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Abstract

The error probability of Probabilistically Checkable Proof (PCP) systems can be made ex-
ponentially small in the number of queries by using sequential repetition. In this paper we are
interested in determining the precise rate at which the error goes down in an optimal protocol,
and we make substantial progress toward a tight resolution of this question.

A PCP verifier uses ¢ amortized query bits if, for some ¢, it makes ¢t queries and has error
probability at most 27!. A PCP characterization of NP using 2.5 amortized query bits is
known [25], and, unless P=NP, no such characterization is possible using 1 amortized query
bits [7]. We present a PCP characterization of NP that uses roughly 1.5 amortized query bits.
Our result has two main implications.

Separating PCP from 2-Provers 1-Round. In the 2-Provers 1-Round (2P1R) model the verifier
has access to two oracles (or provers) and can make one query to each oracle. Each answer
is a string of ! bits (! is called the answer size). A 2P1R protocol with answer size { can be
simulated by a PCP that reads 2! bits; we show that the converse does not hold for > 7,
unless P=NP. No such separation was known before.

The Max kCSP problem. The Boolean constraint satisfaction problem with constraints involv-
ing at most k variables, usually called Max kCSP, is known to be hard to approximate
within a factor 274* [25], and a 2 - 2~ *-approximation algorithm is also known [24]. We
prove that Max kCSP is NP-hard to approximate within a factor of roughly 2~ 2k/3,

*An extended abstract of this work will appear in the Proceedings of FOCS’98.
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1 Introduction

PCP characterizations of NP [6, 5, 12, 4, 3, 8, 13, 9, 7, 15, 16, 25] are the best known tool to prove
results about the hardness of approximation of combinatorial optimization problems. Progress
in this area has been driven by the goal of characterizing NP via increasingly more efficient PCP
verifiers, under various formalizations of the notion of efficiency, and we now stand on a point where
PCP constructions are known that are optimal with respect to some trade-off of these parameters.

The most important efficiency parameters in PCP constructions are the number of queries that
the verifier asks to the oracle proof and the soundness. The soundness of a verifier is the probability
that it accepts a “proof” of a wrong statement, that is, the error probability in the case of “no-
instances”. The verifier may make errors also in the case of yes-instances, i.e. it may reject the
valid proof of a correct statement. In this paper we will restrict ourselves to protocols that accept
valid proofs with probability at least 1 — ¢, where ¢ > 0 is a constant that can be made arbitrarily
small independently of the other parameters of interest (almost-perfect completeness), therefore
whenever we will use the term “error” this should always be interpreted as “soundness”.

One direction of research is to concentrate on protocols using a minimal amount of queries (i.e.
3) and then reduce the soundness as much as possible. An optimal protocol of this kind has been
constructed by Hastad in [16], where he describes a verifier that makes 3 queries, has almost perfect
completeness, and soundness 1/2.

A somewhat orthogonal line of research is to fix some small error probability and ask what is
the minimal number of queries that suffice to characterize NP with a PCP protocol having that
error. Iterating Hastad’s protocol ¢ times we get a PCP system that asks 3¢ queries, has almost
perfect completeness and soundness 2%, Is it possible to achieve error 2! with significantly less
than 3¢ queries? This question has some interesting applications, that will be described later. For
starters, we can observe that at least ¢ queries are necessary (see [7]); therefore the optimal protocol
will have query complexity gt for some 1 < ¢ < 3. ¢ is the amortized query complezity of the PCP.

One possible approach to creating PCPs with low amortized query complexity is to iterate a
basic protocol several times, while recycling queries between various iterations. This approach is
similar to the approaches used to reduce error in PCPs when measuring other resources: in partic-
ular, randomness and “free bits”. In the former case, the methods used for recycling randomness
while reducing error in general probabilistic computation [1, 17] turns out to be quite useful and
are used, for instance, in [3, 27, 2]. In the latter case (minimizing “free bits”) also, the notion of
recycling can be analyzed and the works of [9, 7, 14, 15] show that this method leads to significant
benefits. Our task, however differs from the previous cases in some critical aspects. For instance, in
the context of recycling randomness, a random bit is counted as a “recycled” bit, if it is obtained by
applying some (arbitrary) function to the previously used random bits. In contrast, while recycling
queries, the recycled query has to be identical to a previously issued query. The contrast between
recycling free bits and query bits is exhibited by the following example: In the case of free bits,
the known analyses yield protocols in which the error decreases as a polynomial in the number of
iterations (and this suffices!); in the case of recycling queries, the error of the protocol needs to go
down exponentially in the number of iterations.

Despite these difficulties, the idea of repeating a basic protocol several times with recycling of
queries has been pursued by Trevisan [25] with some success. His analysis yields query-efficient
Linearity Tests and PCP constructions. The PCP verifier of [25] has error 1/4 and makes 5 queries
(therefore, the amortized query complexity is 2.5.) The verifier repeats twice the 3-query verifier
of Hastad [16]; one query is recycled between the two executions. Other, possibly more efficient,
recycling schemes were also described in [25] and one of them was analyzed for the simpler problem



of Linearity Testing, resulting in a linearity tester having amortized query complexity 1.5.

The latter result mentioned above, however, does not immediately translate to the context of
PCP constructions. (An intrinsic reason for this is given by a lower bound of Bellare et al. [7] —
this is discussed further in the next section.) In this paper we abstract a new “proof-composition”
technique based on the recent work of Hastad in [15]. We then create a new verifier to use with
the composition technique by modifying the verifier of Trevisan [25]. The result is a family of
PCP verifiers that, for any k, make 3k 4+ 2 queries “non-adaptively” and have error 2=2%. The
term non-adaptive implies that the queries are chosen purely as a function of the input and the
random coins and are not a function of answers to previous queries. This aspect is needed for
one the applications given below. In order to state our main result more formally, recall that
a probabilistically checkable proof system is described by an (r,¢)-restricted non-adaptive PCP
verifier, i.e., a probabilistic polynomial time oracle machine, who on input z, tosses r(|z|) random
coins and makes ¢(|z|) non-adaptive queries to a proof oracle P. A language L € naPCP,4[r,q]
(“na” stands for non-adaptive queries) if there exists an (r,g)-restricted non-adaptive verifier V
satisfying: (1) (completeness)If z € L, then 3 P s.t. Prg[VF (2 : R) accepts | > ¢. (2) (soundness)
If 2 ¢ L, then V P Prg[VF(z : R) accepts | < s (where VP (z; R) denotes the computation of V on
input z and random string R with oracle P). Our PCP construction proves the following theorem.

Theorem 1 (Main) For every ¢ > 0 and positive integer k, NP = naPCP;__ 5-2x[log, 3k + 2].

The amortized query complexity of our family of protocols tends to 1.5. The two main consequences
of our result are described below.

PCP vERsus 2-PrOVERS 1-ROUND. In a 2-Provers 1-Round (2P1R) protocol the verifier has
access to two oracles (or provers) P and () representing a membership proof of an NP statement.
The verifier is allowed to make only one query to each oracle; upon being queried, the oracle answers
with a string of [ bits (I is said to be the answer size of the protocol.) The query complexity of such
a 2P1R proof system is defined to be 2[. The completeness and soundness of this proof system are
defined in the usual way and thus the notion of amortized query complexity also extends naturally.
(The amortized query complexity is ¢ if the query complexity is gk and the soundness error is 27%.)

