Electronic Collogquium on Computational Complexity, Report No. 48 (1998)

Approximating-CVP to Within
Almost-Polynomial Factors is NP-hard

I. Dinur * G. Kindler * S. Safra *

Abstract
This paper shows the closest vector in a lattice to be NP-hard to

approximate to within any factor up to 201087 " here € = (loglogn)~“

for any constant a < %

Introduction

Background

A lattice L = L(v1, .., vn), for vectors vy, .., vn € R™ is the set of all integer linear
combinations of vi, .., s, that is, L = {>_ a;v; | a; € Z}. Given a lattice L and
an arbitrary vector y, the Closest Vector Problem (CVP) is to find a vector in
L closest to y. The Shortest Vector Problem (SVP) is the homogeneous analog
of CVP, i.e. finding the shortest non-zero vector in L.

These lattice problems have been introduced in the previous century, and
have been studied since. Minkowsky and Dirichlet tried, with little success, to
come up with lattice approximation algorithms. It was much later that the lat-
tice reduction algorithm was presented by Lenstra, Lenstra and Lovész [[LL82] ,
achieving a polynomial-time algorithm approximating the Shortest Lattice Vec-
tor to within an exponential factor 2“5*. Babai [Bab86] applied IIL’s methods to
present an algorithm that approximates CVP to within a similar factor. Schnorr
[Sch85] improved on IM.’s technique, reducing the factor of approximation to
(14€)™, for any constant € > 0, for both CVP and SVP. These positive approxi-
mation results are still quite weak, achieving only extremely large (exponential)
factors. The question naturally arises: What are the factors of approximation
to within which these problems can be approximated in polynomial time?

Interest in lattice problems has been recently renewed due to a result of Ajtai
[Ajt96], showing a reduction, from the worst-case of a restricted version of SVP,
to the average-case of the same problem. Finding a problem whose average case
complexity is known to be as hard as the worst-case of some other problem is
quite an achievement by itself from complexity theoretic perspective. Yet such a
result has significant cryptographic applications, as shown in [AD96]. Showing

*Tel-Aviv University

ISSN 1433-8092

NP-hardness for that specific restriction of SVP — although unlikely as discussed
below — would imply a cryptosystem whose breaking would imply P=NP.

CVP was shown to be NP-hard for any I, norm in [vEB81], where it was
also conjectured that SVP is NP-hard. Arora et al. [ABSS93] utilized the PCP
characterization of NP to show that CVP is NP-hard to approximate to within
any constant, and quasi-NP-hard to approximate to within 2(logn)' ™" for any
constant € > 0.

As to SVP, only recently, [Ajt97] showed a randomized reduction from the
NP-complete problem Subset-Sum to SVP. This has been improved [CN97],
showing approximation hardness for some small factor (1 + dlm;_,) Very re-
cently [Mic98] has significantly strengthened Ajtai’s result, showing SVP hard
to approximate to within some constant factor. The proof in [Mic98] relies on
the PCP characterization of NP and is carried out via a reduction from gap-CVP
(shown NP-hard for any constant gap in [ABSS93]). Using gap-CVP allows, in
addition to the significant improvement in the gap, a major simplification of the
main technical lemma from [Ajt97]. Better hardness results for gap-CVP may
result in hardness results for gap-SVP for larger gaps.

So far there is still a huge gap between the positive results, approximating
these problems to within exponential factors, and the above hardness results.
Nevertheless, some other results provide a discouraging indication for improving
the hardness result beyond a certain factor. [LLS90] showed that approximating
CVP to within dim!-® is in co-NP, and recently [GG] showed that approximating
both SVP and CVP to within +/dim is in NPN co-AM. Hence showing the
unlikelihood of any of these problems to be NP-hard.

The strongest hardness result likely to be true for these problems hence, is
that they are hard to approximate to within a constant power of the dimension.
The proof of [ABSS93] utilizes amplification techniques that cause the size of the
instance, hence the dimension, to grow faster than the factor for which hardness
of approximation is obtained. It is therefore unlikely that using this technique,
even if allowing a super-polynomial blow-up, one can obtain such strong results.
It seems that it will always be the case that the factor for which hardness of
approximation is proven never reaches beyond the barrier of 9(logdim)™~* £or any
constant € > 0.

