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Abstract

Many problems in computer-aided design of highly integrated circuits (CAD for
VLSI) can be transformed to the task of manipulating objects over finite domains. The
efficiency of these operations depends substantially on the chosen data structures. In
the last years, ordered binary decision diagrams (OBDDs) have proven to be a very
efficient data structure in this context. Here, we give a survey on these developments
and stress the deep interactions between basic research and practically relevant applied
research with its immediate impact on the performance improvement of modern CAD
design and verification tools.

1 Introduction

The development of digital circuits by means of CAD (Computer-Aided Design) systems has
a strong influence on many areas of computer science. Applications in information process-
ing, telecommunication or in industrial control systems permanently require the construction
of more and more powerful high-speed circuits. On the one hand, this imposes bigger and
bigger challenges upon the CAD systems. On the other hand, all these systems underlie
the inherent complexity in the manipulation of switching functions which has been exten-
sively studied in theoretical computer science, see e.g. [32, 46]. One of the main problems
here is to get the immensely increasing complexity of mathematical objects, the so-called
combinatorial explosion, under control.

A central problem in the design of CAD systems for VLSI circuits (Very Large Scale
Integration) is to represent the functional behavior of a circuit. For an illustration we will
shortly consider the problem of combinational circuit verification. Hereby it is to check
whether a combinational circuit C' satisfies a given specification 5. For the solution of
this problem computer-internal representations of C' and S have to be determined which
can then be used to test the relevant properties. Of course, this approach only leads to
a practical procedure, if both representations can be computed efficiently and practical
algorithms are available to decide equivalence, satisfiability and similar properties by means
of the representations.

The mentioned representations are realized internally via data structures. Within the
last decade, ordered binary decision diagrams have proven to be the most suitable data
structure in this context. Although they were originally only used as data structure in the
context of CAD applications, meanwhile, ordered binary decision diagrams have also been
applied successfully in many other areas like the design and verification of communication
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protocols [16, 35] or for solving combinatorial problems [19, 38]. In the present article we
survey the foundations, applications and current developments in this environment.

2 Data Structures for Switching Functions

In computer-aided design, Boolean functions f :{0,1}" — {0, 1} are of central importance
for describing the switching behavior of digital circuits. Hence, those functions are also
called switching functions. By introducing a suitable 0-1-encoding, all finite problems can —
at least in principle — be modeled by means of switching functions. The great importance of
switching functions stems from the possibility to obtain substantially simplified, optimized
and with optional properties provided circuits by applying optimization techniques during
the design process. In the area of VLSI circuits this task is performed by CAD systems.
Before it is possible to apply optimization techniques, the switching functions themselves
have to be described (or equivalently: represented) uniquely and as efficiently as possible in
computers.

2.1 Classic Representations

Well-known classic representations of switching functions include truth tables, disjunctive
normal forms, Boolean formulas, or multi-level representations using net-lists of gates which
are all based on the idea to describe the given switching function by means of a computation
rule. With permanently increasing performance requirements the drawbacks of these rep-
resentations have become more and more serious: Descriptions in form of a truth table are
e.g. never compact. For the more compact representations there are at the moment insur-
mountable problems regarding the algorithmic handling: Already the test if two disjunctive
normal forms, two Boolean formulas or two net-lists of gates represent the same function is
co-NP-complete [25].

2.2 OBDDs — Ordered Binary Decision Diagrams

In 1986, by introducing ordered binary decision diagrams (OBDDs), Randy Bryant from
Carnegie Mellon University got ahead a fundamental step in the search for suitable data
structures in circuit design [9, 11]. In contrast to conventional descriptions based on com-
putation rules, OBDDs are based on a decision process. That way, Bryant combined two
crucial advantages: the new established data structure is not only very compact but can
also be handled excellently from the algorithmic point of view.

