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Abstract

We study pairs of families A, B C 2{17} such that [AN B| € L for any A € A, B € B.
We are interested in the maximal product |A| - |B|, given r and L. We give asymptotically
optimal bounds for L containing only elements of s < ¢ residue classes modulo ¢, where ¢
is arbitrary (even non-prime) and s is a constant. As a consequence, we obtain a version of
Frankl-Rodl result about forbidden intersections for the case of two forbidden intersections.
We also give tight bounds for L = {0,..., k}.

1 Introduction

Throughout the paper we work with a universe R = {1,...,r} of size r. The family of all
the subsets of R is denoted by 2f. We study pairs of families such that the intersections of
the sets in them have only some restricted values.

Definition 1.1 Let L C {0,...,7}. Let A, B C 2% be two families of subsets of R. We say
that (A, B) is an L-intersecting pair of families if |[AN B| € L for any A € A and B € B.
The size of a pair (A, B) is the product | A| - |B|.

For any given r and L, we are interested to find the maximal size |A| - |B| over all L-
intersecting pairs of families (4, B). Known results, both ours (in bold) and previous, are
summarized by Table 1. First we give some auxiliary definitions.
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Definition 1.2 Let N denote the non-negative integers. For L C N, let

Define

Lmodqg =
L-1 =

{imodgq:i€ L}
{i—1:ie L—-{0}}

()= () ()= ()

Let H(x) be the entropy function H(x) = —xlogyz — (1 — z)logy(1 — ).

L

Upper bound

Lower bound

(1)

|L mod ¢q| =s<¢q

925 . (gsT—l) or

()7

(2) | {k,k + 1}, independent of k (2r —1)2" (r+1)2"

(3) | {k,k+1} (2r —1)2" Q(r2" /Vk)
(4) | {0,...,s} ()2 ()2

(5) | {0,1} (r+1)2" (r+1)2°

(6) | {k}, independent of & 2" 2"

(7) | {k,1},|k — 1| > 1, indep. of k and [ 2" 2"

(8) | {k},k>1 21 Q2" /VEk)

(9)

{0,...,7} —{[r/4]}

1.99%" ~ 3.96"

1.937% =~ 3.755"

(10)

{0,...,7} —{[r/5],[2r/5]}

4-1.980% ~ 4-3.921"

1.842% =~ 3.393"

Table 1: The bounds on the maximal size of L-intersecting families on r-element universe.

(1): The upper bound, Corollary 3.4, is a consequence of our main result, which is slightly
more general. The case of restricted number of intersections modulo p of course implies also
the case when the cardinality of L is bounded. It is important to note that our bounds are
valid for any ¢, not necessarily prime or prime power. The lower bound, Example 4.1, simply
takes one family to be all sets and the other family to be all small sets.

The upper bound, Corollary 3.5, is motivated by Conjecture 6.2 related to
communication complexity (see Section 6). This is also the reason why we are interested in
an upper bound independent of &, i.e., the sizes of all the intersections are restricted to be
two consecutive integers, be it {1,2} or {n/2,n/2 + 1}. A lower bound dependent on £ is

(2), (3):

given in Example 4.3.




(4), (5): Using correlation inequalities, a tight upper bound can be proved for L con-
taining all small integers, see Theorem 5.2. The lower bound is Example 4.1, mentioned
above.

(6), (7), (8): The upper bounds are from [5]. In fact, they prove a stronger statement,
namely that the bounds hold also for L = {l : | = k (mod p)} for some k and a prime
p. This follows easily from linear algebra, since A and B are contained in orthogonal affine
spaces, if taken as sets of 0,1 vectors over the field GF(p). It follows that the case of two
consecutive integers is the only case with |L| < 2 where the size of the pair can be more
than 27.

(9), (10): As their main result, Frankl and Rodl [5] prove that for L = {1,...,k — 1,k +
1,...,7r}, where \r < k < (1/2 — A)r, any L-intersecting pair has size at most (4 — ¢)",
where ¢ depends only on A. We are able to prove a theorem in the same spirit when we
forbid special two intersections instead of one. The lower bounds are obtained by taking
both families equal, containing all sets with cardinality larger than 5r/8, or 7r/10.

