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Abstract For ���������� -branching programs and read- � -times branching programs syntactic and non-
syntactic variants can be distinguished. The nonsyntactic variants correspond in a natural way to se-
quential computations with restrictions on reading the input while lower bound proofs are easier or
only known for the syntactic variants. In this paper it is shown that nonsyntactic ���������� -branching
programs are really more powerful than syntactic ���������� -branching programs by presenting an ex-
plicitly defined function with polynomial size nonsyntactic ����������� -branching programs but only ex-
ponential size syntactic ���������� -branching programs. Another separation of these variants of branch-
ing programs is obtained by comparing the complexity of the satisfiability test for both variants.

1 Introduction

In complexity theory branching programs and lower bound methods for branching programs are in-
vestigated due to the relationship between branching programs and sequential computations. Super-
polynomial lower bounds on the size of branching programs imply superlogarithmic lower bounds
on the space complexity of the corresponding model of sequential computation. However, up to now
superpolynomial lower bounds are known only for some quite restricted variants of branching pro-
grams. A survey is given in Razborov [8]. Hence, one tries to refine the proof methods in order to
obtain lower bounds for less restricted variants of branching programs. In this paper we contribute to
the refinement of lower and upper bound proofs for restricted branching programs by separating the
syntactic and nonsyntactic variant of ���������� -branching programs.

Before we discuss some restrictions of branching programs in order to motivate the distinction be-
tween syntactic and nonsyntactic variants we repeat the definition of branching programs. A branch-
ing program for some Boolean function ��� �"!#�%$%$%$&�'�)(*� is a directed acyclic graph with one source
node and two sinks labeled by + and � . The nonsink nodes, also called interior nodes, are labeled
by one of the variables �,!��%$&$%$��#�-( and have two outgoing edges, one labeled by + and the other one
labeled by � . The computation path for some input � .�!��%$%$%$��'./(/��021�+3�%��4 ( starts at the source. At
each interior node labeled by ��5 the outgoing edge labeled by .65 is chosen. The label of the sink that
is finally reached is equal to ��� .�!��&$%$%$��'.*(/� .
Most restrictions of branching programs for which exponential lower bounds are known are restric-
tions on the multiplicity of reading a variable during a computation. In a read- � -times branching7
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program each variable may be tested at most � times during a computation. Early lower bounds on
the branching program complexity were proved for read-once branching programs by Wegener [16]
and Žák [18]. However, there is no progress in proving superpolynomial lower bounds even for read-
twice branching programs. The reason might be that such branching programs may contain paths that
do not correspond to any computation so that on such paths variables may be tested more than � times.
Paths not corresponding to any computation contain for some variable � 5 a test whether �-5 is equal to+ and a test whether ��5 is equal to � . Such paths are called inconsistent paths or null chains. In order to
overcome the difficulties caused by inconsistent paths the read- � -times restriction was extended also
to inconsistent paths. We obtain a more restricted type of read- � -times branching programs called
syntactic read- � -times branching programs, while the variant where the read- � -times restriction only
applies to consistent paths is called nonsyntactic read- � -times. Exponential lower bounds for syn-
tactic read- � -times branching programs and some generalizations were proved by Okol’nishnikova
[5, 6, 7], Borodin, Razborov and Smolensky [1], Jukna [2], Sauerhoff [9] and Thathachar [15]. In
the last paper even a hierarchy result is proved, i.e., a function is presented that separates polynomial
size syntactic read- � � � � � -times branching programs from polynomial size syntactic read- � -times
branching programs.

Another restriction on the multiplicity of reading variables is used in ����������� -branching programs.
Now a set of at most � variables may be tested more than once (even arbitrarily often) where this
set may depend on the chosen path in the branching program. Again there are nonsyntactic ���������� -
branching programs where the restriction applies to computations or, equivalently, to consistent paths,
and the syntactic variant, where the restriction applies to consistent and inconsistent paths. An expo-
nential lower bound and a hierarchy result for syntactic ���������� -branching programs were proved by
Sieling [14]. An exponential lower bound for the nonsyntactic variant was proved first by Žák [19]
and later on improved by Savický and Žák [11, 12, 13] and by Jukna and Razborov [3]. Savický and
Žák [11, 13] also obtained a hierarchy result for nonsyntactic ����������� -branching programs.