We explain ordered binary decision diagrams by inspecting an example. The Boolean
function

f = be+ abe

can be represented by means of a (binary) decision diagram like in Figure 1. Such decision
diagrams are directed, acyclic graphs which have exactly one node without predecessor, the
root. Each non-terminal node is labeled by a variable and has two outgoing edges: a solid
drawn I-edge and a dashed drawn 0-edge. Each terminal node is labeled by one of the
constants 0 or 1 and is called sink.

Decision diagrams represent Boolean functions in a natural manner: Each assignment
to the input variables defines a unique path through the graph from the root to a sink. The
value of this sink defines the function value on thisinput. A decision diagram is called ordered
if the sequence of variables on each path from the root to the sinks is consistent with a fized
order. Obviously, for each given variable order w, one can construct such an ordered binary
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Figure 1: Two OBDDs of f = bc + abe

decision diagram (OBDD), e.g. in form of a complete tree. The difficulty in representing
Boolean functions by means of decision diagrams is caused by the missing uniqueness, like
in many other representations. By using an ingenious reduction mechanism, this problem
can be solved for OBDDs very elegantly. Obviously, the following three reduction rules keep
the represented function invariant:

Terminal rule: Delete all terminal nodes with a given label but one, and redirect all
incoming edges in the eliminated nodes to the remaining one.

Elimination rule: If 1- and 0-edge of a node » point to the same node u, then eliminate
v, and redirect all incoming edges to u.

Merging rule: If the non-terminal nodes u and » are labeled by the same variable, their
1-edges lead to the same node and their 0-edges lead to the same node, then eliminate
one of the two nodes u, v, and redirect all incoming edges to the remaining node.

The elimination rule and the merging rule are illustrated in Figure 2.
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Figure 2: Reduction rules

Definition 1. An OBDD is called reduced if none of the three reduction rules can be applied.

Hence, the right OBDD in Figure 1 is reduced. Regarding the algorithmic properties of
reduced OBDDs, the following property of canonicity is of basic importance:

With respect to each fized variable order, the reduced OBDD of a Boolean
function f is determined uniquely.



3 Construction and Manipulation of OBDDs

Besides canonicity, OBDDs have another property which is of the same importance: the
brilliant algorithmic manipulation.

3.1 Binary Operations

By * we denote an arbitrary Boolean operation, e.g. the conjunction or the disjunction. In
order to compute the OBDD of f * g from the OBDD representations of two functions f
and ¢, one can use Shannon’s expansion w.r.t. the leading variable z in the variable order
T

Fxg = 2 (flo=1 * glo=1) + T (fle=0* 9lz=0),

where f|;=1 is the subfunction that results from f after replacing the variable z by the value
1. By repeated application of this decomposition an OBDD of the function fxg is computed.
In order to perform this operation efficiently, multiple calls with the same argument pairs are
avoided — instead, the already computed results from earlier stages are being recalled from a
table. In this way, the originally exponential number of decompositions is now bounded by
the product of the two OBDD-sizes. If size denotes the number of nodes in an OBDD, the
basic algorithmic property concerning efficient manipulation can be formulated as follows:

Let the two Boolean functions fi and fo be represented by reduced OBDDs
Py and Py w.r.t. the same variable ordering. For each binary operation x
the reduced OBDD P of f = fi x fy can be determined in time O(size(Py) -
size(Py)).

3.2 Implementation Techniques

A variety of design decisions has contributed substantially to efficient implementations of
the OBDD data structure and hence crucially to its success. We would like to outline the
most important ones.

Shared OBDDs. Several functions can be represented in a single directed acyclic graph
with several roots like in Figure 3.

Figure 3: Functions fy, fo in a shared OBDD

Unique table. It should be avoided to build non-reduced OBDDs which have to be reduced
afterwards. In order to guarantee the reduced form at each moment, a table is used for
bookkeeping which functions have already been represented within the graph.