It is clear that a 2P1R protocol can be simulated by a PCP system with no larger query
complexity, but the 2P1R seems to be a weaker model. In particular, it is non-trivial to show that
the error of 2P 1R proof systems can be reduced by increasing answer sizes, while an analogous result
is quite straightforward for PCPs. The former question was a subject of significant attention in the
past and was finally resolved by Raz [21]; and an ensuing 2P1R protocol for NP turns out to be a
critical ingredient in many efficient constructions of PCPs (including ours). Despite this significant
difference in behavior and utility of 2P1R proof systems and PCPs, no separation between the two
was known. The only limitation known on the power of 2P1R proof systems is due to Serna et
al. [22], who show a lower bound of 2 on the amortized query complexity of any 2P1R proof system
recognizing an NP-complete language. The results of [22] are even stronger since they imply that
even a PCP that can query two entries from a non-Boolean proof (each entry being a string of
bits) can only recognize languages in P as long as the error is less than 2.

By constructing a PCP verifier for NP with amortized query complexity of 1.5, we derive a
separation between PCPs and 2P1R. In fact the separation actually holds for any answer size
[ > 7. In the full version of this paper, we describe a generalization of the 2P1R model and of the
2-query non-Boolean PCP model. In this model the verifier accesses a binary table but can only
read two “blocks” of I consecutive bits. (This model was proposed to us by Shafi Goldwasser and
Amit Sahai.) We extend the result of Serna et al. to this model as well, thereby concluding that



the separation between PCPs and 2P1R is due to the “locality” of the access mechanism of the
latter model.

APPLICATIONS TO THE MAX ECSP PROBLEM. For an integer k£ > 1, the Max kCSP is the Boolean
constraint satisfaction problem with constraints involving at most &k variables (see [18, 10, 24, 23,
26, 19, 28, 29].) Max kCSP was known to be hard to approximate within 274% [25], our result
implies that it is hard to approximate within a factor of roughly 272k/3_ The best known algorithm
has an approximation ratio 2~(k=1) [24] (note that a random solution is 2_k—appr0ximate.)

2 Techniques: Previous Works and Our Contribution

In this section we review the main technical ideas from previous papers and we explain our contri-
bution.

2.1 The standard proof composition paradigm and limitations

All the recent constructions of Probabilistically Checkable Proofs rely on the proof-composition
methodology, invented by Arora and Safra [4]. The main idea is to construct two proof systems,
that optimize different efficiency parameters, and then combine them together in order to build a
composed system that is efficient under all the parameters. Composition is done between an “outer
verifier” V" that is typically a 2-Provers 1-Round (2P1R) protocol' and an “inner” verifier i
The verifier of the composed system V™P expects a proof that be the entry-wise encoding of the

proof of V°" using an error correcting code. V™P simulates the behavior of V", chooses two

?
entries of the proof, and then calls as a “subroutine” V™ to determine whether the encoding of
these entries “look like” being encodings of something that V°" would have accepted. Therefore
the properties of V™ are the following: it knows the acceptance predicate of VO, and it has
oracle access to two strings that are allegedly encodings of answers that V°"" would have accepted.
V™ tests whether this is the case. An inner verifier with, say, almost perfect completeness and
soundness 1/2, has the following properties:

e Whenever the conditions are satisfied, then V™ accepts with probability 1 — ¢;

o Whenever V™ accepts with probability > 1/2, the strings it is accessing are “close” to being
correct encodings of consistent answers.

It is not immediate to come up with a usable formalization of the second property. One way is to
define a decoding procedure that given a string, that is an alleged encoding of an answer, returns
a possible answer for the 2P1R protocol. V™ satisfies the second condition if whenever it accepts
a pair of strings with probability > 1/2 the decoding procedure, applied independently to the two
strings, will produce consistent answers. This is still a bit too much restrictive. In the most useful
formulation, the decoding procedures are randomized and the guarantee is that if VI® accepts with
probability greater than 1/2 4 é then the decoding procedures produce a consistent pair of strings
with probability at least 6’, where ¢’ depends only on é. Such a decoding procedure is implicit in
the work of Bellare et al. [8]. In what follows, a recursive composition scheme using a randomized
decoding procedure and a 2P 1R outer verifier will be called the canonical composition methodology.
Observe that the definition of inner verifier depends on the error correcting code and the decoding
procedure that is being used. An inner verifier has to test both that the two strings are valid

!The 2-Prover 1-Round construction of Raz [21] is currently the standard one for this application.



codewords (or, at least, “close” to being valid codewords) of the error-correcting code being used
(codeword test) and that the decodings of the strings are likely to be consistent answers of the outer
verifier (consistency test). Each of this tasks gives rise to different difficulties and limitations.

ErriciENT CODEWORD TEST. Much of the recent progress in designing inner verifiers and so PCP
constructions came from improved ways of testing whether the given strings are correct codeword of
the used error correcting code. The current standard for the error correcting code is the Long code
introduced by Bellare, Goldreich and Sudan [7]. The encoding with the Long code of a message
a € {0,1}" is the evaluation of f(a) for any f : {0,1}" — {0,1}. Therefore the length of the
Long code of a is 22". The best known methodology to analyze codeword tests for the Long code
uses Fourier analysis on {0,1}". This technique was introduced and applied with great success by
Hastad in his recent works on PCP constructions [14, 16]. Trevisan [25] uses this techniques to show
how to test the Hadamard code and the Long code with roughly 1.5 amortized query bit. These
constructions could not be extended to a full PCP constructions, due to an inherent bottleneck
in the consistency test that holds for any inner verifier in the canonical composition methodology,
that we describe next.

ErriciENT CONSISTENCY TEST. It is not hard to see that proof systems designed with the canon-
ical composition methodology cannot achieve an amortized query complexity better than 2. Let A
and B be the two strings given in input to the inner verifier, ¢4 and ¢g be the number of queries
that the verifier asks to A and B respectively, and ¢ = g4 + gg be the total query complexity.
If A and B are random Long codes, and the verifier has perfect or almost perfect completeness,
then there is a probability 2= ™in{ea.48} > 9-9/2 that the verifier accepts (we will have to subtract
a factor ¢ for the case of almost perfect completeness.) A slightly more involved argument shows
that 1 amortized free bit is also a lower bound for the canonical composition methodology (see [7].)
Free bits are an efficiency parameter of PCPs that is motivated by applications to proving hardness
of approximation for the Max Clique problem. The number of free bits of a PCP system is always
no more than the number of query bits. In systems designed to optimize free bits, the number
of queries can be doubly exponentially larger than the number of free bits, or more. Bellare et
al. [7] have shown that a protocol with a certain number ¢ of amortized query bits can always be
transformed into another that has ¢ — 1 (average) amortized free bits, so the lower bound of one
amortized free bit implies the lower bound of two amortized query bits.