Jukna and Razborov [3] define a possibly stronger variant of ���������� -branching programs (and read-� -times branching programs as well) which they call semantic ����������� -branching programs. In such
a branching program during a computation variables may be tested illegally, i.e., variables may be
tested repeatedly even if at least � variables have been tested repeatedly before. But then the result of
the computation must not depend on the results of illegal readings of variables. Jukna and Razborov
[3] provide exponential lower bounds also for semantic ���������� -branching programs.

All these lower bound results imply the question whether the syntactic, nonsyntactic and semantic
variants of branching programs are really of different power. The only result in this direction is due
to Jukna [2] who considers read-once switching and rectifier networks, which are a nondeterministic
variant of branching programs. We remark that there is no difference between syntactic and non-
syntactic read-once branching programs, so that read-once switching and rectifier networks are the
weakest variant of branching programs where the distinction between a syntactic and a nonsyntac-
tic variant makes sense. Jukna [2] gives an example of a function for which nonsyntactic read-once
switching and rectifier networks are of polynomial size while syntactic read-once switching and rec-
tifier networks are of exponential size.

The main result of this paper is the separation of syntactic and nonsyntactic ����������� -branching pro-
grams. We present an explicitly defined function with polynomial size nonsyntactic ���������� -branching
programs but only exponential size syntactic ����������� -branching programs, if � � � !������ �
	����� � �
where

�
is the number of variables. Hence, for ����������� -branching programs the distinction between a
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syntactic and a nonsyntactic variant is justified. We remark that the lower bound also holds for non-
deterministic syntactic ���������� -branching programs. Hence, we also obtain the result that nondeter-
ministic nonsyntactic ����������� -branching programs are exponentially more powerful than the syntactic
variant.

Another setting where variants of branching programs are considered is their use as a data structure
for the efficient representation and manipulation of Boolean functions. Besides the size of the repre-
sentation for particular functions the complexity of operations on Boolean functions represented by
the variants of branching programs is investigated. Examples for such operations are the satisfiability
test, i.e., the test whether a function represented by the considered variant of branching programs is
different from + , or the equivalence test of two functions represented by the considered variant of
branching programs. For a survey we refer to Wegener [17]. A rule of thumb that can be obtained by
comparing several variants of branching programs is that variants with a larger class of functions with
small size representations usually have less efficient algorithms, in particular, for the satisfiability test
and the equivalence test. We show that this rule is true when comparing syntactic and nonsyntactic���������� -branching programs by proving the NP-completeness of the satisfiability test and the coNP-
completeness of the equivalence test for nonsyntactic ����������� -branching programs. This complements
the results of Savický [10] who presents for syntactic ���������� -branching programs and constant � a
polynomial time algorithm for the satisfiability test and a polynomial time probabilistic algorithm
with one sided error for the equivalence test.

Both separation results on syntactic and nonsyntactic ���������� -branching programs, the separation by
a function and by the complexity of the satisfiability test, are based on the same idea: Computations
in nonsyntactic ���������� -branching programs may store information on the input not only by reaching
different nodes for different inputs, but also by testing different sets of variables during the computa-
tion.

The paper is organized as follows. In Section 2 we define the function that separates polynomial size
syntactic and nonsyntactic ���������� -branching programs and prove the upper bound for nonsyntactic���������� -branching programs. In Section 3 we repeat the definition of nondeterministic branching pro-
grams and prove the lower bound for nondeterministic syntactic ����������� -branching programs. Finally,
we prove the NP-completeness of the satisfiability test and some related problems for nonsyntactic���������� -branching programs.

2 The Considered Function and the Upper Bound

We start with the definition of the considered function. Let � ���
and let

�����
� � �	��
� � . In order

to define the function ��(� 1�+6�%� 4 (�� 1�+3�%��4 we first describe the set � of variables on which � (
depends. � consists of

i) variables .35 , where � 0������ ,
ii) variables ��5�� �%��� 5�� �&����5�� � , where ��! 0��"��� and �$#�  ,

iii) variables %�5�� � , where ���& 0'����� and �)(* .
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Then we define ��(3� .���� ��� ���)� % � � � if and only if
� ��& �0'����� ���	#�  ��/./5 � �'5�� � � � 5�� � � ��5�� �

� � ��& �0'����� ��� (* �� % 5�� � � . 5�� . � $
For the proof of the lower bound it is helpful to associate the complete graph ��� on � vertices with��( . We shall call the variables .65 ���'5�� �&���'5�� � and � 5�� � corresponding to the � th vertex of ��� . Similarly,
we call the variable %&5�� � corresponding to the edge between the vertices � and  . Then the function
computes a one if for each vertex of ��� the corresponding variables take the same value and if for
each edge the value of the corresponding variable is the parity of the variables of the endpoints. In
order to avoid confusion of the nodes of the considered branching programs and of �	� we use the
word node only for the branching programs and the word vertex only for the graph �	� .