Strong canonicity. Due to the unique table two equivalent functions are represented
by exactly the same subgraph within the shared OBDD. This property is called strong
canonicity and allows to test the equivalence of two functions by means of a single pointer
comparison.

Complemented edges. The edges are equipped with an additional attribute bit. By
means of this bit a function and its complement can be represented by the same subgraph,
and a function can be complemented in constant time. Some additional requirements to the
allowed positions of the complement edges help to preserve the canonicity property.

Computed table. The table in which previously computed results are stored is imple-
mented by means of a hash table in order to guarantee a fast retrieval.

Memory management. In a typical OBDD application a large number of OBDDs are
constructed and then deleted again. For efficient administration of the nodes in memory,
the nodes which are no longer used are not freed immediately. Instead, a garbage collection
is called from time to time in which these nodes are freed jointly.

3.3 Symbolic Simulation

A central problem in circuit design is the question whether two combinational circuits (i.e.
circuits without feedback) C; and Cy, being given through net-lists of gates, agree in their
logic behavior, see Figure 4.
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Figure 4: Combinational circuit of f = be+ abc
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The conversion into the OBDD representation is done my means of a symbolic simula-
tion: Starting with the (trivial) OBDD representations of the input nodes one successively
constructs, in topological order, OBDDs for each gate from the OBDDs of the correspond-
ing predecessor gates. In case of a strong canonical representation, the equivalence test
itself consists of a single pointer comparison. Each step in the iteration can be performed
efficiently w.r.t. the OBDD-sizes of the predecessor gates. This shows that the difficulty
of the NP-complete equivalent test [25] has now been shifted into the representation size.
Of course, it may happen that the OBDDs of the circuits are quite large. However, many
circuits of the real world inherently contain much structure — hence, the reduction rules of
the OBDDs cause the graphs describing the circuit to remain pleasantly small.

3.4 Implementations

In the last years several so-called BDD packages have been developed which provide nu-
merous functions for the efficient manipulation of switching functions. Although many of
these packages have been developed at academic institutions they have been employed in
commercial CAD systems nevertheless.

The first package in this historical development has been developed by Karl Brace at
Carnegie Mellon University [7]. Many of the above mentioned implementation techniques



go back to this package. Some time later the experiences with this package have been
converted into a new, improved package being developed and implemented by David Long
at the same university [29]. An important innovation in this package were techniques for
dynamic constructing good variable orders which will be discussed in the next section. The
packages of Brace and Long enjoyed large worldwide dissemination. An additional step with
regard to improved efficiency and improved algorithms for finding good variable orders has
been carried out by Fabio Somenzi (University of Colorado at Boulder) with the so-called
CUDD package in 1996 [44].

4 The Importance of Variable Ordering for OBDDs

4.1 Influence

The size of an OBDD and hence the complexity of its manipulation depends on the under-
lying variable order — this dependency can be quite strong. An extreme example is shown
in Figure 5. With respect to the variable order z1, z9,...,za,—1, 2, the function

1Ty + 23%4+ ...+ Top_1T9y

can be represented by an OBDD of linear size. For the variable order zy,z3,...,

XTop_1, %y, T4q,- .., Ty, however, the size of the reduced OBDD grows exponentially in n.

Figure 5: Influence of the variable order

The same effect occurs in the case of adder functions — here too, depending on the
variable order, the OBDD-size varies from linear to exponential in the number of input bits.
Other important functions, e.g. the multiplication of two n-bit numbers imply OBDDs of
exponential size w.r.t. each variable order [10].

4.2 Optimization Strategies

Due to the strong dependence of the OBDD-size upon the chosen variable order it is one
of the most important problems in the use of OBDDs to construct good orders. However,



the problem to construct an optimal order of a given OBDD is NP-hard [45, 4]. The
currently best known exact procedure is based on dynamic programming and has running
time O(n* - 3") [24]. Unfortunately, for serious applications this method is useless. The
practically relevant optimization strategies can be classified into two categories: heuristics
and dynamic reordering.