Our main results should be compared to the similar theorems for single families, namely
variants of Ray-Chaudhuri-Wilson theorem, see [12, 6], or a survey by Babai and Frankl [3].
One difference is that our bounds has an extra factor of 2": for single families, the bounds
are polynomial, C) or ( <Ts) for uniform or non-uniform families (in the modular version
of one-family theorems there is an extra requirement of the set size being different residue
class than the intersections). This shows a different nature of the two problems. Perhaps
a more important difference is that the modular theorems work only for prime moduli and
to some extent for prime powers. In fact it is known that there is a significant difference
between prime and composite moduli: some examples for special values are given in [3],
and Grolmusz [7] proves that the bounds for any composite number have to be significantly
super-polynomial. In contrast, our results are valid for arbitrary moduli.

2 Definitions and notation
Recall that our families are always families of subsets of R = {1,...,r}, i.e., A, B C 2%.

Definition 2.1 Given a family A, we define the signature of a set B to be the set L of all
intersection sizes of B with elements of A, i.e.,

Lp={|AnB|: Ac A}.

With this definition, a pair is {k, k 4+ 1}-intersecting if the signature of all elements of
B is contained in {k,k + 1}. For the inductive proof it is essential to define a relaxation
of the intersecting condition which is no longer symmetric in .4 and B. This approach is
motivated by the work of Ahlswede et al [1], who use it for signatures of cardinality 1, with
an additional restriction that the single element in all signatures must be at least 6r for some
fixed 6 > 0.



In our proof we proceed by an induction on the “height” of signatures. For the application
to {k,k + 1} intersecting pairs, height is simply the cardinality of the set (or signature),
moreover only height 1 and 2 is relevant. With this replacement, it is possible to skip
directly to the last definition in this section. However, to formulate our results in a more
general form, we work with a more general notion than the cardinality of the set. The
following definition extracts the properties we need.

Definition 2.2 We say that a function || - || : 2N — N U {oo} is a height-function if the
following holds:

1. ||IL|| = 0 if and only of L =0,
2. if |L|| = s < o0 and L' C L then ||L'|| < s,
3. if |IL|| =s < oo and L' C L —1 then |L'|| <s,

4. if |||, || L|| < s < oo then either |L'NL| <s—1or|L'N(L—-1)| <s—1.

It is easy to note that the height of a set has to be at least the cardinality of the largest
contiguous interval contained in the set:

Lemma 2.3 For any height function and for any a,b € N, a < b, and L D {a,...,b} we
have ||L|| > b—a + 1.

Proof. By induction on b — a. For b = a the claim follows from the first property of the
height-function, since L is non-empty. For b > a, let L' = L. Both L' L and L' N (L — 1)
contain {a,...,b—1}, hence their height is at least b — a by the induction assumption. Using
the contrapositive of the last property it follows that ||L|| > b —a + 1. a

The next lemma gives the most important examples of height-functions.
Lemma 2.4
1. The cardinality of a set, i.e., ||L|| = |L| is a height-function.

2. For any q > 1, the function defined by

if |[L mod q| = g,
ILII =
|L mod q| otherwise,
15 a height-function.

Note that excluding the sets that contain all numbers modulo ¢ is necessary, to satisfy the last
condition of the definition. The previous lemma does not cover all possible height-functions.
It is possible to find a height function such that ||{0,1,3,5}|] = 2, even though the basic
height functions always give height at least 3 (the construction is left as an exercise).

Definition 2.5 A pair of families (A, B) has height s if there exists a height-function || - ||
such that for all B € B we have | L4|| < s.

Any {k,k + 1} intersecting pair has height 2.
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3 The upper bound

Lemma 3.1 Let z,2',y,y',m, M > 0 satisfy

IN
B

Ty

/

Ty

IN

/

Ty

[

Ty

IN
= X K

IN

Then
(x+2)y+y) < 2(M+m)

Proof. If x =0 or y = 0 then the statement is trivial. Otherwise let X = z'/z, Y =¢'/y,
and Z = M/(xy). Now the assumptions give 0 < X < Z, 0<Y < Z,and 0< XY < Z. It
follows that X +Y < 1+ Z (since for a fixed product XY, the sum X + Y increases with
the distance of X and Y'). Therefore

(z+2)y+y) = A+X)A1+YV)oy=(1+(X+Y)+XY)zy
< 14+0+2)+ Z)zy <2m+2M.

|

Definition 3.2 Let f(r,s) be the mazimal size |A| - |B| of a pair of height s on a universe
of r elements.