Our Results

This paper improves on [ABSS93] in two ways. First, it goes beyond the barrier
of constant €, proving CVP hard to approximate to within a factor of 2(1°8 dim)'~*
where €, rather than being an arbitrarily small constant, is (loglog dim)~* for
any a < % This is the first hardness result for CVP reaching beyond the above
mentioned barrier. Furthermore, our result shows approximating CVP is NP-
hard for large factors, compared to the previously known quasi NP hardness

The best known PCP characterization of NP (and even the conjectured one)
seems inappropriate in order to show hardness of approximating CVP to within
large factors. We introduce, for that purpose, a new characterization of NP,

SSAT, and prove the hardness of gap-CVP using this new characterization.
The SSAT characterization is different from the PCP characterization, despite
relying on similar techniques in its proof.

Let SAT[F] be the following problem: An instance of SAT[F] is a set of
tests (Boolean functions) over a common set of variables that range over a finite
range F'. An instance is accepted if each test can be assigned a satisfying value,
such that the assignments to the tests are everywhere consistent, that is, each
variable is given the same value by the assignments of all the tests depending
on it.

The gap version of this problem, Super-SAT (SSAT for short), is as follows:
SSAT is the same as SAT[F] except not all non-satisfiable instances must be
rejected. We generalize the notion of assignment to that of super-assignment? -
formal linear combinations of assignments with integer coefficients — and modify
the acceptance condition accordingly. If there is a super-assignment to the tests,
of norm smaller than g, which is everywhere consistent (in a sense similar to that
described above), then that instance is not necessarily rejected (any outcome is
acceptable).

We show (theorem 1) that solving this problem is NP-hard for g < 9(logn)*~*
where € = (loglogn)~* for any positive constant a < % (n denotes, as usual,
the size of the instance).

Improving the hardness of approximation factor to a constant power of n,
namely where g = n® for some constant € (conjecture 2), would imply CVP to
be hard to approximate to within a constant power of the dimension.

We also show that our proof works for lattices over finite-fields (instead of Z).
This in particular implies NP-hardness for approximating the nearest-codeword

[ABSS93] within factor g.

Structure of the Paper

Section 1 presents the new characterization of NP, SSAT . It starts by formally
defining SS.AT and then states theorem 1 which asserts that it is NP-hard for
large factors of approximation. Section 2 gives a naive hardness proof (via a
super-polynomial construction) which will be used as a basis for the complete
proof. Section 3 covers the main part of the proof of theorem 1. The proof
relies on a consistency lemma whose proof is shown in section 5. In section 4
we show the simple reduction from SSAT to CVP, and sketch the extension
of the result for finite fields. Finally, in section 5 we return to the proof of the
consistency lemma.

1 Super-SAT - SSAT

In this section we define a new characterization of NP, named SSAT. Let us
begin by defining SAT[F|, which is actually SAT from a consistency point of
view. An instance of SAT[F] is a set of tests (Boolean functions) over a common

LA super-assignment can be thought of as a super-position of assignments.

set of variables that range over a field F of < polynomial size. An assignment
to a test maps to each test one of the test’s satisfying values. The assignments

to each test 1 have a different range, denoted Ry. We denote R aef URy. An
instance is accepted iff there is an assignment to the tests that is everywhere
consistent, that is, each variable is given the same value by the assignments to
all tests that depend on it. It is easy to see that this problem is NP-complete.

SSAT is a gap variant of this problem, obtained by allowing certain non-
satisfiable instances to be accepted. The gap of SSAT is no longer the fractional
gap of the PCP (i.e. finding the maximal fraction of satisfiable tests) but of a
different nature.

We will introduce a new notion of super-assignment to the tests, that is,
a formal linear combination of assignments. We will allow acceptance of non-
satisflable instances that have ’short’ and ’consistent’ super-assignments.

Definition 1 (Super-Assignment to Tests) A super-assignment is a func-
tion M mapping to each ¢ € ¥ a value from Z®+. M(%) is a vector of integer
coefficients, one for each possible value 1 € Ry. Denote by M(y)[r] the rth
coordinate of M ().

M is said to be non-trivial if Vip € ¥, ||M(¥)|| > 0, where ||[M(+)| denotes
Iy norm. Note that ||[M(+)|| > 0 means ||M(%)|| > 1 since all the entries are
integers. For a test 1 we think of all the values receiving non-zero coeflicients in
M () as being simultaneously ’assigned’ to 9. The non-triviality requirement
means that each test must be assigned at least one value.

