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Abstract

We consider computations of linear forms over R by circuits with
linear gates where the absolute values coefficients are bounded by a
constant. Also we consider a related concept of restricted rigidity of a
matrix. We prove some lower bounds on the size of such circuits and
the restricted rigidity of matrices in terms of the absolute value of the
determinant of the matrix.
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The purpose of this note is to analyze the role of the determinant in establish-
ing lower bounds for linear circuits over R with bounds on the coefficients.
The study of the linear complexity of computation has a long history, start-
ing with the seminal works of Morgenstern [6, 7], Grigoriev [4] and Valiant
[10]. But it is still an open problem to prove more than linear lower bounds
on general circuits computing an explicitly defined linear form. With the
restriction on the size of coefficients, Morgenstern [7] proved nontrivial lower
bounds on the size of linear circuits. He showed that the number of additions
and scalar multiplications in a fan-in 2 circuit for computing linear forms
associated with a matrix A is at least log, |Det(A)|, with ¢ being the maxi-
mum of the sum of the absolute values of the coefficients used in any linear
combination. He was thus able to prove, e.g., an %nlogz n lower bound for
the circuit size of an n x n DFT, under the restriction that ¢ < 2. This
method, unfortunately, does not work for unrestricted computations, since
we get the same bound, say, for nl, where I is the n x n identity matrix, but
it is not excluded that it can be somehow modified to more general models
of computation.

Several researchers further analyzed the complexity of computing linear
forms in the restricted linear model, using the singular values of the matrix
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and Wielandt-Hoffman inequality (Nisan and Wigderson [8], Chazelle [3],
Lokam [5]).

In this paper we will show that several such results can also be obtained
using bounds on the determinants. Our main tool will be Hadamard’s in-
equality (see eg. [1]) for the determinant of a complex valued matrix, which
states that

|Det(A)| <[]
j=1

Several previous results follow from ours, with only slightly worse constants,
which shows that the “volume argument” can be used in most cases for such
lower bounds.

In particular we show that matrices with large determinant have large
restricted rigidity, and that linear circuit with coefficients by ¢ of depth
d for the computation of linear forms associated with a matrix with large
determinant must have size at least dn'"4 /c2.

Our lower bound techniques apply to matrices A such that log, |Det(A)|
is nonlinear, e.g., nlogn. Example of such matrices, with constant entries,
are the Fourier matrix, the Hadamard matrix, as well as the Jacobsthal
circulant matrix, i.e., the matrix whose (4, j)-th entry is given by x(i — j),
where x is the Legendre symbol.

2

In what follows, ||A||r will denote the Frobenius norm of a matrix A, i.e.
the square root of the sum of the squares of its entries. We will make use of
the following upper bound on the determinant:

9\ /2
Det(4) < (W) , @

n

which follows from Hadamard inequality using the inequality between ge-
ometric and arithmetic means. Let us note that this bound is sharp for
Fourier and Hadamard matrices, since the absolute value of their deter-
minant is equal to n™/2, and that, by adding a rank one matrix to the
Jacobsthal matrix, one also obtains a matrix whose determinant is n"/2.

This bound can be extended to the product of rectangular matrices as
follows.

Lemma 1 Let an n X n matriz A be the product of k rectangular matrices

Al,Ag,. .. ,Ak, then

AN (142N (A2 )"
|Det(A)| < S LIVl

n n n



Proof. We prove it by induction on k. The basis is inequality (2). Suppose
the statement holds for £ — 1, and consider a product of £ matrices. Let A;
be an n X m matrix. We can assume that m > n, otherwise A is singular.
Let K be an orthogonal m X m matrix which maps the rows of A; onto
vectors with all coordinates 7, n < ¢ < m, equal to zero. There is such a
matrix, since the dimension of the space spanned by the rows is at most n.
Write the product as follows:

A1B’K’_1A2A3 AL

Let A} be A1 K with the last m — n columns omitted and let A} be K14,
with last m — n rows omitted. Clearly A = A} AL A3... Agx. Since A; is a
square matrix, and applying the induction hypothesis, we get

[Det(A)] = [Det(44)||Det(ApAs ... Ay)| <

n/2 n/2 n/2 n/2
AL\ (A2 (1Aslz ™ (1Aelz )™
n n n n )

It remains to observe that ||A}[|2 = ||A1]|% and ||45]|% < |[[K~1A9]2 =

|| 42| - =

First we consider a bound to rigidity with restriction on the size of entries
involved. We denote by Ra(r,c), the restricted rigidity of A, the minimal
number of nonzero entries in a matrix C' such that A can be written as
A = B+ C, where B is a rank r matrix, and the absolute values of all the
entries of B and C' do not exceed c.