Theorem 3.3 If a pair (A, B) on a universe with r elements has height s then
|A| - |B] <27t (S ST_ 1) < QrstH(s/r)T,
For s =2 and any r > 2 we have
|Al-|B] < (2r —1)2".
Proof. We derive a recurrent bound for f(r,s). Let (A, B) be a pair of families on the

we define
Xt = Xu{r+1}
X = {Xxe2b-m:X ey,
X = {Xe2b-mhxtexy,

)



i.e., A} consists of the elements in X' containing r + 1, with this element removed, and Aj is
the rest of X'. Obviously

X = |A] + | X0 = [ U AL + | X N A

Therefore
|A[ - [B] = (| Ao| + [A1])(|Bo U Bi| + |Bo N Byl).

We will bound the right-hand side of this equality using Lemma 3.1. To do this, we need to
bound the four products suitably.
For any B C {1,...,r},

L7 C Lp, and (1)
Ly = Lg% C Lps,

since Ay C A and for any A € Ay, we have AN B = AN B". Thus the pair (Ag, By U B;)
has height s. Similarly, for any B C {1,...,7r},

LA C LA and (2)
Lyt = L3y C L, —1,

since for any A € A;, we have AT € A and |[ANB|=|ANB*|=|AT N B*"| — 1. Therefore
the pair (A, By U B;) has height s as well. Thus we obtain, for ¢ =0, 1,

[Ac| - [Bo N By| < | Al - |Bo U By| < f(r, 5) (3)
Now we cover By N By by two families. Let

C = {BeBynNB;:||LynLp| <s—1},
D = {BeBynBy:||Lyn(Lps —1)| <s—1}.

For any B € By N By, we have B, BT € B, and thus ||L4]|, |[L4:]| < s. Hence by the last
condition in the definition of a height-function either B € C or B € D, and ByNnB; =CUD.
(C and D are not necessarily disjoint.) For any B € C, using (1) we obtain L3° C LA N LA,
therefore ||L7°|| < s — 1 and the pair (Ap,C) has height s — 1. Similarly, for any B € D,
using (2), we obtain La' C LA N (LA, — 1), hence ||L3'|| < s — 1 and the pair (A;, D) has
height s — 1.

Thus we have (see Fig. 1)

[ Ao| - |C]|
ALl - D] < f(r,s—1).

(4)

IA
~
—
3
V)
I
—t
~



By U B; C D
AO f(ra 8) f(Tv s = 1) f(?", 8)
Ay | f(rs) f(r,s) flr,s—1)

Figure 1: Summarizing inequalities (3) and (4).

Let A, be the smaller of the sets Ay and A;, i.e., choose ¢ = 0,1 such that [A.| <
| Agl, |A1|. We have

[Acl - 1BoNBy| = | Al [C[ + [Ac] - D] (5)
< Aol - [C]+ A - D]
< 2f(r,s—1).

BoUBy | Bynb
Ac f(ra 5) 2f(ra §— 1)
Al—c f(?“, 3) f(Ta S)

Figure 2: Summarizing inequalities (3) and (5).

Using Lemma 3.1 for z = |A.|, 2’ = |A; .|, y = |BoNBi|, v = |[BoUBy|, m = 2f(r,s—1),
and M = f(r,s), we obtain

fr+1,s5) <2f(r,s)+4f(r,s—1).

It is easy to obtain boundary conditions for f: f(r,0) = 0 for any r > 0, and f(0,s) =1
for any s > 1.

For s =1 we obtain f(r,1) = 2". For s =2, f(2,2) < 3-4, since otherwise both families
contain all sets and the signature {0, 1,2} appears; hence f(r,2) < (2r —1)2" for r > 2.

For general s, let g(r,s) = f(r,s)/2"**. Then the recurrence has form

gir+1,s) < g(r,s)+ g(r,s —1),

hence g(r, s) < ( <:_1) for any s. (For a constant s, the bound can be slightly improved using
the fact that the boundary condition for ¢g(0, s) is not tight, and a case analysis for small r
similar to s = 2; however, the leading term of the bound will be the same.) O



Corollary 3.4 Suppose that for some ¢ > s > 1 the pair (A, B) has only s different inter-

sections modulo q. Then |A| - |B| < 2"*¢ <<ST71> < grt+s+H(s/r)r

Corollary 3.5 Any {k,k + 1} intersecting pair on a universe {1,...,r}, r > 2 has size
|A|-|B] < (2r —1)2".