A natural assignment (an assignment in the usual sense) is identified with a
super-assignment where 1 is assigned a unit vector with a 1 in the corresponding
coordinate.

Definition 2 (Norm of a Super-Assignment) The norm of a super-assignment
M is | M| = g1 Xye 1M ($)]]-

The norm of a natural super-assignment is 1. The gap of SSAT will be
formulated in terms of the norm of the minimal super-assignment that main-
tains consistency. In the SAT[F] problem a satisfying assignment is one that
is everywhere consistent: For every pair of tests with a mutual variable, the
assignments to the tests, restricted to the variable, are equal. We extend this
notion to super-assignments by defining the projection of a super-assignment
to a test onto each of its variables. Consistency between tests will amount to
equality of projections on mutual variables.

Definition 3 (Projection) A natural assignment r to a test induces an as-
signment to each variable z, denoted r|,. Similarly, a super-assignment, induces
a super-assignment on a variable by taking the formal linear combination of the
assignments’ restrictions.

Let M be a super-assignment to the tests. We define the projection of M(v)
on a variable ¢ of ¢, m,(M(¢))) € Z\F!, in the natural way:

vieF: m(MEe)NAE Y M@

TER, T|a=f

We shall now proceed to define the notion of consistency between tests. If
the projections of two tests on a mutual variable z are equal (in other words,
they both give z the same super-assignment), we say that the super-assignments
of the tests are consistent (match).

Definition 4 (Consistency) Let M be a super-assignment to the tests in .
M is consistent if for every pair of tests ¥; and ¥; with a mutual variable z,

mo (M (13)) = ma (M (5))
We can now define the SSAT problem.

SSAT: An instance of SSAT with parameter g consists of a system of tests
(Boolean functions) ¥ = {91, ..., ¥m} over common variables from V = {z1, .., zn}
ranging over F. Each test depends on exactly two variables. The problem is to
determine if the instance falls into one of the following two cases,

Yes: There is a consistent natural assignment for ¥.

No: No non-trivial consistent super-assignment is of norm < g.

Theorem 1 (SSAT Theorem) SSAT is NP-hard for g = 20°6™)" ™" yhere
¢ = (loglogn)~¢ for any ¢ < 3.

We suggest a stronger conjecture. If true, it would imply that CVP is hard
to approximate to within a constant power of the dimension.

Conjecture 2 SSAT is hard for g = n® for some constant c < %

The SSAT theorem (theorem 1) can be viewed as an extension of Cook’s
theorem [Coo71] in the following way. An algorithm solving SSAT is required
to accept if the test system is satisfiable. However, the algorithm is allowed
to accept non-satisfiable instances that have a consistent super-assignment of
norm < g. It must only reject when any consistent super-assignment for ¥ is
of norm > g. We are, in fact, adding slackness between the acceptance and
rejection cases.

The Depend Parameter. In the above formulation, the SSAT tests de-
pend on exactly two variables. Consider the following modification. Let each
test depend on a polynomial number of variables, as long as the number of sat-
isfying values per each test is polynomially bounded. The reduction from this
modification to the above formulation is simple:

e Add one new variable for every test. The variable for ¢ will range over
the satisfying values of ¥, Ry.

e Replace the tests with a test for every pair of (test,variable) verifying that
the values match.

The range of the new variables is still polynomial because of the restriction on
the number of satisfying assignments to each test. The SSAT gap property is
maintained, and every new test depends on exactly two variables. Note that
this simple transformation in a PCP test system will severely increase the error
probability.

Proving the NP-hardness of SSAT, we construct a test system where the
depend is much larger than 2. We show, in exchange, that the number of
satisfying assignments for every test is polynomial. Such a test system can then
be translated to a SSAT test system by the above transformation.

2 The Initial Construction

In this section we give a 'naive’ hardness proof for SSAT, via a super-polynomial
construction. This is done via a reduction from PCP to SSAT, that has super-
polynomial variable range. This proof will be used as a basis for the final
construction. NP-hardness (with a polynomial range for every test) will be
proven in the following section (section 3).