2.2 Overcoming the limitations: A new composition theorem

The free bit lower bound has been overcome in a recent work by Hastad [15], where for any ¢ > 0
he describes a construction that uses ¢ amortized free bits. To avoid the lower bound, Hastad
considers an inner verifier that looks at tables A and By,..., By, where each pair (A, B;) would
have been a possible input for an inner verifier in the canonical composition methodology. The
advantage of working with several tables is that the decoding of A can now be done as a function
of By,..., By, and so the argument showing that 2 amortized query bits are a lower bound does
not hold any more. Hastad does not present his result with respect to an explicit composition
theorem and, in his proof, it is hard to distinguish the protocol-specific difficulties from the ones
related to the general idea of using several tables. One of the main contributions of our work is to
extract the explicit composition theorem from the work of [15] and then adapt it to our purpose.
The novel ingredient in this composition theorem is a new definition of an outer verifier that makes
several queries, specifically k+ 1 where the parameter k is a positive integer. A verifier with similar
soundness conditions was used to avoid a related lower bound (but not for use in composition of
proofs) in the work of Feige on Set Cover [11]. The composition theorem composes such an outer



verifier with inner verifiers that look at several tables A, By,..., By. The composition theorem and
the associated properties of the inner verifier are described in Section 3.

The composition theorem reduces the task of constructing an efficient PCP verifier (with respect
to amortized query complexity) to the task of constructing the appropriate inner verifier. At this
point we need to deviate from the work of Hastad, as argued next: The “inner verifier” of Hastad
first reads a certain number of (free) bits [ from A, and then applies a codeword test on each B,
using [/k free bits in each codeword test. A separate analysis shows that each codeword test has
error probability at most p = py;, and then a union bound establishes that the probability that
one or more tests fail is at most kp. The final soundness will be a little more than this bound. The
bad news of this method is that the free bit complexity of the composed verifier is 2k times greater
than the free bit complexity of the codeword test (each codeword test uses I/k free bit, and the
total number of free bits is 2/, including the bits read in A) and the error is worse than the error
of the codeword test. However the amortized free bit complexity of the codeword test can be made
arbitrarily small, and despite the increase that happens during the composition, the final amortized
free bit complexity can still be made arbitrarily small. In our case, however we can not afford such
luxuries. Since a codeword test must use at least one amortized query bit, the multiplicative factors
involved in the composition can not be hidden any more, and the composition scheme of Hastad
would blow the amortized query complexity out of control.

The second part of our work is thus a new inner verifier that is obtained by iterating k times
(with recycling) a 5 query protocol of [25] (which is, in turn, a 2-fold iteration, with recycling, of
the 3-query protocol of [16]). The novelty in this verifier is that in each iteration it uses a different
B-table, while recycling the queries made on the A-table. In contrast, the basic protocol of [25]
would expect two tables A and B and would read 2 bits in A and 3 bits in B; therefore our iterated
protocol reads 3k + 2 bits. A tight analysis shows that the soundness of the iterated protocol is
272k We stress the following point of difference from [15]: As in [15] we do k tests, one for each B;;
each test has individually soundness p = 1/4, however our analysis of the soundness of the iterated
verifier does not give an error kp, but rather p*, that is, the error goes down exponentially in k,
instead of growing with k as in [15]. Details of this inner verifier are given in Section 5.

OpPEN QUESTIONS. The eventual goal in this line of work is to find, for any ¢ > 0, a PCP
characterization of NP where the verifier has amortized query complexity 1 + . Since this result
would also imply a characterization of NP with ¢ amortized free bits for any ¢ > 0, and since only
a very complicated proof is known of this latter result [14, 15], we do not expect this goal to be
easy to achieve. Towards this goal, it would be interesting to first find a codeword test having
amortized query complexity 1 + ¢. Tests are presented in [25] which are conjectured to have such
efficiency. As discussed in [25], the Fourier analysis of such protocols cannot prove an amortized
query complexity better than 1.5 unless the proof is somehow “specialized” on the Fourier spectrum
of Boolean functions.? Progress in this direction promises to have exciting mathematical content.
Once a codeword test with a better Fourier analysis will be known, the techniques of the present
paper (the way of splitting queries between tables, and our composition theorem) should suffice to
extend the result to a full PCP construction.

2Current proof techniques use properties of the Fourier spectrum of Boolean functions which are shared by all the
functions of unit £ norm; one can show that techniques of this kind do not suffice to go below 1.5 amortized query
bits.



3 Owur New Composition Scheme

In this section we introduce our new definition of outer verifier, an appropriate corresponding
notion of inner verifier, and describe the composition theorem. (The actual construction of the
outer verifier, the inner verifier and the proof of the composition theorems are deferred to later
sections.)

As mentioned earlier all known constructions use the verifier of Raz [21] as the outer verifier.
We will also use it in order to derive our new outer verifier.

Recall that the verifier of Raz works in the following way: it generates, according to a certain
distribution, a triple (p, ¢, 7) where p is a query to the oracle P, ¢ is a query to the oracle () and
7 is a function mapping from the domain of answers of () to the domain of answers of P. The
verifier asks query p to oracle P, receiving a certain answer @, and then asks query ¢ to oracle @),
receiving answer b, and it accepts iff 7(b) = . When the canonical composition method is used,
the composed verifier expects a proof that be the entry-wise Long code of all the answers of P and
(). The composed verifier generates a triple (p, ¢, 7) according to the same distribution of Raz’s
verifier, will look at the tables A and B, being the encoding of the answers to p and ¢ respectively,
and will execute the inner verification procedure on them. Thus, the inner verification procedure
is given m and has access to A and B and the task is to determine whether B is the Long code of
some b and A is the Long code of some a such that 7(b) = a.?

At the same abstract level, our outer verifier generates k triples (p, ¢;, 1), ..., (p, ¢k, T), Where
pis a random query to P according to the distribution of Raz’s verifier and (p, ¢;, 7;) are sampled on
the marginal distribution of the triples of Raz’s verifier given that the first entry is p. The verifier
queries p to P receiving a as an answer, and queries ¢y, ..., qr to () receiving by, ..., by as answers.
We say that the verifier strongly accepts if a = w1(b1) = ---m(br), we say that it weakly accepts
when at least two of the values a,71(b1), ..., 7k(br) are the same, and we say that it rejects when
the values a,m1(b1),...,Tk(br) are all different. On input a valid statement and a correct proof,
our verifier strongly accepts with probability one. On input an invalid statement, and for every
pair of proofs, our verifier rejects with high probability. The composed verifier looks at the table
A that is the encoding of the answer to p and to By,..., B, that are respectively the encodings
of the answers to ¢y, ..., qs, and then executes the inner verification procedure. Therefore an inner
verifier with completeness ¢ and soundness s has to accept with probability at least ¢ encodings of
answers that would make the outer verifier strongly accept, and if the inner verifier accepts with
probability s + & its proofs, then a decoding procedure should produce decodings that make the
outer verifier at least weakly accept with probability at least é’, where §’ depends only on 4.

Before formalizing the above discussion we need to introduce some notation in order to specify
the encoding scheme used. From now on Boolean functions will be defined with values in {1, —1}
rather than {0,1}. The association is that —1 stands for 1 (or true) and 1 stands for 0 (or false).
Observe that multiplication in {1, —1} acts as Boolean xor in {0, 1}. For an integer k, we denote by
[k] the set {1,...,k}. For two sets a and § we denote by aAf = (aU ) — (a N 3) their symmetric
difference. Recall that A is commutative and associative.

For an integer n, we denote by F,, the set of functions f : [n] — {1, —1}. The operator o denotes
composition of functions, i.e. if f € F, and 7 : [m] — [n] then the function fox € F,, is defined
as (fom)(b)= f(n(b)) for any b € [m].