Heuristics. Here, the idea is to deduce a priori some information from the application
which is useful for determining a good variable order. In the context of a symbolic simula-
tion, numerous methods have been developed to obtain a good order from the topological
structure of a circuit [30]. One of the drawbacks of the heuristic methods is that their
effectiveness is quite problem specific and that so far, there is no heuristic which is suitable
for all cases. A current research task is the construction of heuristics that directly deduce a
good order from a given OBDD.

Dynamic reordering. Another technique to minimize OBDD-sizes is to improve the
variable order during the processing dynamically. The currently best reordering strategy
goes back to Richard Rudell and is called Sifting [41]. The method is based primarily on
a subroutine that looks for the best position of a specific variable if the positions of all
other variables remain fixed. The algorithm can be implemented efficiently and produces
excellent results in practical applications. By appropriately exploiting additional criteria
like symmetry relations among individual variables [39] or structural considerations (block-
restricted Sifting [33]) the basic algorithm of Sifting can be further improved.

5 OBDD-Based Analysis of Sequential Systems

In the design of complex systems it becomes more and more important to guarantee cor-
rectness. The dramatic extent that an error can lead to is illustrated by the example of the
Intel Pentium processor from 1994: In the case of the Pentium implementation, a table of
the well-known “SRT” divider circuit (named after the initials of the three inventors) [1]
contained incorrect entries [18]. Although Intel argued for a longer time that in practice this
mistake would not have a serious influence on the computations [42], a recall offer became
unavoidable. The costs of this recall were estimated to US$ 475 million. Very high follow-up
costs of such design errors have made the area of hardware verification become one of the
essential steps within a design process.

5.1 Formal Verification

Many verification problems can be modeled by means of synchronous systems with finitely
many states, so-called sequential systems or finite state machines. Figure 6 shows an example
of those systems. One of the basic tasks which often has to be solved in this context is
the equivalence test of two finite state machines which are given by net-lists of gates (see
Figure 7).

For the two given sequential systems we would like to prove that their input/output
behavior is identical. In a typical application one machine may specify a functional behavior
and the other machine is a highly optimized implementation. The equivalence test of finite
state machines has been investigated in computer science for many years. However, for
systems whose states are encoded e.g. by 80 bits the number of possible states is 250, Such
a large number is accessible to an intuitive comprehension only with great difficulties, and
hence, it shall be illustrated using a comparing number from the real world: The age of our
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Figure 7: Gate representation of a simple sequential system with latches p, ¢ for remembering
the state

234 years. A computer which has been investigating 2 million states

whole universe is about
per seconds since this hour of birth would not have been ready yet !

As a consequence of this dilemma the correctness of real sequential systems has been
verified only by means of a large number of simulations. Usually, this approach does not
cover all cases. In contrast to this, the approach of formal verification aims at providing a
complete proof of the correctness of a circuit. By using OBDD data structures this approach
has become feasible in completely new dimensions. Hereby, the conversion of a problem’s
difficulty into the manageable size of the representation is of basic importance. Of course,
it may happen that systems with 80 state bits lead to very large OBDDs. Many systems
however contain very regular structures which keep the relevant OBDDs and hence the
running times quite small.

The core of the OBDD-based method is to reduce the verification of global properties
like equivalence to the verification of local properties which hold for all those states that
can be reached from the initial state. For this reason, reachability analysis plays a central
role in the process of formal verification: this term denotes the efficient computation and
compact representation of the set of reachable sets by using OBDD data structures.