Theorem 1 There is a nonsyntactic ������ � � -branching program for �/( with 
�� � � nodes.

Proof For each � 0 ����� we create the component � 5 shown in Figure 1. In order to simplify the
presentation we omit all edges leading to the + -sink. For each pair �!��& )� where � (  we create the
component � 5�� � shown in Figure 1. The branching program  ( for � ( computes the conjunction of
all these components. This means that the components are combined in the following way. Let some
ordering of the components ��5 , � 0 �"��� , and � 5�� � , ��& 0 �"��� ���)(� , be fixed. The source of ,( is the
source of the first component in the ordering. The � -sink of each component (except the last one in the
ordering) is replaced by the source of the successor in the ordering. The � -sink of the last component
is the � -sink of  ( .

(Insert Figure 1 here)

We have to prove that the constructed branching program  ( computes the function � ( and that it is a
nonsyntactic ���������� -branching program.

If we consider an input � .������������)� %�� where � ( � .���� �������)� % � � � , it is easy to verify that in each com-
ponent the computation path leads from the source to the � -sink. Hence, the branching program
computes the value one.

Now consider an input � .���� �������)� % � where the branching program computes the value one. First we
show that for each ��& 0������ , where �$#�  , we have .65 � � 5�� � � � 5�� � � ��5�� � . Let some � 0��"��� be fixed.
We assume that .35 � + . For the other case the same proof can be used after exchanging the � - and the
� -variables. Because of . 5 � + in � 5 the � -sink is reached only if � 5�� ! � $%$%$ � � 5�� � � + . Hence, it
remains to show that also the variables � 5�� � and � 5�� � take the value + .

First, let � (� . We look at the component � 5�� � . If ��5�� � � � , then a node labeled by ��5�� � is reached.
Because of � 5�� � � + the + -sink is reached in contradiction to the assumption that the branching program
computes one. Hence, � 5�� � � + . Then a test of � 5�� � is reached and again the + -sink is reached if �&5�� � � � .
Hence, also � 5�� � � + . If ���  , we look at the component � �&� 5 and apply the same arguments on the
nodes of the last two levels of � �&� 5 . Again we obtain that � 5�� � � � 5�� � � + .

Now we may assume that for each � the variables .65 , � 5�� � , �'5�� � and � 5�� � take the same value if the
branching program computes one. Under this extra condition it is easy to see that in the component
� 5�� � the � -sink is reached only if %&5�� � � .*5 � . � .
It remains to show that the branching program is a nonsyntactic ����������� -branching program. The only
variables that may be tested repeatedly during a computation are the � 5�� � - and � 5�� � -variables. If � 5�� � is
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tested twice during some computation, then it is tested in � 5 and in � 5�� � if � (  or in � �&� 5 otherwise.
In ��5 the � -sink is reached only if ��5�� � � + . In � 5�� � (or � �&� 5 , resp.) the � -sink is reached only if ��5�� � � � ,
otherwise the computation paths runs to the + -sink. In other words, if a variable is tested for a second
time, then the computation is immediately aborted by going to the + -sink. Then no other variable can
be tested for a second time. �

Let us assume that the first � components of ,( are the components ��5 . Let � 
 be the node that
replaces the � -sink of the last of these components. It is easy to see that there are

� � computation
paths leading from the source via �)
 to the � -sink. On each of these computation paths a different
set of variables is tested between the source and ��
 . We compare this property of ,( with a property
of syntactic ���������� -branching programs for ��( which we shall prove below in Lemma 3: Let � be a
node in such a branching program. Then the number of different sets of variables which are tested
between the source and � on computation paths from the source via � to the � -sink is bounded by
some polynomial.