We say that a function A : F,, — {1, —1} is linear iff A(f)A(g) = A(fg) for all f,g € F,,. There

*Normally, the acceptance condition of Raz’s verifier is described as “r(b) = a and h(b) = 17, where h is a boolean
function generated by the verifier together with p, ¢, w. Following [25], we avoid this additional complication by
encoding 7 into h.



are 2" linear functions. There is a linear function [, for any set @ C {1, —1}"; it is defined as

()= 1] fla).

aEa

By convention, we say that a product ranging over the empty set equals 1. The Long code is the
set of linear functions whose support is a singleton, i.e. LONG, = {l(,} : @ € [n]}. We say that [,
is the Long code of a. Thus, the Long code is formed by n codewords of length 2™. This definition
is equivalent to the definition mentioned earlier in Section 2, but will be more convenient in our
analysis.

Finally, we need a notion analogous to that of folding from [7]. Observe that if A = l;,, is a
codeword of the Long code, then A(f) = f(a) = —(—f(a)) = —A(—f) for any f; for any function
A F, — {1,—1} we will define a new function A’ that satisfies such a property. The definition of

A’ is as follows:
ey ) ALS) Ifrf)=1
A0 ‘{ A= f) (1) = -1,

We stress that, for any f, A’(f) can be evaluated with one query to A, moreover A’ is equal to A
if Ais a codeword of the Long code.
We are now ready to define our outer and inner verifier and the composition theorem.

Definition 2 (k-Outer Verifier) A k-outer verifier for a language L with soundness ¢ and com-
pleteness s, and answer size | is a randomized polynomial lime oracle algorithm V that is given
oracle access to two oracles P and () with the properties that for every input string x,

e [EFFICIENCY]| each oracle answers a query with at most | bits. The verifier uses at most

O(log(|z|)) random bits.

o [ORACLE AccCESS]| After tossing ils random coins, the verifier generates queries p,qi,. .., qx
and functions my,...,7 : [m]...[n]. The verifier queries p to P receiving answer a and
q1,---,qr to Q) receiving answers by, ..., bg.

e [COMPLETENESS| If z € L, there exists oracles P and Q) such that with probability at least ¢
V' strongly accepts.

e [SOUNDNESS| If x & L, for every oracles P,Q, V rejects with probability at least 1 — s.

A T-outer verifier corresponds to the standard notion of canonical inner verifier, as in [8, 9, 7]. For
any k, we are able to construct k-outer verifiers.

Theorem 3 (Construction of k-outer verifiers) For every k > 1 and for every s > 0, there
exists a k-outer verifier with perfect completeness, soundness s and answer size O(logk/s).

The proof is postponed to Section 4.

Definition 4 (k-Inner Verifier) A k-inner verifier is a randomized oracle algorithm V' that is
given a sequence of functions 1, ..., where w; : {1, -1} — {1, —1}", and has oracle access to
a function A : F, — {1,—1} and to a sequence of functions By,..., By where B; : F,, — {1,—1}.

Definition 5 (Decoding Procedure) A decoding procedure is a randomized algorithm D, such
that on input a function A : F, — {1,—1} an element of [n].



Definition 6 (Good Inner Verifier) A k-inner verifier V is (¢, s, q)-good with respect to a de-
coding procedure D if for any wy,...,7p : [m] — [n], any A : F,, — {1,—1}, and any By,..., By :
Fm — {1,—=1}, the following properties hold.

e [NUMBER OF QUERIES] V makes at total number of at most ¢ non-adaptive oracle queries.

e [COMPLETENESS] if A is the Long code of a, and B; is the long code of b;, and 7;(b;) = a,
then
Pr[V(A, BY,..., B}, m1,...,m)accepts] > ¢ .

e [SOUNDNESS] For any constant § > 0, there is a positive constant ¢’ > 0 independent of m,
n, (but possibly dependent on §) such that

IfPr[V(A',BY,..., By, m1,...,7)accepts] > s + 6
Then Pr| al least two values out of D(A), m1(D(By)),...,m(D(By)) are equal] > &' .
Our Composition Theorem is as follows. (The proof is deferred to Section 4.3.)

Theorem 7 If there exists a (¢, s,q)-good k-inner verifier V. with respect to a decoding procedure

D then for any e > 0 NP = naPCP, s4.[log, q].

4 Construction of k-Outer Verifiers and the Composition Theorem

In this section we shall prove Theorem 3 and Theorem 7. Qur construction of outer verifiers uses
the 2-Prover 1-Round protocol of Raz [21] (indeed, a slight revisitation of it), therefore we will start
reviewing its construction, even though it has appeared in several places, including [7, 16].

4.1 A 1-Outer Verifier

It is a consequence of the PCP Theorem [3] that there exists a polynomial time reduction that
given an instance ¢ of 35AT generates an instance ¢ of 3SAT such that if ¢ is satisfiable then also
¢ is satisfiable, and if ¢ is not satisfiable then every assignment satisfies less then a fraction p of
the clauses of ¢, where p < 1 is an absolute constant. Using a reduction of Papadimitriou and
Yannakakis [20] (see also further elaboration by Feige [11]) we can make sure that every variable in
¢ occurs in exactly the same number of clauses. (This will not be really necessary for our purposes,
but will simplify the exposition.) The transformation of ¢ in ¢ defines a simple 2-Prover 1-Round
proof system: on input a formula ¢ with N variables and M variables, the verifier has oracle access
to two tables P : [N] — B and @ : [M] — [7] that are supposedly two encodings of the same
satisfying assignment for ¢. Specifically, for every variable z, P(z) contains the value of z in the
assignment, and for every clause C', Q(C') contains the values of the three variables occurring in C'
according to the same assignment (the value is encoded as a number between 1 and 7, that is the
index of the partial assignment in the lexicographic order among the assignments that satisfy C').
The verifier picks at random a clause C' in ¢ and one of the three variables occurring in C' (say,
z, the i-th variable in C') and reads ¢ = P(z) and b = Q(C). If b encodes a satisfying assignment
b1,by,bs for C' and b; = a then the verifier accepts, otherwise it rejects. It is easy to show that this
verifier has perfect completeness and soundness 1 — (1 — p)/3 < 1.

The soundness of the previously described protocol can be reduced by iterating the protocol
several times in parallel. The protocol obtained by ¢ parallel repetitions does the following: it



Verifier VO (o, P,Q)
Randomly pick p € [N]
Pick (¢, 7) according to D(p)
Let @ = P(p) and b = Q(q)
accept iff 7(b) = a

Figure 1: A description of the 2-Provers 1-Round protocol of Raz [21].

Verifier VA" (¢, P,Q)
Randomly pick p € [N]
Sample k pairs (¢1,71),. .., (qr, 7x) from D(p)
Let a = P(p) and b; = Q(g¢;) for j=1,...,k

strongly accept if a = 11(b1) = - - - = 7 (b)
weakly accept if the values a,m;(b1),. .., Tx(bg) are not all different
reject if the values a,m1(b1),. .., Tk(br) are all different

Figure 2: Our k-outer verifier.

picks at random clauses C1,...,C; (possibly with repetitions), and picks a variable z; for every
clause C';. Prover P is supposed to contain an assignment to every ¢-tuple of variables, and @)
an assignment to the variables occurring in every ¢-tuple of clauses (encoded as an element of
[7]"). The verifier asks (aq,...,a;) = P(z1,...,2;) and (by,...,b) = Q(Cy,...,Ct) and checks that
m(b1,...,bt) = (a1,...,a;) where 7 : [7]" — {0,1}" is the function that “extracts” (or “projects”)
from the values of all the variables occurring in C4q, ..., the values of zy,...,z;. We notice that
since every variable occurs in exactly the same number of clauses (and every clause contains exactly
the same number of variables) the verifier generates the same distribution if it first picks at random
t variables z1,...,2; and then a clauses C; for every z;, where C; is chosen uniformly among the
clauses where z; occurs.