The equivalence test of two finite state machines M; and M, itself can be reduced to
a reachability analysis by using the construction in Figure 8: Let M denote the so-called
product machine whose state space is the Cartesian product of the spaces of M; and Ms.
The output of M for a given state and a given input is 1 if and only if for this configuration
the outputs of M; and M, agree. My and My have the same input/output behavior if and
only if the output of M is 1 for all reachable states.
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Figure 8: Product machine

5.2 Reachability Analysis Based on OBDDs

As already mentioned in the previous section, the set of reachable states can be quite large.
Hence, an explicit representation of this set, e.g. in form of a list, cannot be suitable under
any circumstances. Coudert, Berthet and Madre have investigated the characteristic func-
tion of state sets which can be considered as a Boolean function and therefore be represented
by an OBDD [20, 21]. They have shown that this representation form goes well together
with the operations which have to be performed for the computation of the reachable states:
If reachable states are computed according to a breadth-first-traversal then the represen-
tation via the characteristic function allows to compute all corresponding successor states
within a single computation. For this reason, one also uses the term symbolic breadth-first
traversal. Once more, the complexity of the computation depends on the OBDD-size of the
occurring state sets.

A basic variant of symbolic breadth-first traversal can be outlined as follows: For a finite
state machine M with p input bits, n state bits and next-state function § : {0,1}"*? —
{0,1}" let x;(z1,...,2,) : {0,1}" — {0,1} be the characteristic function of all states being
reachable in at most j steps. The computation of the function y;4; starting from the
function y; can be described by the following Boolean equation which reflects the image
computation of all states of y; under the mapping é:

X1 (W15 ¥n) = X5(W1s-- 0 Yn)

+ 34,2, Jeg, .6 (H (y; = 61-(30,6)))(]-(301,...,:3“)) ,
=1

where = is the Boolean equivalence function and 3z; the Boolean existential quantifier

szf = f|xi:0 + f|.z‘i:1'

This iteration step is repeated until a fixed point is reached which represents the set of
reachable states. There are many refinements and variants of this form of image computation
which all aim at keeping possible intermediate results small. The currently best methods
for image computation are based essentially on partitioning the part of the above equation
that is constant for all iterations,

[T = 60.0)).

the so-called transition relation. By choosing a suitable partition it is possible to perform
the quantifications rather efficiently [13].



5.3 Model Checking

Model checking is the problem to decide whether an implementation satisfies a specification
that is given by a Boolean formula. Due to the formulation of the specification within a
formal logic it is possible to describe system properties like invariants, liveness or fairness
properties completely independent of implementation details. One of the temporal logics
which often forms the basis of those specifications is the so-called Computation Tree Logic
CTL [15].

The idea to combine model checking algorithms with symbolic OBDD algorithms has
been developed independently by several research groups: On the one hand by Coudert,
Madre and Berthet [22], on the other hand by Burch, Clarke, McMillan and Dill [14], and
as third group by Bose and Fischer [6].

Due to the symbolic OBDD representations one also uses the term symbolic model check-
ing. As the OBDD data structures can automatically recognize regularities, this approach
made it possible to verify real systems with up to 101 states [13] — as a comparison: The
number of atoms in the universe amounts to approximately 1077. For systems containing
less regularity the OBDD-based approach often allows a formal verification up to the region
of 10%° to 10%° states. We would like to explain the basic ideas of CTL model checking,.

5.3.1 CTL

The formulas of the logic describe properties of computation paths. Hereby, a computation
path is an infinite sequence of states which are traversed during the processing. In addition
to the logical operators AND, OR and NOT, the logic CTL contains four operators to express
temporal relations.

The next time operator X denotes a condition that is valid in the next state of a compu-
tation. For a CTL formula f the formula X f holds on a computation path p if and only if
f holds in the successor state of p’s initial state. The global operator G denotes a property
which holds globally in all states of the computation path. The future operator F denotes
a property that holds eventually in the future. Finally, the until operator fUg holds on a
computation path p if and only if there is a state s on p in which ¢ is valid and f holds in
all states preceding s.