3 The Lower Bound

We shall prove an exponential lower bound even for nondeterministic syntactic ���������� -branching
programs for � ��(/� . Different from deterministic branching programs as defined in the Introduction
a nondeterministic branching program may contain “guessing nodes”, i.e., interior nodes with the
outdegree

�
and without any label. At each guessing node there are two possibilities to continue a

computation. Hence, for each input there may be several computation paths. As usual a nondeter-
ministic branching program computes the value one on an input . , if there is at least one accepting
computation path for . , i.e., a computation path from the source to the � -sink.

Another nondeterministic variant of branching programs are switching and rectifier networks. Since
we do not consider switching and rectifier networks in the lower bound proof we omit their defi-
nition, which can be found, e.g., in Jukna [2]. We only remark the observation of Jukna [2] that
syntactic read- � -times switching and rectifier networks can be transformed into nondeterministic
syntactic read- � -times branching programs where the size only increases polynomially. The same
transformation is possible from syntactic ����������� -switching and rectifier networks into nondetermin-
istic syntactic ���������� -branching programs. Hence, the following lower bound also holds for syntactic���������� -switching and rectifier networks.

Theorem 2 Each nondeterministic syntactic ���������� -branching program for � ( has at least� � � � ����� ����� � � nodes. This number grows exponentially, if � � � !������ �
	����� � � .
Proof Let a nondeterministic syntactic ����������� -branching program

	 ( for ��( be given. First we
note that there are

� � inputs � 0 1�+6�&��4 ( with ��()� � � � � . We shall present a cut-and-paste argument
working only on these inputs. For each such input we fix one of the accepting computation paths and
in the following we only consider these fixed paths. This idea was already used by Krause, Meinel
and Waack [4]. Similar to the proof in Sieling [14] we shall prove for each node � that there is only a
polynomial number of different sets of variables tested on accepting computation paths between the
source and � (Lemma 3). Then we define a set of marked nodes of

	 ( and show some properties
of the marked nodes (Lemma 4, Lemma 5). Finally, we prove an upper bound on the number of
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markings of each node. Together with the total number of markings we obtain the lower bound for
the number of marked nodes.

We start with the bound on the number of different sets of variables tested on accepting paths between
the source and some node � . First we note that each input � with �/()� � � � � has the property that by
flipping any bit of � we obtain an input ��� with ��()� ��� � � + . Hence, on each accepting path in

	 ( all
variables have to be tested.

Now let � be a node in
	 ( and let � and � � be inputs with � ( � � � � � and � ( � � � � � � and for which

the fixed accepting computation paths run through � . Let
� � � � be the set of variables tested on the

computation path for � before reaching the node � and let
� � � � � be defined similarly. We claim that

there are at most � variables in
� � � � � � � ��� � (and in

� � ��� � � � � � � ).
The claim is proved by contradiction. Assume that

� � � � � � � ��� � contains more than � variables. Now
we consider the path from the source to � following the computation for � and from � to the � -sink
following the computation for ��� . This path may be inconsistent, but because of the syntactic ����������� -
restriction also on this path at most � variables may be tested more than once. Then among the at
least � � � variables in

� � � � � � � ��� � there is a variable that must not be tested on the computation
path for ��� between � and the � -sink. Hence, there is a variable not tested on the computation path for��� in contradiction to the fact that on accepting computation paths all variables have to be tested.

Lemma 3 Let � be a node in
	 ( and let � � �)� be the number of different sets of variables tested on

accepting paths between the source and � . Then � � �-� � � � � .

Proof We choose some set
�

of variables tested on accepting paths between the source and � of
maximal size. Each other set of variables tested on accepting paths between the source and � can be
obtained from

�
by removing at most � variables from

�
and adding at most � other variables. The

number of sets that can be obtained in this way is bounded by
� � � . �

In order to define which nodes of
	 ( are marked we describe a coloring of the vertices and edges of

the complete graph � � . Let
�	� � be some set of variables. We say that an edge 1 ��! -4 (where

� (* ) of � � is colored for
�

if
�

contains the variable %%5�� � . We say that a vertex � of � � is colored
for

�
if there is a vertex 
 of � � so that

i)
�

contains at least one of the variables .�� ����� � ������ � �%����� � � , where  0��"� � �& #� 
 , and

ii) there is a path in � � from 
 to � only consisting of colored edges.