Raz proves that the verifier obtained by making ¢ parallel repetitions has soundness 2~%(*) and,
by definition, it has perfect completeness and answer size tlog7. From now on, we will abstract
all the details of Raz verifier that are not necessary for our proof, and we will use the following
description of it (see Figure 1): it has oracle access to tables P € {0,1}"*N and @ € {0,1}™*M_ Tt
first picks a random entry in P (i.e. a uniformly distributed number p between 1 and N) and then
decides the query ¢ for P and the projection function 7; we make no assumption on how ¢ and 7
are selected given that p is selected, and we call their distribution D(p). For every o > 0, such a
verifier exists with perfect completeness, soundness ¢ and answer size max{m,n} = O(log1/0).

4.2 Construction of k-Outer Verifiers

Our k-outer verifier is depicted in Figure 2.

We want to prove that whenever the k-outer verifier accepts with probability larger than ¢ then
the formula is satisfiable. We will prove the latter statement by using the soundness condition
of Raz’s verifier, and showing how to construct proofs for Raz verifier that make it accept with



sufficiently large probability.
Let P and @) be proofs that the k-inner verifier weakly accepts with probability at least s, that
is

E [P(p), m1(Q(q1)), ..., (Q(qx)) not all different | > s
p€[N],(g1,m1),--,(a5,7)ED(p)

We will consider the pair of proofs (P’,()) where P’ is constructed randomly as follows:

e For every p € [N], we sample k — 1 pairs (¢1,71),...,(qk—1,Tr—1) from D(p), and then we
select a random element a from the multiset P(p), m1(Q(q1)),- .., Te(Q(qr—1)), and we let

P'(p) = a.

Now we claim that Raz’s verifier accepts (P’,Q) with probability at least s/k?, where the
probability is taken both over the verifier’s coin tosses and over the construction of P’.

We first observe that the probability that Raz’s verifier accepts is equal to the probability that
the following experiment succeeds:

e Pick randomly p € [N], then sample k£ — 1 pairs (¢1,71), ..., (qx—1, Tk—1) from D(p), choose at
random another pair (¢,7) from D(p), choose at random an element a from P(p), 71(Q(¢1)),
ey Th—1(Qr-1(qr—1)), accept iff « = 7(Q(q)).

This probability is clearly the same as the probability that the following random process suc-
ceeds.

e Pick randomly p € [N], sample k pairs (¢1,71),...,(qx, 7k), pick a random j € [k] pick a
random element ¢ in the multiset {P(p)} U {m;(Q(¢:))}iz;, accept iff a = 7;(Q(g;)).

Conditioned upon the k-outer verifier weakly accepting when it selects p, (g1, 71), ..., (qk, Tk),
the previous process accepts with probability at least 1/k%. It follows that Raz’s verifier accepts
with probability at least s/k%. This acceptance probability is expected over the choices of P/, but
there must be a choice of P’ for which the acceptance probability is at least that much.

4.3 The Composition Theorem

We now come to the proof of the Composition Theorem. Let V™ be a (¢, s,q)-good k-inner verifier,
and let € > 0 be fixed. The PCP verifier V°°™P that we are claiming to exist will expect as a
proof a pair of tables LP and L@ that be the entry-wise encoding with the Long code of a valid
pair of proof oracles P and () for the k-outer verifier. We will use a k-outer verifier with perfect
completeness and soundness o; we will specify o later but we anticipate that it will be a constant
depending only on e. We denote by FP(q) (respectively FQ(q)) the folding of the ¢-th entry of
LP (respectively, LQ)). Notice that even though V™P has only oracle access to LP and L@, it
can simulate an oracle access to FP and F() as described in Section 3.

The V™ verifier is described in Figure 3. It picks queries p,¢,...,q and projections
T1,..., T as the k-outer verifier would do, and then it executes the inner verification procedure.

Claim 1 V°™P has completeness ¢ and asks at most ¢ queries.

PROOF: VC™P jccesses the proof only by running V™, and by hypothesis V™ reads at most ¢
bits. When LP and LQ are valid proof, the input that is passed to V™ satisfies the completeness
condition of V™. Therefore V™ accepts with probability at least ¢ over its coin tosses, for every
particular coin toss of V°™P, This implies that V°™P accepts with probability at least c. O

10



Verifier V™P(yp, LP, LQ))
Randomly pick p € [N]
Sample k pairs (¢1,71), .-, (qk, 7x) from D(p)
Let A= FP(p) and B; = FQ(q;) for j=1,...,k
Run VA, By,..., Bk, m1,...,7k)

Figure 3: The composed verifier that uses a k-inner verifier Vi,

Claim 2 V©o™P has soundness at least s + ¢.

Proor: We have to prove that when V™P accepts its oracle proofs LP and L) with probability
at least s 4+ ¢ then ¢ is satisfiable. Using the soundness condition of the k-outer verifier, in order
to show that ¢ is satisfiable it is enough to exhibit oracle proofs P and ¢ that would make the
k-outer verifier weakly accept with probability at least o.

Let LP, L@ and ¢ be such that

Pr[vcomp(% LP, LQ) accepts | > s+¢ (1)

and let N and M be the number of entries of LP and L@, respectively. Given LP and L@, we
define oracle proofs P and () for the k-outer verifier with the following randomized procedure:

1. Independently for p = 1,..., N: set P(p) = D(FP(p)).

2. Independently for ¢ = 1,..., M: set Q(¢) = D(FQ(q)).

Remember that D is a randomized algorithm. In the above definition of P and ) the executions
of D have to be independent each time.

An averaging argument using (1) shows that for at least a fraction /2 of the random choices
of VomP je. for at least a fraction £/2 of the p,(¢1,71),...,(qk, %), the inner verifier accepts
with probability at least s 4+ ¢/2; we call G the set of such good &k + 1-tuples. By the soundness
condition of the inner verifier we have that there exists some constant § = ¢/, such that for every
(p,(q1,m1), ..., (g, k) € G, it is the case that

Prrandom choices of D[P (P), m1(Q(q1)), - - -, Tk(Q(gxr)) not all different ] > 6

The probability that the k-outer verifier weakly accepts P and @) (expected over the way P and
() are chosen) is

:PI'P,Q,pE[]V]7 (ql,7r1),...7(Qk77Tk)ED(p)[P(p)7 ﬂ-l(Q((h))v ey ﬂ-k(Q(q}c)) not all different]

> Prpq[P(p), m(Q(q1)), - - -, Te(Q(qx)) not all different|(p, (¢1,71),...,(qk, Tr)) € G]
"Proeiny, (om),(aemn)en@) (25 (@, T, s gk, 7r)) € G
> %6 >0
This completes the proof of the Composition Theorem. a

11



Innery (A, By, ..., Bg,m1,...,Tg)
Choose uniformly at random f, fo € 7, and g1,...,9x € Fnu
Fori=1,2and j=1,...,k
choose at random e; ; € F,, such that
Vb € {1, —1}m.Pr[ei7j(b) = 1] =1-¢
ifforalli=1,2and j=1,....k
A(J)B;(9;) = Bi((fiomj)gjei ;)
then accept
else reject

Figure 4: The inner verifier.