Our starting point is the PCP characterization of NP. We can actually rely on
any of the known PCP theorems ([AS92, ALM*92, RS96, DFK*98]) since the

only property we need is a constant error probability.

Theorem 3 (PCP Theorem [DFK*98]) Given a system of tests ® = {41, ..
over variables ¥ = {z1,.., 2.} such that each test depends on O(1) variables,
and each variable ranges over a field F where |F| = 0(2(103")1_£) for any con-
stant € > 0. It is NP-hard to distinguish between the following two cases:

Yes: There is an assignment to the variables such that all ¢, ..., ¢n are satisfied.

No: No assignment can satisfy more than]%[fraction of the ¢;’s.

We shall construct a new test system ¥ with an SSAT gap, based on ®, and
show a reduction from the PCP instance to the SSAT instance.

2.1 Cancellations

One may wonder if perhaps ® already possesses the SSAT gap property. Sup-
pose that for every ’'no’ instance of ®, all of the consistent super-assignments
are of norm > g. We could then take & for our final construction. Unfortu-
nately, this is not necessarily the case. The reason is that we verify consis-
tency of super-assignments by comparing projections of tests on mutual vari-
ables. There is a possibility that the super-assignment somehow locally can-
cels values on each variable and hence yields false consistency. (For example,
let (1,3),(3,3),(3,1) be the satisfying assignments of ¢(z,y); then the super-
assignment 1-(1,3) —1-(3,3)+ 1-(3,1) projects to a natural assignment of 1
on both z and y although (1, 1) doesn’t even satisfy).

b ¢ﬂ}

Since we do not know the exact structure of the assignments to the tests, the
cancellation problem cannot be ruled out. To solve this cancellation problem,
we add auxiliary variables that serve as an error correcting code. We will show
that for every test only a negligible fraction of its variables can be canceled in
the above sense, and deduce that a consistent super-assignment must in fact be
globally consistent.

2.2 Low Degree Functions

We begin with a few basic definitions relating to low degree functions. We will
use these definitions shortly to construct the naive test system.

Definition 5 ([r,d]-LDF) Let F = Z, for some prime p, and let D = F% be
a domain. A low-degree function (LDF for short) with parameters [r,d] is a
polynomial function over F® whose degree in each variable is no more than .

Denote by LDF, 4 the set of all [r,d]-LDFs. We frequently use the following
property of LDFs,

Proposition 1 Let f and g be two distinct [r,d]-LDFs. The fraction of points
z € D on which f(z) = g(z) is < T]‘f .

2.3 The Low Degree Extension

Let z1,.., 2, be ®’s variables. We embed them in a larger domain (as done in
numerous PCP papers): We view the variables as points of a set H¢ (where #
and d are chosen so that |’H|d = n). We then extend the set %% to a domain
F?% > H? by taking F O H to be a field of size |F| = |’H|0(1). We have a variable
for each point in the domain F¢. The points of the extended domain F¢ serve
as the auxiliary variables that help eliminate the cancellation problem.

Satisfying assignments to the new variables would be eztensions of satisfying
assignments to the original variables in the following sense. Let A : H% — F
be an assignment to the original variables. There exists exactly one polynomial
A: F? 5 F such that A eztends A, and A has degree h in each of its variables.
A is called the h degree extension of A in F.

2.4 The Construction

We now proceed to describe the naive construction. This construction possesses
the desired SSAT gap but it inflates the size of the generated instance.

Parameters. Denote the size of the original PCP instance by n. Let ¢ < %
be arbitrary. We choose € = (loglogn)~¢, |H| = 20((logn)* ™) |F| = |’H|O(1)
and d ~ (logn)?. These parameters will be fixed throughout the rest of the
paper.

Variables. We shall have one variable for every point z € D %/ Fd. The
original variables of ® are identified with the subset He C F? of the new vari-
ables.

Tests. The tests of ¥ will correspond to affine subspaces (cubes) of D. We
define a t-cube of D to be an affine subspace of D of dimension ¢. Assume
w.l.o.g. that all of the tests in ® depend on exactly D = O(1) variables. For a

test ¢ € ® that depends on #;,, .., zi,,, define the D-tuple 7, def (Ziys .. Tip)-

Denote by S, the set of all D + 3-cubes that contain the points of 7,. Let
T = {7y }pea, and define S7 = |, Sr-

For every cube C € S;,, ¥ has a test that depends on the variables cor-
responding to the points of C. This test accepts only [dh, D + 3]-LDFs whose
restriction to the tuple points of 7, satisfy ¢ € ®. We call 7 the tuple-set of
the test system. Note that the tests of ¥ are determined by the tuples.