The meaning of “ � is colored for
�

” is the following: Assume that � � is an assignment to the variables
in
�

. Let � � ��� � be the set of assignments � to all variables in � so that � is an extension of ��� and that��( � � � � � . Then for each input in � � ��� � the value of .�� is determined by ��� since by ��� some variable
corresponding to the 
 th vertex of ��� is fixed. Since the values of the variables corresponding to the
edges of the path between 
 and � are fixed by ��� , for all assignments in � � ��� � the variable .35 gets the
same value.

Now we run for each input � where ��(3� � � � � through
	 ( on the accepting computation path fixed for� . For each node � reached on the computation path for � we compute the set

� � �)� of variables tested
on this computation path before � . We mark the first node � on this computation path for which all
vertices of � � are colored for

� � �)� . Furthermore, we associate the set
� � �-� with � . Altogether, there
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are
� � markings. Because of Lemma 3 for each node � there are at most

� � � different sets associated
with � . In the following two lemmas we state the properties of the marking procedure which we shall
use in the cut-and-paste argument.

Lemma 4 Let � 0 ��� !( ���� , let � be the node marked for � and let
� � �-� be the set associated with

� for � . For each assignment � � to the variables in
� � �)� there is at most one extension � of � � so that��( � � � � � .

Proof By the choice of
� � �-� each vertex of ��� is colored for

� � �-� . Hence, if � � can be extended
to an assignment so that the function takes the value one, there is only one choice for the variables .�5 ,
� 0������ and, therefore, only one choice for all other variables so that the function takes the value one.

�

Lemma 5 Let � 0 � � !( ���� , let � be the node marked for � and let
� � �-� be the set associated with �

for � . For each assignment � � to the variables in � � �-� � � � � � �)� there are at most two extensions
� of � � so that ��(3� � � � � .

Proof Let � be the predecessor of � on the computation path for � . If
� ��� � � � � �)� , then � is not

marked since the first node �)
 for which all vertices of ��� are colored for
� � �6
 � gets a marking. Let

� be the variable tested at � . Then
� � �-� � � ��� ���	 1 � 4 . We distinguish two cases.

Case 1 � is the variable % 5�� � corresponding to the edge 1 �� 
 4 .

Then either � or 
 , w.l.o.g. � , is not colored for
� ��� � . If both vertices � and 
 were colored for

� ��� �
or if both vertices were uncolored for

� �
� � , by adding % 5�� � to
� �
� � we would not obtain any new

possibility to color vertices in ��� and, hence, � would not be marked.

Let � be the set of vertices that are uncolored for
� �
� � and let � be the set of vertices that are colored

for
� ��� � . Then � 0� and 
 0� . Except the edge 1 �� 
 4 all edges between a vertex in � and a vertex in

� are uncolored for
� � �)� . Hence, the variables corresponding to those edges are contained in � � �-� .

Since the vertices in � are uncolored for
� ��� � , the variables corresponding to these vertices are not

contained in
� ��� � and, hence, they are contained in � � �)� .

Now let an assignment to the variables in � � �)� be given. If there is no extension of this assignment
so that the function takes the value one, there is nothing to show. Otherwise, if we try to extend the
given assignment to a total assignment so that the function takes the value one, we have no choice for
the variables . � ,  0� , because a variable corresponding to  is contained in � � �)� . Furthermore, we
have no choice for the variables . � ,  0�� � 1 
 4 , because there is an edge 1  /�! � 4 to a node  � in � ,
where % �&� ��� �'. ��� 0�� � �)� . Hence, there are at most two extensions of the given assignment so that the
function takes the value one, namely, we may choose . � � + or . � � � . If � #� 1 � 4 , there is even only
one such extension.

Case 2 � is a variable corresponding to a vertex � .
Again we define � as the set of all vertices that are uncolored for

� ��� � , and � as the set of all vertices
that are colored for

� ��� � . Then � 0�� . Furthermore, � is connected with each vertex  �� 0�� by an
uncolored edge 1 ��& � 4 . Hence, � � �)� contains all variables %%5�� � � (or %�� � � 5 , resp.) for such edges 1 ��! � 4 .
The set � � �)� also contains for each � � 0�� at least one variable corresponding to � � . (This also holds
for � � � � since all variables corresponding to � except � are contained in � � �-� .) Hence, there is at
most one extension � for each assignment � � to the variables in � � �)� so that ��()� � � � � . �
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Now let � be some node of
	 ( . Because of Lemma 3 there are at most

� � � sets
� � �)� of variables

associated with � . Let
�

be one of these sets and let � � � � �
. We only consider those inputs� 0 � � !( �� � , for which the fixed paths run through � and for which � is associated with the set

�
. Let

� � be this set of inputs. We show
�
� �

� � � � � ��� � . Then the number of marked nodes is at least the
number of markings, i.e.