5 Main Result

In this section we describe the inner verifier used in our paper and give an outline of its analysis.

5.1 The Inner Verifier

For any k£ and ¢ > 0, our inner verifier Innery . is described in Figure 4. Inner; . is obtained by
iterating a basic 3-query inner verifier by Hastad [16]. The basic protocol would access two tables
A and B, would pick a function f uniformly from the domain of A, a function g uniformly from
the domain of B, and a function e from the domain of B but with a non-uniform distribution; the
verifier would accept iff A(f)B(g) = B((f o m)ge). By recycling queries, we manage to execute 2k
iterations of the basic protocol while using only 3k + 2 queries instead of 6k queries. Specifically,
each of the two queries that we ask on A is used k times, and some of the queries that we ask on
B are used twice. The recycling mechanism that we employ in Innerj . is similar to the one used in
the K i test of [25]. The latter was, however, only a codeword test, and so it had as input a single
table.

5.2 Background on Fourier Analysis

To analyze the properties (i.e., the soundness) of this verifier, we need to resort to Fourier analysis.
We give some background here. Recall the definition of linear functions from Section 3. We will be
using three standard properties of linear functions, the fact that they are linear in a, linear in f
and that they are equally often 1 and —1, except for the case of the function that is identically 1:

1 Ha=0

0 otherwise.

lo‘(f)lﬁ(f) = lOfAﬁ(f) ) la(f)la(g) = la(fg) ’ ]?la(f) = { (2)
For a function 7 : {1,—1}"™ — {1,—1}" and a set 3 C {1, —1}" we define 7(8) = {=(b): b € 3}
and also the less standard notation 79(3) = Apes{r(b)}. In words, 79(3) contains all the elements
a € {1,—1}" such that a is the image of an odd number of elements of 5. Specifically, we will use
the fact that I e5)(f) = lg(f o 7) (where the I’'s come from the appropriate domains) and that
() C 7 ().

We can see a function A : F, — {1,—1} as a real-valued function A : F,, — R. The set of
functions A : F,, — R is a vector space over the reals of dimension 22". We define the following

12



scalar product between functions.

g 2 ADB) =EBIA(NB)] -
reF,

The set of linear functions is easily seen to form an orthonormal basis for the set of functions
A : F, — R. This implies that for any function A : 7, — R we have

=" Aalo(f) where Ay = A -1,

Parseval’s identity implies that for every A : {1,—-1}" — {1, —1} it holds 3=, A2 = 1. Among other
things, this implies that for a function A : F,, — {1, —1}, we have |A,| < 1 for any a. )
Finally, from the definition of folding (i.e., A'(f) = —A'(—f) for any f) it follows that Al, =

for any a of even size, in particular for a = (.

5.3 The Decoding Procedure

The decoding procedure D is based on the fact that, by Parseval’s identity, the squares of the Fourier
coefficients A,’s and Bg’s sum to 1 and can hence be thought of as a probability distribution.
For a table A : {0,1}"™ — {0, 1}, the decoding procedure is defined as follows:

e Pick a set a C [n] with probability /ii, pick a random element a € a, return a. (Notice that
this is well defined only when Ay = 0, which is true for a folded A.)

The claims about the number of queries made by the inner verifier and about its completeness
property are easily verified. Hence we turn our attention to its soundness. In order to do so,
we need to analyze the quantity Pr[D(A), 71(D(B1)),. .., m,(D(By)) not all different ]. A simple
computation yields that

Pr[D(A),m(D(By)),...,mx(D(By)) not all different |
> maX{Pr[ﬂj-D(A)zﬂg( ( i), Pr(3i, j.mi(D(Bi)) = ;(D(B;))]}
> max{max Pr(D(4) = 5;(D(B;))max Pa{ri( D(B,)) = m(D(B;)}
1 1 .
> max { max —Aa Bi ,
{ ! (a,ﬁ:w) plal 1Al )
1 . 1 -
max —Bi 1_3]2.’ )
#i (ﬁhﬁ%ﬂ(ﬁlz);”%(ﬁz)#@ 151 ﬁlﬁ?l 6)}
>

1 .51 .
7 a,B:m; (B)Na#d @

1 - 1 -
E L, L
i#:‘( . 2 |B1] 7 |3 ]’&)}
B1,82:mi (81 )N ;(B2)#0

To lower bound the right hand side we try to derive some lower bounds on the Fourier coefficients
of A and B;’s using the acceptance probability of the inner verifier.

13



5.4 The Analysis

We let k and ¢ be fixed for the rest of this section.

Proposition 8 The acceptance probability of Innery, . is

2% > Ts where Ts £ E [T AUDBi(gi)Bi((fi o mi)gseis)

SCI2]x[k] f1,02,91,--9K€1,1,--€2 k (i.7)€S

This proposition is proven as in [25]; it follows from the arithmetization of the acceptance
condition of the inner verifier, which is a function of the A(f;)’s, B;(g;)’s etc. To analyze the
expression above, we need to analyze the Tg’s. Of course when S is empty then Tg is 1. We
want to show that if Ts is high for any other set S then the success probability of the decoding
procedure is high. We start by analyzing Ts and deriving upper bounds for these in terms of the
Fourier coefficients of A and B;’s. We divide the analysis into two cases, depending on whether
none or at least one of the sets Vgé{j :(1,7) € S} and Wgé{] :(2,7) € S} have odd cardinality.

Lemma 9 Let S C [2] X [k] be a non-empty set such that both Vs and Ws have even cardinality.
Then, there exists some J C (k| such that

Ts < > [I B}, (1 —20)%! (3)

{ﬁj}jGJ:3i7jEJ7Ti(ﬁi)n7Tj (5])3&@ J€J

ProOF: Let L=Vg—Ws, U =VsNWg and R = Wg — Vg. Since T's contains an even number of
occurrences of A(f1) and an even number of occurrences of A(f3), it can be rewritten as:

Ts =

H Bj(9;)B fzow])g]ew)] (4)

f1,52,91 -9k €1,1 5,62 & [( . )€S
We now further split the product to take care of possible cancellations of the terms of the form

B;(g;), thus getting

Ts = E

1502591 5-08,61,1 -2

(H Bj(g;)Bi((f10 ”J)gjeld)) (5)

JEL
(H Bi(g9;)B;((f20 Wj)gjem)) (H Bi((fiom;)gjer ;) Bi((f20 ﬂj)gjezj))]
JER JEU

Now, we expand each term in the above product.