In general, more than one computation path starts in a given state. For this reason, each
operator in CTL is preceded by a path quantifier. If a temporal operator is preceded by the
universal path quantifier A then the property has to hold on all possible computation paths
beginning in the relevant state. Hence, AGf is valid in a state s if f globally holds on all
possible computation paths beginning in s. The ezistential path quantifier E expresses that
the subsequent condition holds on at least one state of the computation path that start in
the relevant state. Both path quantifiers are illustrated in Figure 9.

5.3.2 Symbolic Model Checking with CTL

We now sketch an OBDD-based method for deciding whether a given formula f holds in a
particular state of a sequential system that is given through its transition relation K. The
algorithm is based on the function CHECK which has two arguments: a formula f and a
representation R of its transition relation. It returns an OBDD with the following property:
CHECK(f, R) returns TRUE in a given state of the sequential system if and only if the formula
f is valid in this state. Analogous to OBDD-based reachability analysis, all state sets are
represented symbolically by means of their characteristic functions.

10



AFq holds in the marked state. EGq holds in the marked state.
Figure 9: Path quantifiers

The transition relation R of the sequential system shall be represented by an OBDD.
R(s0,s1) is 1 if and only if 31 is a successor state of s5. We assume that we have computed
an OBDD which represents all states satisfying the formula f. From this, we want to obtain
an OBDD representing all states that satisfy the formula EX f. The formula is valid in state
sg if and only if a there exists a successor state of sy satisfying f. In Boolean notation we
can write

CHECK(EXf, R)(s0) = 331 (R(s0, $1) AND CHECK(f, R)(s1)) .

Analogously, the other operators can also be described by Boolean equations that work
together with OBDD data structures quite efficiently. Partially, these formulations lead to
fixed point computations similar to reachability analysis.

5.4 Implementations

Based on the presented techniques several OBDD-based model checkers have been imple-
mented and used in industrial design cycles. First, we want to mention the symbolic model
checker SMV developed by Ken McMillan at Carnegie Mellon University [31]. This system
has also been used within numerous other systems. The VIS system (Verification Interact-
ing With Synthesis) being developed primarily at the University of California at Berkeley
and the University of Colorado at Boulder unifies the mentioned verification techniques for
finite state machines and techniques for synthesis of VLSI circuits [8]. Meanwhile, there are

also commercial systems, e.g. CVE (Circuit Verification Environment) by Siemens [5], or
the system RuleBase by IBM [2] which is built on top of SMV.

6 Variants and Extensions of OBDDs

For further improving the efficiency of the data structures, several variants and extensions
of OBDDs have been proposed. For some specific application fields, these refined models
are better suited than the “classic” OBDDs. We would like to sketch some particularly
interesting and important developments. Altogether, research efforts in this area have not
been completed yet, and hence, the quality and the importance of many variants may not
be finally judged yet.

11



6.1 Relaxing the Ordering Restrictions

Some important functions like multiplication of binary numbers or indirect storage access
(e.g. the hidden weighted bit function) have provably exponential-size OBDDs w.r.t. each
variable order. A possible approach to eliminate this problem is to relax the linear ordering
restriction of OBDDs without destroying the excellent algorithmic properties too much.
Indeed, it is possible to allow different orders on different root-to-sink-paths (see Figure 10).
As long as each variable on each path is read at most once and all represented functions obey
the same generalized order, the canonicity and the polynomial time complexity of performing
binary operations are preserved [26, 43]. By means of these so-called free binary decision
diagrams (FBDDs) the hidden weighted bit function can be represented in polynomial space
— for the multiplication of two binary numbers however it is known that FBDDs need
exponential space, too [40].

Figure 10: Free binary decision diagram

6.2 Transformations

Another recently developed variant converts Boolean functions into functions with easier
representations [3], similar to classic transformation concepts like Fourier transformation.