Super-Assignments. A super-assignment to a test (a cube) is, by definition,
a formal linear combination of LDFs. We shall call such an object a super-
polynomial. We include the explicit definition of a super-polynomial for clarity,

Definition 6 ([r,¢]-Super-Polynomial) An [r,t]-super-polynomial is a func-
tion P : LDF,; — Z that assigns each [r,t]-LDF an integer coefficient. One
may think of P as a vector with |LDF, ;| integer coordinates.

Denote by SLDF,; the set of all [r,t]-super-polynomials. The norm and
projection of a super-polynomial are defined as in the general case for super-
assignments. Consistency of super-polynomials amounts to equality of projec-
tions on each mutual point. The projection m¢(P) of a super-polynomial P on
a cube C is naturally defined as the formal linear combination of the restrictions
of the LDFs in P to the cube.

We shall now describe a property of super-polynomials that will help get
over the cancellation problem: low-ambiguity. A point z¢ is called ambiguous
for a super-polynomial M, if there are two LDFs P; # P, that each have a
non-zero coeflicient in M, and P;(zq) = Pa(2o). The ambiguous points are the
only points that are candidates for cancellation. Only a negligible fraction of
the points are ambiguous.

Proposition 2 (Low Ambiguity) LetP be an [r,t]-super-polynomial of norm
def

< g. The fraction of ambiguous points in D is < amb(r,t,g) = (-‘27)

Tt
7T

We omit the simple proof of this proposition. We now know that no more
than amb(r,t,g) fraction of the variables of a test (points of a cube) can be
canceled. Note the relation between the norm g of the super-polynomial and
the bound on its ambiguity. Using the low-ambiguity property we’ll be able to
deduce global consistency from consistency of super-assignments, as seen in the
following lemma.

This lemma is actually a special case of a more general consistency lemma
(lemma 2) that will be proven in section 5.

Lemma 1 (The Naive Consistency Lemma) Let M : S — SLDF,; be a
super-assignment of norm < g < |.7-'|ﬁ and assume that amb(r,t,g) < |.7-'|_%.
If M is consistent (i.e. for every pair of cubes C1,Cy with a mutual point —
the projections of M(C1) and M(C2) on z are equal); then there exists a global
super-polynomial G of degree h on D such that ||G|| < 2g and

g~
B [(0) = me(@)] > 1- £
For an appropriate choice of g = |F|°*, we obtain a global super-polynomial

that agrees with all but a negligible fraction of the cubes in S7. This is the
aforementioned global consistency.

2.5 The Construction is Correct

Completeness. If & is totally satisfiable then there exists an LDF f over F¢
that extends the satisfying assignment to the z;’s (the low degree extension of
these values). f is of degree |H| — 1 in each of its d variables. Its restrictions to
the cubes of ¥ will supply the consistent natural assignment for ¥.

Soundness. The naive consistency lemma (lemma 1) implies that if there
is a non-trivial consistent super-assignment to the cubes whose norm is small
enough, then there is a global super-polynomial G of low norm whose projections
on most of the cubes equal their assigned super-polynomial. Consider any LDF
P that appears in G with a non-zero coefficient. The low-ambiguity property
implies that P’s values appear in most of the points (i.e. aren’t ambiguous or
canceled). It follows easily that P’s value appears in most of the cubes. Now,
since for most cubes C € 8y, M(C) equals the projection of G on C — we deduce
that P appears in M(C) for most C € Sy. Taking P’s value on the points of #¢
produces a satisfying assignment to over half of the tests in ®. This shows that
if the PCP instance was a ’no’ instance then any consistent super-assignment
for the SSAT instance must be of norm > g.

Size. The method of choosing parameters is as follows. For the construction to
be correct we need amb(h,t,g) = (g) |hTt| to be negligible. Note that g is the gap

1—2e

and we want it to be large. We therefore choose a large field F (|F| = 2(1o8™) ™)

and the degree h is hence also large (recall that h def |#| is polynomial in |F|).