Our largest example of a {k, k+1} intersecting pair has size (r+1)2" (one family contains
everything, the other all singletons and the empty set). We conjecture that this is optimal
even among all pairs of height 2, but our upper bound is away by a factor of 2. This would
follow from the following stronger conjecture.

Conjecture 3.6 f(r+1,s) =2f(r,s)+2f(r,s —1).

Corollary 3.7 Conjecture 3.6 implies that the size of any pair of height s is at most

F(rs) = (s ;_ 1) 2",

Proof. Straightforward from the recurrence in the conjecture. O

This bound would be tight as shown by the pair with one family containing all sets and
the other family containing all sets of cardinality smaller than s. Interestingly, this bound
would imply the famous result of Frankl and R6dl [5] on forbidden intersections (in fact, the
numerical bound would be even significantly better than 1.99%" from [5]):

Corollary 3.8 Conjecture 3.6 implies that if any pair (A, B) satisfies that for any A € A
and B € B, |AN B| # [r/4], then |A| - |B| <4-3.876" ~ 4-1.969*".

Proof. Let A'={Aec A:|A| <5r/8}, B ={B € B:|B| <5r/8},ie. families of not too
big sets in A and B. The pair (A, B') has height 37/8, since the intersection size is never
equal to [r/4] modulo [3r/8] (the intersection cannot be [r/4] + [3r/8] > 57/8, since we
removed all big sets). Hence the conjecture implies that

‘A,‘ . ‘BI| < <<T§T> or < 2(1+H(3/8))r’

— 8

where H is the entropy function. Now, since we can bound the number of removed sets by
the entropy,

(A [B] < (JA'| + 279 (|B'] + 2778
< |- B +3- QUAHG/B)r < 4 gU+H/)r o 4 . 9L958r

which gives the bounds in the theorem. O

We can prove a weaker version of the result of Frankl and Ré6dl [5] with two forbidden
intersections already from our main result. Using sizes modulo |r/5], Corollary 3.4, and
similar entropy considerations as in the previous proof we obtain the following corollary.
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Corollary 3.9 If any pair (A, B) satisfies that for any A € A and B € B, |[ANB| ¢
{|r/5],2|r/5]}, then |A]-|B| < 4-3.921" ~ 4 - 1.980%", for some constant £ > 0.

Replacing 1/5 by approximately 0.209 improves the bound to 3.864" ~ 1.967%", which is our
best bound for two restricted intersections.

4 Examples for lower bounds

The following example is the only extreme example for L = {0,...,k}. This example for
L ={0,1} is also the best one we know for L = {k,k + 1}, k arbitrary.

Example 4.1 L ={0,...,k}. Take A={B C R:|B| <k}, B=2% ILe., A contains all
the sets of size at most k and B contains all 2" sets. We get |A| - |B| = Xk, (:) 2"

If small intersections are not allowed, the most natural example is to include k£ elements
into all of the sets, both in A and in B, and then continue as above. This gives an example
of size 2" for L = {k} and of size (r—k+1)2""* for L = {k, k+1}. The following examples
improve upon this simple bound significantly.

Example 4.2 ([1]) L = {k}. Toake A = {{1,...,min{2k,r}}}, B ={B C R: |BN
{1,...,2k}| = k}. Le., A contains a single set of size 2k (or r if k > r/2), and B contains
all the sets which intersect it in exactly k elements. There are (%f) 212 = 0(2"/Vk) such
sets for k <r/2. If k > r/2 and e = r — 2k then the size is 2H(Enton)

Example 4.3 L ={k, k+1}, k <r/2. Take A={ACR:{1,...,2k} C AN|A| <2k+1},
B={BCR:|Bn{l,...,2k}| = k}. Le., A contains a single set of size 2k and all its
extensions by one element, and B contains all the sets which intersect the 2k element sets
in exactly k elements. We get |A| - |B| = ©(r2"/Vk) such sets. (For k > r/2, the bound is
again asymptotically smaller.)

Ahlswede, Cai, and Zhang [1] show that their example for L = {k} is asymptotically optimal
and conjecture that they are optimal even absolutely. This conjecture would imply that the
maximal size decreases with k.

5 The upper bound for L ={0,...,k}

The upper bound for {0, ..., k}-intersecting pair follows easily from Kleitman’s lemma proved
in [8], see also [4, Ch. 19] or [2, Ch. 6]. This lemma can be proved by induction on the size
of the universe.