More precisely, let IB,, denote the set of all n-variable Boolean functions f : {0,1}" —
{0,1}". The transformation approach is based on cube transformations T which are bi-
jective mappings from {0,1}" — {0,1}". A cube transformation 7 induces a mapping
¢, : B, — B, with ®,(f)(a) = f(r(a)) for every a = (ay,...,a,) € {0,1}". Now, in-
stead of representing and manipulating the original function f € IB,, the idea is to use
the transformed function ®,(f) = f(r). This variable transformation preserves the efficient
manipulation as shown by the following fact:

Fact 2. If 7 :{0,1}" — {0,1}" is a cube transformation, and fi, fo € IB, are Boolean
functions, then ®. defines an automorphism on IB,, i.e. the following holds:

1. fi=g¢1 if and only if ®.(f1) = ®-(g1).
2. Let * be any binary operation on IB,,. If f = f1 * fa, then ®.(f) = ®,(f1) * P, (f2).

In other words, due to the second statement the polynomial complexity of the Boolean
operations remain valid even if we work with the transformed functions. If, for example,

one wants to check two given functions for equivalence, statement 1 tells us, that in this
situation it is not necessary at all to retransform the functions.
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The realization of this general framework requires to find good techniques for finding
suitable variable transformations 7 which lead to small OBDD-sizes for the transformed
versions of the relevant functions. Suitable transformations that have already demonstrated
their optimization power include graph-driven transformations [3] and linear transformations

36, 34].

6.3 Alternative Decompositions

If f denotes the function being represented by an OBDD-node with label z;, and g, h denote
the functions being represented in the two sons, then Shannon’s decomposition holds:

[ =g+ Th

However, it is also possible to perform other decompositions in the nodes, e.g. the so-called
Reed-Muller decomposition

[ =9®zh.

These ordered functional decision diagrams (OFDDs), introduced in [27], are particularly
suited in the context of problems based on the exclusive-or operation, e.g. the minimization
of AND-XOR-polynomials. One step further, in [23] it is shown that different decomposi-
tion types can be combined within the same subgraph while preserving good algorithmic
properties (ordered Kronecker functional decision diagrams, OKFDDs).

6.4 Zero-Suppressed BDDs

In many applications with combinatorial background the corresponding Boolean functions
have a 1 at only very few positions. In the so-called zero-suppressed BDDs (ZBDDs, ZDDs)
this fact is exploited by means of a modified reduction rule [37, 38]: One does not eliminate
(like in OBDDs) those nodes having identical 0- and 1-successor, but those nodes whose 1-
successor is the sink with label 0 (see Figure 11). By using this data structure many problems
in the area of two-level and multi-level logic optimization have been solved efficiently [19,
38]. An example from a quite different area may illustrate the fundamental influence of
OBDD-based data structures: Lobbing and Wegener from the University of Dortmund
report successful ZDD experiments for solving difficult combinatorial problems which occur
in the analysis of knight moves on a chess board.

Figure 11: Elimination rule in a zero-suppressed BDD
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6.5 Multi-Valued Functions

Several approaches have tried to extend the efficient manipulation to non-binary functions.
In this context, we only mention the so-called multi-terminal BDDs (MTBDDs) which realize
this idea in a natural manner by adding further sinks [17].

On the contrary, binary moment diagrams (BMDs) employ the decomposition

f=0-=zi)g+azih

and are better suited for representing and manipulating arithmetic functions of the type
f:40,1}" — Z like e.g. multiplication [12].

Finally, edge-valued binary decision diagrams (EVBDDs) include edge weights in order
to improve the sharing of subgraphs [28]. Interesting applications of this data structure
include solving combinatorial optimization problems.

7 Summary and Outlook

The search for efficient data structures supporting the manipulation of switching functions in
CAD applications provides an instructive example of the exciting and manifold interaction
between real problems and fundamental questions in computer science research. Caused by
the question for improved data structures the performance frontier of existing design systems
has been extended substantially. Considering the fact that each improvement of the repre-
sentation immediately propagates to the efficiency and practicability of many applications,
further intensive research and development work will have to be carried out.
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