The problem with this construction is the range of the assignments to the
tests. The range of satisfying assignments for the tests must be polynomial in
size. This is required for the reduction to CVP, shown in section 4 to work.
However, the number of [h,t]-LDF's is at least |.'F|h, i.e. super-polynomial. We
overcome this problem by an iterative substitution of the cubes, as will be seen
in the next section.

3 The Final Construction

In the previous section we constructed a test system that possessed the SSAT
property (a consistent super-assignment of small-norm for it, implies that the
original test system was a ’yes’ instance). We shall maintain this property
while decreasing the range of the tests. Since every cube ranged over too many
LDFs, we represent each cube by new variables that have a smaller range. This
replacement procedure will be repeated several times until the final variables
have a polynomial range.

3.1 Cube-Systems

An [r, t]-cube-system is a specific form of a test system. There is an underlying
set of domains (copies of F2). The variables correspond to the points in these
domains. Some points are mutual to several domains, that is the same variable
represents these points in each of the domains. The tests in the cube-system
correspond to cubes in these domains defined by a set of tuples. The satisfying
assignments to the tests will be [r,]-LDFs. The naive construction is an example
of a [dh, D + 3]-cube-system with one domain.

We shall show how one may transform an [r,t]-cube-system into an [r/,%]-
cube-system where r' < r, and ¢/ &~ . The main property of this transformation
will be that a consistent assignment to the resulting cube-system induces an
almost consistent assignment to the initial cube-system (preserving the norm).
The exact meaning of “almost consistent” will become clear later, when we state
the soundness theorem (theorem 4).

The initial cube-system ¥. Let Dy,.., Dx be domains that may have some
mutual points. (It may be helpful to think, at first, of £ = 1 and of ¥ as being
the test system from the naive construction). Let 7 = 73 U---U Tz, where 7; is
a set of t-tuples in D;. Define, as before, S7, to be the set of ¢t + 3-cubes of D;
that contain at least one tuple from 7;. Let ¥ be a cube-system as follows - ¥
has a test for each cube in 87 = | 87;, and a variable for each point z € | J; D;.

3.2 The b-transformation of ¥ to ¥'.

In this section we show how to take a cube-system and ’break’ the representation
of each cube into many new cubes. The new cubes will range over super-
polynomials of considerably lower degree (thereby decreasing their range).

Proposition 3 Let b > 1. Let ¥ be an [r,t]-cube system. There ezists (polyno-
mially constructible) a [btlogy r,t + 4]-cube-system W' that “represents” ¥.

By “represents” we mean that consistent super-assignments to ¥ naturally
translate to almost consistent super-assignments to ¥’ (with roughly the same
norm) and vice versa. The exact meaning of this representation will become
clear in the end of this section.

We repeat this b-transformation step iteratively, startingfrom the naive con-
struction, until we reach super-polynomials with small enough degree and di-
mension (enough so that the range is polynomial). The b-transformation is thus
the key step in the reduction. It is the tool that enables us to keep the entire
construction polynomial in size, while attaining larger gap factors.

Embedding Extension

We will replace each cube by a new set of cubes such that the super-assignments
to the new cubes have a smaller range. We first extend every cube C to a larger
domain De. Sub-cubes of this domain will become the new tests of the new
cube system W’.

Let C be a t-cube, and let f be an [r, t]-LDF on C. We map C to an extension
domain ezt(C), and f to an extension LDF feo,+ using an embedding technique
from [DFK*98], as described below.

We map the points of C to a manifold in D¢ def ext(C) by E : C — De
as follows. E maps an arbitrary point z = (£1,..,&;) € Ctoy € D¢, y =
E(z) = (11, --,Mke) by replacing each axis € with k axises 7; 1, .., ;5 such that
the following equations hold,

Vi,m fim =& (+)

Now let f be an [r,t]-LDF. We map f to a polynomial over D¢ by mapping
each of the monomials,

. bo by b
Vi,r & — miomi1- ik (%)

where bgb;...bg is the base b representation of r.

fezt 1s an LDF of degree b in each variable, and dimension tlog, r. Taking
the restriction of fey; to the manifold defined by equations (x), will give f.
(This can be easily seen by substituting the manifold equations into each of the
monomials). In other words, there is a natural 1-1 mapping of the original cube
C to the manifold of ext(C) defined by equations (*). Computing f on a point
z € C is equivalent to computing E(f) = feq: on the point E(z).