Theorem 1 Let A be an n X n matriz with entries of absolute value < c,
for some constant ¢ > 1; let r < n/2. Then

Ra(r,0) 2 (n—r) (2N ™7 o0,

Proof. Let A= B+ C, where B is a rank 7 matrix. A well known property
of the determinant allows us to express the determinant of A in terms of
determinants of submatrices of B and C. Thus we obtain

Det()] <Y Y [Det(By)||Det(Co )| <
k=1 B,Cp_

r 2
Z(Z) max | Det(By)||Det(Cr_y)]

k=1 k)C'n.—k

where By, ranges k x k submatrix of B, and C,,_ is the (n — k) x (n — k)
submatrix of C, with rows and columns disjoint from those of By. Using

k)2
the inequality (2) we upper bound |Det(By)| by (02152) / = *kF/2) and




n—k
| Det(C,,—i)| by (fffc) > . We can also upper bound >} _; (Z)2 by 4. Thus
we obtain

n—k

kpk/2 2R 2
|Det(A)] < © ‘ :

- 4n n—=~k
for a certain value of & < r, from which

(n— k)| Det(4)| 7+

R> 2
c? (4nclckk/2) n—k

To find the minimum of the expression is tedious but a routine application of
elementary calculus. First we find that the second derivative with respect to
k is positive in the range that we are interested in. Thus it attains minimum
either for £k = 1 or k = r. It turns out that the value for £ = 1 can be smaller
than value for £ = r by at most a power of ¢, thus we get the lower bound
of the theorem.

We leave the details of the computation to the reader. O

Corollary 1 Let A be an n x n matriz such that |Det(A)| = n™/2. Then,
forr <n/2,
Ru(r,c) = ¢ %Wn(n — 7).

Proof.

1 1

2
e n\ nor L o r /2
(|D€t(A)|> — (n_) > ( n ) = n2n—r > n2n—n/2 = In,

,,.r/2 rT (TL/Q)T
O

Next we shall consider linear circuits of unbounded fan-in. This means
that a gate in a circuit computes a linear function of inputs and the number
of inputs to the gate can be arbitrary (not just one or two). The natural
measure of complexity is then not the number of gates (since, trivially, we
would need only the output gates) but the number of edges of the graph of
the circuit, also called the number of wires. The classical model, used, e.g.,
by Morgenstern, counts the number of scalar multiplications and additions.
This is up to a multiplicative constant the same as counting the number of
wires in fan-in two circuits. Let us stress, however, that these measures do
not coincide even in this case. Namely, a value obtained in one addition
gate may be sent directly to another addition gate, or may be multiplied by
a scalar before that. This gives 0 resp. 1 operation, while if we count the
edges of the graph, we always count it as 1.

Now we prove a lower bound on the minimum size of depth d circuits.
Our model of depth restricted circuits is synchronous, which means that
all paths from inputs to an output gate have the same length. Thus the
computation can be represented as a product of matrices, where matrices
correspond to transformations from a given layer to the next.



Theorem 2 The number of edges S of a depth d linear circuit for computing
linear forms associated to an n xn matriz A satisfies S > dn|Det(A)|%/02,
where ¢ is the maximal absolute value of the coefficients used in the cir-
cuit. In IpaTticulaT, if A is the Fourier or a Hadamard matriz we have
S >dn'ta/c.

Proof. The computation of linear forms associated to an n X n matrix A
by a depth d circuit corresponds to a factorization of A into the product of
d rectangular matrices A, Ag,..., As. Now we use the inequality (2) from
which we can derive, by applying the inequality between arithmetic and
geometric mean,

Lopafe\ %
Zi:l ||Al||%?) . (3)

Det(4)] < ( i

where S is the number of edges in the circuit. ]

The thesis then readily follows from the fact that Y%, [|As|[% < %8,

Let us note that in the above theorem we actually do not bound the
number of wires, but the the euclidean norm of the vector of coefficients and
then we use the information on the maximal size of coefficients to estimate
the size of the circuit. Similarly in Theorem 1 we just bound the Frobenius
norm instead of the number of nonzero elements. The bound of Morgenstern
[6] mentioned above seems very similar, but it does not seem to be possible
to interpret it in such a way, since the bound is proportional to the inverse
of log ¢, rather than to the inverse of ¢? as in our bounds.

By minimizing the lower bound over all depths we get the following result
from the theorem above.

Corollary 2 The minimal size of a synchronous circuit with coefficients of
absolute value < ¢ computing the linear transformation given by a complex
matriz A is at least 2eIn|Det(A)|/c2.

Let us fix ¢ = 1. For n x n Fourier and Hadamard matrices we thus
get a lower bound enc% =~ 1.88nlog, n on the number of wires. If all the
coefficients had absolute value 1, the gates would need to have fan-in equal
to e, which is not an integer. If we count, however, the minimal number of
wires in circuits of fan-in three we get only a slightly bigger constant ~ 1.89.
For fan-in 2 we get 2nlogn, which matches the upper bound given by the
Cooley-Tuckey algorithm. Unfortunately we can prove this only under the
restriction that the synchronous circuit computing a n X n matrix has width
n.

Here is the computation. Under the restriction mentioned above, such
a circuit can be represented as a product of n x n matrices. Now we use
the Hadamard inequality (1). Observe that the terms in the product are
just the euclidean norms of the vectors of coefficients of edges directed to a
gate. Assume that each gate has fan-in either 1 or k. Then the norm of the
vector of coefficients of a gate of fan in 1, resp. k is bounded by 1 resp. V/k.



Thus we get a bound k3 > |Det(A)|, for the number S of gates of fan-in £,
which gives the above bounds. Note that we do not count the fan-in 1 gates,
So we, in some sense, are dealing with nonsynchronous circuits, but due to
the restriction on the width of the circuit, the class of circuits to which it
applies is still very restricted.

This computation shows that the Hadamard inequality gives us addi-
tional information that other tools used in this area have not been able to
capture. We can deduce that in an optimal circuit (with all the restriction
that we are considering) the fan-ins must be essentially equal. Applying the
inequality to the transposed matrices, we get the same for fan-outs.
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