� � , divided by
� � � for the number of choices for the set

�
and divided by� � � ��� � for the maximum number of markings of � for each set

�
. This implies Theorem 2.

In order to obtain a bound on the size of � � we perform some modifications of
	 ( . By these modifi-

cations the represented function does not change and the resulting branching program has the ����������� -
property. However, the size may increase exponentially. Similar to Sieling [14] we develop in

	 ( the
sub-branching program starting at the node � into a decision tree, i.e., afterwards each node reachable
from � has an indegree of one. This can be done by running through

	 ( in a top-down order starting
at � and duplicating nodes so that the copies have an indegree of one afterwards. The second step is
to reorder this decision tree ��� with the root � so that in this tree all nodes labeled by � -variables
are arranged before all guessing nodes and all nodes labeled by

�
-variables. This can be done in the

following way. We construct a complete decision tree in which all � -variables are tested on each
path. We replace each leaf of this decision tree by a copy of ��� . Then we remove all redundant
tests of variables. This is easily possible: If on some path starting at the root of the resulting decision
tree a variable is tested for a second time, there is only one possible result of this second test so that
this node and one subtree of this node can be removed. We obtain a branching program where all
nodes reachable from � form a decision tree which has in the bottom small decision trees containing
guessing nodes and tests of

�
-variables (see also Fig. 2). On each path of such a small decision tree at

most � of the
�

-variables are tested since already
	 ( has this property and for each path the number

of tests of
�

-variables does not increase by all these modifications.

(Insert Figure 2 here)

Let � be one of the small decision trees in the bottom and let ��� be the assignment to the � -variables
so that the root of � is reached from � . By Lemma 5 the assignment ��� can be combined with at most
two assignments to the

�
-variables to an input where the function takes the value one. Hence, there

are at most two assignments to the
�

-variables for which in
	 ( the node � is reached and which is

accepted by � . Thus it suffices only to consider the two corresponding accepting paths in � . On each
such path at most � of the

�
-variables are tested. Hence, the computation of each such path is the

evaluation of a monomial consisting of at most � literals over the
�

-variables. We may replace � by
a simplified decision tree � 
 without changing the function represented by the branching program. If
there is only one accepting path through � , then � 
 consists of a path of at most � tests of

�
-variables

on which the corresponding monomial is evaluated. If there are two accepting paths through � , then
� 
 consists of a guessing node switching between two paths each consisting of at most � tests of�

-variables and evaluating the corresponding monomial.

Now assume that during the transformation of two different small decision trees the same monomial	
is constructed. Let �
� and � � � be the assignments to the � -variables so that these decision trees

are reached from � . If there is some assignment � � to the
�

-variables so that
	 � � � � � � and for

which � is reached from the source of the branching program, then there are two extensions of � � to a
total assignment so that the function takes the value one, namely ��� and ��� � . This is a contradiction
to Lemma 4. We conclude that each monomial occurs at most once during the above transformation.
By Lemma 5 for each monomial

	
there are at most two assignments � � to the

�
-variables so that
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� is reached from the source and that
	 � � � � � � . Hence, we can estimate

�
� �

�
by two times the

number of different monomials on at most � of the
�

-variables, i.e.,

�
� �

� � �
�
��

5����
� �
��� � 5 � � � � ��� � $

This completes the proof of Theorem 2. �

In order to summarize the results we use the following notation. Let P(syn ���������� -BP) be the set
of functions with polynomial size syntactic ���������� -branching programs. Let P(nonsyn ���������� -BP),
P(syn ���������� -NBP) and P(nonsyn ���������� -NBP) defined similarly for the nonsyntactic and nonde-
terministic variants, resp. Then we have proved for each � � � !���� � �
	����� � � :

P(syn ���������� -BP) � 	� P(nonsyn ���������� -BP),

P(syn ����������� -NBP) � 	� P(nonsyn ���������� -NBP).

Since both separation results are obtained for the same function we also have

P(nonsyn ����������� -BP) #� P(syn ���������� -NBP).