For j€ LUR, B(g;)=Y_ Bigs,lsg;)

B;
Forje L, Bj((fiomj)gier;) = Zijlﬂj@(%)(fl)lw(gj)lw(61,1)
Vi
For j € R, Bj((f207;)gi€2i) = Bin, L () (J2)ly (95)1, (2,5)
Vi

14



Forj € U, Bj((fiom;)gje1,;) ZBL fl)lﬁ; (gj)lﬁj(elu)

and  Bj((fy071)g5625) = 3 Bjnlew (g (J2)l; (95, (€2,5)

Y5
We now distribute the summations, use the linearity of expectation, the properties of linear func-
tions, and ohserve that

E Ly(e;;) = (1—2¢),

€1,5

The result of these manipulations is the following expression

Bis B, E [z " oo )2
{m%m i Biny (B st opsicon o)l et U2

jEeLURUU

( H lﬁ;Aw (gj)) (1 — QE)ZJGU |ﬁj|+ZJELURUU ;1

For any fixed value of the 3;’s, the expectation above is zero unless all of the following conditions
hold; and if the conditions hold, then the expectation is one:

B; =75, VyELURUU

AJeLW (75)A JEUT; (ﬁ]) jeLuU7r (59) 0

A]eRUUﬂ' (7;) = AJeRuUﬂ' (Bj) =
Thus Ts “simplifies” to:

Be N e (1 e 02 et
3 . )
{8;,i€ LURUU:A je puur ® (8;)=0} J€LURUU

To simplify the above expression, we ignore some of the (1 — 2¢) terms. We also ignore the
constraint AjeRUyﬂ (B;) = 0}. Then by using Parseval’s Identity on every j € R, we get the
following upper bound on Tjs.

Ts

IN

Z ( H B]ﬁj) 1—28)ZJELUU|51|
)=0}

{8, €LUU:A je Luun (8;)=0} \J€LUU

Z ( H B]z,ﬁ]) (1 - 2€)ZJGLUU|BJ|7

{B1,l€LUU: 34,5 €LUU s.t. m;(8:)Nm;(8;)#0} \JELLU

IN

where the second inequality above follows since the summands are positive and the condition
A]eLUmr (8;) = 0 implies the condition 3¢,j € LUU s.t. m;(8;) N 7;(5;) # 0. O

Thus 1f Ts is large for a set S for which both Vg and Wg are even, then the lemma above
implies that some (complicated) expression related to the Fourier coeﬂ"lcients is large. The following
lemma relates this (complicated) expression to the success probability of the decoding procedure
in Section 5.3.
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Lemma 10 Let By,..., By be such that Bi,(b =0 for every i € [k]. Assume that for some 6, > 0,
J C [k] the following holds:

> [T 821 - 220 &
{ﬁj}jejzfli,jEJ,iqéj s.t. Ti(ﬁg)ﬁﬂj(ﬁj);é@ =1
Then

E
i,5€E[k]i#]

1 4 1 - )
Lo L |50
5175227Ti(512);7ﬂj(52)¢@ 8]0 16, Mb] ch*

where ¢ = ¢, is a constant that depends on ¢ but not on é nor on k.

Proor: We prove the lemma in two steps. First we show that

E

ARy ARy
e > (1—e)B2s (1 - )18

B1,02:mi (B1) N7y (B2)#0

> > T1 Bs,(1 - 20)7 (6)
() {8i}ie T, i€ Ti#] st. mi(B:)Nmj(8y)#0 [=1

In order to obtain this inequality, consider the following probabilistic experiment. Pick two
random indices 7, j distinct from [k] and then pick 5, and (83 independently with probability Bi?,& (1-
e)l8:l and B]2-752(1 — ¢)%! respectively. Now consider the probability of the event that m;(8;) and
m2(02) have a non-empty intersection. This is clearly equal to the left-hand side of (6) above. One
way to lower bound the probability of this event is by considering the following experiment: For
every ¢ € J, pick §; with probability B2 (1 — 5)'5t| Now pick ¢ and j distinct at random from
[k] and consider the event that both i, j E "J and 7i(3;) intersects m;(3;). This probability can be
lower bounded by the probability that there exists a pair (4o, jo) € J such that m;,(5;,) and 7;,(5;,)
intersect, times the probability that when we pick 7, j distinct at random from [k], then we get the
pair (4g, jo). This probability is easily bounded by

% E HB?,ﬁz(l_Qg)'ﬁl'
) {Bi}ies : =
Ji,j € Joi# jstom(B)Nwi(B8;)# 0

This yields the inequality (6) above.
To complete the proof of the lemma we observe that for every positive ¢ and z the following

inequality holds:
1

€ET

(1-e)" <

(7)

To see the above inequality, we use the following two inequalities: 1) For every ¢ s.t. 0 < ¢ < 1,
(1 —e)/* < e~'; and 2) For every positive y, ye™¥ < ™!
The lemma now follows from the following series of inequalities:

1 H2 1 NH2
> =78ia @Bjﬁz

& Bl
B1,Batmi(B1)Nmy (B2)#0 171

i,5€[k]i#]

> (1-2e)l2 B2, (1 —2¢)%1B2 | (Using (7))
B1,B2:m: (1) (B2) #D

1
E
dee i jelkl i

16



> = 3 [T B2, (1 — 2¢)/1 (Using (6))
€ 5(2) {ﬁj}jeJ . =1
di,j € J,1 #] s.t. ﬂ-l(ﬁl) N Wj(ﬁj) 7£ 0
1

> 6 (Using the hypothesis

SN (Using yp )

> —.

— 2e2¢k?

a

Notice that the expression being lower bounded in Lemma 10 is a lower bound on the success

of the decoding procedure of Section 5.3. Thus the following corollary summarizes the effect of
Lemmas 9 and 10.

Corollary 11 Let S C [2] x [k] be such that both Vg and Ws have even cardinality. Then if Ts > 6,
then the decoding procedure of Section 5.3 leads to weak acceptance with probability at least %,
where ¢ is a constant depending only on ¢

We now move on to the case where at least one of Vg and Wy is odd. We subdivide the analysis
into two further cases: 1) When both Vg and Wy are odd and 2) When exactly one is odd. In both
cases the bound obtained on Ts is the same, however the analysis is slightly different. Then as in
Lemma 10 we relate the new bound to the success of the decoding procedure.

Lemma 12 Let S C [2] x [k] be such that both Vs and Ws have odd cardinality. Then there exists
a set J C [k] such that

Is< Y |AAjeﬂ (H32 (1—2¢) W) (8)

{ﬁ]}]E] JGJ

ProoF: Let L =Vg —Wg, U =VsnN Ws and R = Wg — Vg. Since Ts contains an odd number of
occurrences of A(f1) and an odd number of occurrences of A( fz), it can be rewritten as:

Ts = E

f1,025915-98:€1,1,--,62 &

H B;(g;)B fZOﬂ’])g]ew)] (9)

( J)ES

We now further split the product to take care of possible cancellations of the terms of the form
B;(g;), thus getting

Ts = E

f1,02,91 98,61 ,1 5,62 & jer

A(f1)A(f2) (H Bj(g;)Bi((fio Wj)gjem)) (10)

(H Bi(g9;)B;i((f207j)gj€2,5) ) (H Bi((fiom;)gjer ;) Bi((f20 Wj)gjezj))]

JER JEU

Now, we expand each term in the above product.

Fori=1,2, A(f;)= ZAOAilai(f)
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Forj€ LUR, B(g;)=)>_ Bjgsls(g;)
B;

For j € L, B;((fiomj)gjer;) ZBJWJ ﬂ fl) ’Yj(gj)l%(eld)

For j € R, Bj((f2om;)gjez;) = Z Bj,, L () (J2)lo, (7)1, (€2,5)

vy

For j € U, Bj((fiomj)gjer;) ZByﬁj w fl)lﬁ;(gj)lﬁj(elu)

and  Bj((faomj)gjes;) =D ij Lo g,y (J2)l, (93)1, (€2,5)

vy

We now distribute the summations, use the linearity of expectation, the properties of linear func-
tions, and observe that

E (e ;)=(1— 28)'”'.