Lemma 5.1 Let A, B be two monotone decreasing families of subsets of R (i.e., if A’ C A
and A € A then A’ € A, and similarly for B). Then

Al Bl < |ANB|- 2.



Theorem 5.2 Any {0,..., k}-intersecting pair (A, B) has size at most Y, (:) 2.

Proof. We can assume that the families are monotone decreasing, since if we add into A a
subset of A € A then for any B € B, |A'N B| < |AN B| < k. All elements of AN B must
have size at most k, from the intersection property. The bound now follows directly from
Lemma 5.1. O

The example of A = {A C R: |A| < k}, B = 2" is the unique extremal example (up to
exchanging the families). First, both families have to contain all sets of size at most k, to
achieve equality in Lemma 5.1. Second, inspecting the proof of the lemma, it follows that
for any ¢ € R, either A € A implies AU {i} € A, or B € B implies B U {i} € B; only the
example above satisfies this.

6 Motivation

Our motivation comes from communication complexity, for a general reference on communi-
cation complexity see [9]. For a 0,1 matrix M, let CC(M) and rank(M) be its deterministic
communication complexity and its rank over the field of reals, respectively. It is known that
logrank(M) < CC(M) < rank(M). In [10, 11}, it is conjectured that

Conjecture 6.1 CC(M) = (log rank(M))°™.

Even a weaker upper bound would be interesting, since no better upper bound than
rank(M) is known. Nisan and Wigderson [11] constructed an example of a matrix such that
CC(M) > (logrank(M))*%3- which is the largest known gap between logrank(M) and
CC(M). Their method cannot give examples exhibiting larger than quadratic gap between
CC(M) and logrank(M), and it would be particularly interesting to break this barrier, esp.
because the quadratic gap is very common in the relation among log rank(M) and variants
of the deterministic and nondeterministic communication complexity, cf. [9].

Nisan and Wigderson [11] also show that to prove Conjecture 6.1, it would be sufficient
to prove that every 0,1 matrix of rank r has a large monochromatic submatrix, where large
means that its area is at least 1/ 2(0gm)?" fraction of the original area. (In fact, it would be
sufficient to show that there exists a large submatrix with rank at most ¢r for some ¢ < 1.)
This is related to the following conjecture.

Conjecture 6.2 For any {k, k+ 1}-intersecting pair (A, B) of size S = |A|-|B| there exists
a pair of subfamilies A' C A and B' C B of size |A'| - |B'| > S/200e"°Y such that (A, B')
is either a {k}-intersecting or a {k + 1}-intersecting pair.

Any {k}-intersecting pair has size at most 2", for an arbitrary k. Hence Conjecture 6.2
implies that any {k, k4 1}-intersecting family has size at most 2(°¢ n°® .o We have proved
a much stronger bound in Corollary 3.5, which gives some support for Conjecture 6.2.
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On the other hand, Conjecture 6.2 implies the matrix property mentioned above for a
special kind of rank r matrices. Any families (A, B) can be represented as a matrix with
rows indexed by A € A, columns indexed by B € B and entry in row A and column B
defined as |A N B|. This matrix is a sum of 0,1 matrices of rank 1 (each corresponding to
one element); conversely each sum of r 0,1 matrices of rank 1 can be represented by some
families (A, B). If the families (A, B) are {k,k + 1}-intersecting then the corresponding
matrix has entries k£ and k£ + 1 only, and if we subtract £ from each entry, we obtain a 0,1
matrix of rank r + 1.

Conclusions and open problems

We have proved number of results concerning the size of pairs of families with restricted
intersection. The main open problem is to close the gap of (about) 2° in our bounds. It
is possible that pairs of height s can be larger than the corresponding intersecting pairs; in
particular, does there exist a pair of height 2 and size more than (r +1)2"7

For L = {k} and L = {k,k + 1}, it would be interesting to prove or disprove that the
bound decreases with k; if true, this would imply a tight upper bound matching our lower
bounds.

Given our motivation from communication complexity, an interesting open problem is to
decide if any {k, k 4 1}-intersecting pair must contain a big {k}- or {k + 1}-intersecting pair
of subfamilies, see Conjecture 6.2.

Last, it would be nice to have a better understanding of the reasons why in our modular
theorem we can allow arbitrary modulus, while in similar theorems for single families the
modulus is restricted to be a prime or a prime power.
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