We remark that the function used by Savický and Žák [11, 13] for the separation of P(nonsyn ����������� -
BP) and P(nonsyn ��������� � � � �� -BP) can be represented by polynomial size nondeterministic read-
once branching programs and, hence, also by polynomial size nondeterministic syntactic ���������� -
branching programs if � is a constant. On the other hand, this function cannot be represented by
polynomial size nonsyntactic ���������� -branching programs. Hence, for constant � the classes P(syn���������� -NBP) and P(nonsyn ����������� -BP) are incomparable.

4 The NP-Completeness of the Satisfiability Test

In this section we prove the following results.

Theorem 6

i) The problem to decide for a given branching program  whether  is a nonsyntactic ��������� � -
branching program is coNP-complete.

ii) The problem to decide for a given nonsyntactic ���������� -branching program  whether the func-
tion represented by  is satisfiable is NP-complete.

iii) The problem to decide for two given nonsyntactic ���������� -branching programs whether they
represent the same function is coNP-complete.

Since by i) the test whether a given branching program is a nonsyntactic ���������� -branching program
is intractable, we assume for the satisfiability test and the equivalence test that it is not necessary to
check whether the instance is a nonsyntactic ������ � � -branching program, i.e., we consider promise
problems with the promise that the instance is a nonsyntactic ���������� -branching program. The results
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of Theorem 6 complement the results of Savický [10] who presents polynomial time algorithms for
the test whether a given branching program is a syntactic ���������� -branching program and for the
satisfiability test for syntactic ����������� -branching programs if � is a constant. For the equivalence
test of syntactic ����������� -branching programs Savický [10] presents a probabilistic polynomial time
algorithm with one-sided error.

Proof of Theorem 6 First we consider the satisfiability test for nonsyntactic ������ � � -branching
programs. It is obvious that the problem is contained in NP. We present a polynomial time reduction
from 3-SAT. Let � � ��� � be an instance of 3-SAT where � � 1�� !#�%$%$%$%�#�-(/4 is the set of variables
and � � 1 � !'�&$%$%$%��� � 4 is the set of clauses. Let � �!� � be the number of unnegated occurrences of
the variable �-5 in the clauses and let �6�!� � be the number of negated occurrences of � 5 . We introduce
new variables � 5�� !��%$%$%$���� 5�� ��� 5�� and �'5�� !��%$%$%$���� 5�� �	� 5�� and replace each unnegated occurrence of ��5 by some
�'5���
 -variable and each negated occurrence by some �&5���
 -variable so that each ��5���
 - and each � 5���
 -variable
occurs exactly once. Furthermore, we introduce the variables . !#�%$%$%$��'./(6���6!��%$%$%$%��� � � %�!#�%$%$%$&� % � . Then
we construct for each � 0 � � � the component ��5 shown in Figure 3 and for each  0������ the component
� � corresponding to the  th clause. An example of � � if the  th clause is � 5�&� ����� �'5�� � ����� � 5�� � ��� is also
shown in Figure 3.

(Insert Figure 3 here)

The constructed branching program computes the conjunction of all these components and can be
built as described in the proof of Theorem 1. Using the ideas of the proof of Theorem 1 it can be
shown that the constructed branching program is really a nonsyntactic ����������� -branching program
and that it represents a satisfiable function iff � � ����� is satisfiable.

The result for the equivalence test follows easily since the satisfiability test is the test whether the
given branching program and a branching program for the function + represent different functions.
Finally, for the test whether a given branching program is a nonsyntactic ������ � � -branching program
we use the reduction from 3-SAT as described above, but we replace the � -sink by some branching
program

	
which is not a nonsyntactic ���������� -branching program. The resulting branching program

is a nonsyntactic ��������� � -branching program iff
	

is not reached for any input, i.e., iff � �	��� � is not
satisfiable. �
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Figure 1: The components ��5 and � 5�� � of the branching program  ( for � ( . All omitted edges in this
figure are edges leading to the + -sink.
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	 ( after constructing and reordering the decision tree starting at � .
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Figure 3: The components � 5 and � � of the branching program constructed in the NP-completeness
proof. The component ��5 is constructed for the � th variable and the component � � shown in this
figure is constructed for the clause ��5�&� ��� � �'5���� ��� � � 5�� � ��� .
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