able to prove

Theorem 7. ([S97a])

The size lower bound on any randomized 3-way (2-way) read-k-times branch-

ing program computing SIP (SIPg) is 90n/c"k?) for some constant c.

8 Some Further Results

Quite recently some further exponential lower bounds on randomized read-k-
times branching programs were obtained by Thathacher [T98]. Also some in-
teresting insights about computational power of Las Vegas (zero-error) branch-
ing program were gained recently by Sauerhoff [S98|. [S98] displays an explicit
boolean function (“addressing functions”) and designs for it a polynomial size Las
Vegas read-once branching program. It is well known that this function cannot
be computed by polynomial size deterministic read-once branching programs.

On other hand Karpinski and Mubarakzjanov [KM98| proved using commu-
nication complexity techniques, that Las Vegas public coin (all random variables
are read at the beginning of computation) OBDDs are equivalent to deterministic
OBDDs.

One can also construct an explicit boolean function which is computable by
polynomial size randomized OBDD but not computable in polynomial size by
any nondeterministic or co-nondeterministic OBDD (cf. [AKM98])

8



9 Open Problems

It remains an important open problem to develop new more powerful lower bound
techniques for randomized read-once (and read-k-times) branching programs. A
development of new two-way probabilistic communication complexity techniques
could be a possible way to accomplish it.

Also an important open problem remains the status of the integer multi-
plication function MULT on randomized read-once and read-k-times branching
programs on both types syntactic, and semantic programs.

A challenging open remains still a constuction of an explicit boolean func-
tion which can be computed in polynomial size by both nondeterministic
and co-nondeterministic read-once branching programs and which is not com-
putable by any polynomial size randomized read-once branching program (cf. also
[JRSWIT]).

Another question concerns the computational power of Las Vegas OBDDs and
Las Vegas ordered read-k-times branching programs.

It would be also very interesting to shed some light on computational power
of randomized branching with restricted readings of variables and additionally
equipped with algebraic branching elements like evaluation of polynomials and
branching on the sign (for the corresponding randomized decision tree model see
[GKMS96]).
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