€1,5

The result of these manipulations is the following expression

Aal AQ2B]‘”BJ Bjﬂ/] fl f2 E w9k [ZQJAJGLWJ@(’VJ)AJEUTJ@(ﬁ])(fl)lOAQAJGRUUﬂ'J@(WJ)(jé)
a17a27{ﬁj},{'y]} 523910005

( H lﬁ;Aw (gj)) (1 — QE)ZJGU |ﬁj|+2]€LURUU ;1

jELURUU

For any fixed value of a;,a; and §3;’s, the expectation above is zero unless all of the following
conditions hold; and if the conditions hold, then the expectation is one:

B; =7, ¥j e LURUU
oy = AJETJr (75)Ajeu; 2(8)) = AjeruuT, 7 (6))

as = Ajerumy (75) = Ajeruom (5))

We thus Ts “simplifies” to:

= i i 32 s erow 81+ Y emuw 165]
TS B Z AAJGLUUT (53)14 JGRUU7T (5])( H Bjﬁ;) (1_2") seLuy Y JERVU T

{8;,;€LURUU} jeELURUU

IN

A : o 1851
Z |AAJ€LUU7T (ﬁj)| ( H Biﬁ]) (1 — Qg)ZJEL U

{3;,i€ LURLU} j€LURUU

A 12 - oo 185l 2
( D NS TR ( 11 ij) (1 - 26)2serow ]) ( > (H ij))
{8;,7€LUU} jeLuu {8;,1€R} \JER
Z |AAJ€LUU7T ( H B] ﬁj) 1_ 25)E]€LUU 1551

{B;,j€LUU} JELVU

The second inequality is obtained by using |A,| < 1 and ignoring some of the (1 —¢) terms. The
final equality uses Parseval’s Identity. We are now done, since the lemma is true for J = LU U. O
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Lemma 13 Let S C [2] X [k] be such that exactly one of Vs and Wg has odd cardinality. Then
there exists a set J C [k]| such that

Ts< 3 s e, (H32 1- 2 W) (11)

{Bi}jes JEJ

Proor: Without loss of generality, assume |Vg| is odd. The proof is similar to the proof of
Lemma 12. Define L,R and U as in that proof. Analogous to (11), here we get

_ i 52 - 1851+ 1551
Ts = Z AAJGLUUW 3,) ( H Bj,ﬁ]) (1— QQ)EJGLUU j Z]GRUU j

{85,i€LURVU:A je ruum (8;)=0} J€LURVU

As in the proof of Lemma 12, the RHS can be bounded from above yielding:

i 32 oo 1631
Ts < Z AAjeLUUﬂJEB(ﬁJ) ( H Bj,ﬁj) (1 — Qg)ZJeL v 1Pl

{6,,/€LUUY} jeLuU

Thus the lemma is true for J = LU U = Vg. (Analogously if Wg were odd, then the lemma would
be true for J = Ws.) a
Finally we show that whenever the RHS of (8), (11) is bigger than some &, then the decoding
procedure will succeed with probability at least ¢’, where §’ does not depend on n and m.

Lemma 14 Let A and By, ..., By be such that /1@ =0 and Bi,@ =0 for every i € [k]. Assume that
for some 6, > 0 and J C [k] it holds that

3 |Aq, |(HB2 1—2¢ W) > 6. (12)

o {B5}jera=4; W]EB (85)
Then

E
1€[k]

1oy 1 . 6
DU )
la| =]8] dck
a,B:mi (B)Na#d

where ¢ = ¢, 1s a constant that depends on ¢ but not on & nor on k.

Proor: We start by deriving an upper bound on the LHS of (12). First we show that we can
essentially ignore the contribution to this term from a such that A, is small.

3 | A | <H32 (12 W)

a{B;}jeria=A;7F (8))and| A4 |<5/2

3 §/2 (H32 1—25)%')
(ﬁj)andfia<6/2

o {8} jesia=0,m9 j

— §/2,

IN
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where the final equality is another multi-fold application of Parseval’s identity.
Combining the above with (12) we get:

3 |A,| (H32 1—2¢ W) > /2 (13)
a B} era=A;7%(3;)and|As|>5/2
We now upper the LHS of above:

> | Ay (HB2 (1—2) w)

a{Bi}iesio=2,7%(3;)and|As|>5/2

2 2 8 . . 21 4
< 5 Z ) |A,| (HB (1 - 2¢) J|) (Multiplying by £|A,| > 1.)
a,{ﬁj}JEJ:azAJﬂ?(ﬁj)ancﬂAa|Z§/2
2
< 3 3 |Aq|? (H32 1-2 W)
av{ﬁj}jeJ:a:AJﬁ@(ﬁj)
2
< 3 > ) |Aq)? (HB2 QW) (Since (1 —2¢) < (1—¢)?)
a7{ﬁj}j€J:a:AJﬁ (85)
2 - o .
< 3 3 |Aq2(1 — &)l (HB2 (1—¢ w) (Since [a] < 32,18;].)
Q,{ﬁj}JeJ:Q=Aj7rje(ﬁj)
2 . N . ‘
<2 > AP (1 - o)l (HB;@(l : e)'ﬁﬂ')
a{B;}jerFed s.t. anm(B8;)#£D 7

Thus combining the above inequality with (13) we get

3 (HBL 51— W) > %. (14)

a,{B;}jeFed s.t. aﬁﬂi(ﬁi);é@

From now an argument similar to that in the proof of Lemma 10 suffices to conclude the proof.
The only difference is that we save a factor of approximately 2/k, since we only have to pick one
random j € J (rather than two distinct indices (7,7)). In particular we obtain the lemma with
c = 4e%e?, O

Once again we obtain the following corollary from Lemmas 12, 13 and 14 by observing that
the expression being lower bounded in Lemma 14 is a lower bound on the success of the decoding
procedure of Section 5.3.

Corollary 15 Let S C [2] x [k] be such that at least one of Vs and W have odd cardinality. Then
if Ts > 0, then the decoding procedure of Section 5.3 leads to weak acceptance with probability at
least -, where c is a constant depending only on ¢

Theorem 16 For any k and ¢, Innery, . is a ((1—2¢)*,272% 3k +2)-good inner verifier with respect
to (D1, D3) (the decoding procedure defined in Section 5.3.)
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Proor: The verifier certainly makes 3k+2 non-adaptive queries. If the input of the verifier satisfies
the completeness conditions, then let A be the long code of @ and B; be the long code of b; (we
also have m;(b;) = a.) The test accepts if and only if ¢; ;(b;) = 1 for all (¢,7) € [2] x [k], an event
that happens with probability (1 — 2¢)2%.

Let now A, By,..., B and m,...,7; be such that Inner;. accepts with probability at least
27%F 1 §. Then, from Proposition 8, there must be at least one non-empty S C [2] x [k] such that

II A(f)B;(g5)B;((fom;)gjei;)| > 6.

f17f27g17"'7gk761,17---752,k (Z,])ES

Then, by Corollaries 11 and 15, we have that the decoding procedure of Section 5.3 succeeds with
probability at least

1 62

Sk poly ()
where ¢ is a constant that depends only on ¢. a
Theorem 1 follows from Theorem 7 and Theorem 16.
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