The new cube-system ¥’.

For every cube C, consider its extension domain ezt(C). Any [r,t]-LDF f over
C is naturally mapped to a [b,tlog, r]-LDF, fez: over ext(C). We shall replace
every cube C by a set of cubes (defined by the tuples below) of its extension
domain ezt(C). Assignments to these new cubes will range over [b, tlog, r]-LDF's.

Domains. For every cube C € 87 we have a new domain D¢ def ext(C).

10

Tuples. We now define a new collection of tuples (that will generate our new
cubes). For every 7 € T and C € S, let

Te={(z,7) | z€C}

be a set of (¢ + 1)-tuples. We consider the tuples in 7¢ as belonging to the
domain D¢. The tuple collection of ¥’ is T’ def Ue 7e-

Variables. For every point in the the extension D¢ of C, ¥' will have a vari-
able. The extensions of a point z € C1 Ny, in D¢, and D¢, are considered
mutual, and therefore will be represented by the same variable in ¥'.

Tests. There will be a test for every (¢ + 4)-cube in &' def S7. Before we

describe the range of the tests, let us dwell for a minute on the meaning of this
replacement transformation.

Let C be a cube in the previous cube-system, ¥, ranging over [r, t]-LDFs. C
was mapped to De, its extension domain, where f is naturally mapped to fezt,
a [b,tlog, r]-LDF. We have new cubes that allegedly represent (¢ + 4)-cubes of
Dc. We would like their values to represent the value of the original variable C,
i.e. we would like them to represent restrictions of f.;: to the sub-cubes of D¢.
The range of our new cube-variables, will therefore be, [btlog, r,t + 4]-LDF's.
This completes the description of the b-transformation.

3.3 The Whole Construction

Let us step back to examine the bigger picture. We begin with the naive cube-
system.We transform it (by a b-transformation) into ¥, and then transform ¥
into ¥y etc. In the end, the resulting cube-system will be shown to have the
SSAT gap property. Also note, that the transformations only depend on our
choice of the b parameter.

Tree Structure. The recursive structure of the construction is easily depicted
as a tree of cubes. The root of the tree is the domain of ®, the original PCP
test system. Directly beneath the root are all of the cubes of ¥q, the naive
construction. In the b-transformation, every cube was replaced by a set of
cubes in its extension domain. These will be placed directly beneath the cube
in the tree. Except for the root, every node in the tree can be dually viewed
either as a cube, or as a domain that is the embedding extension of that cube.

Alternatively, the nodes of the tree each correspond to a tuple. The first
level tuples (directly beneath the root) are the tuples defined by the tests of
® plus three random points. the offspring of any node C in the tree, are the
tuples that contain the node’s tuple, plus a random point from the manifold
E(C) C ezt(C), plus three random points in the extension domain ezt(C).

We shall return to this tree structure for the correctness proof. Let us first
complete the description of the construction by giving the exact sequence of

11

’b’s used in the b-transformation sequence; the last cube-system in the sequence
being the final construction.

Notation. It will be convenient to use the following parameters for a cube-
system ¥ :

[t] t =t(¥) The cube dimension of ¥.

[D] D = D(¥) The dimension of ¥.

[r] 7 = 7(¥) The overall degree of the assignments for ¥.

We can construct, (proposition 3), the b-transformation ¥’ of ¥ with the fol-
lowing parameters :

[t] D(¥') =tlogyr
[D] ¢(¥')=t+4
[r] r(¥') =tblog,r

The variable range of the new cube-system is, for the right choice of b, con-
siderably smaller than that of the old system. However, one such transformation
is not enough - we need to repeat the transformation several times (O(1)) to
get our desired polynomial range.

The Initial Cube-System

Let ¥y denote the naive SSAT system (we start with ¥, for notational conve-
nience). Let us recall some of its parameters:

[t] D(¥3) =log*n
[D] t(¥2) = const

[I'] T(\Ilz) _ 20(1081_“ n)

The Values Chosen for b.

The following are the values of b that are used in the series of b-transformations:

e The b reduction phase. The first'b’ used will be denoted b3 for convenience,
and is defined as b3 = 2!°6 ®_ The second 'b’, bs, is defined by =
2198" ™" We continue to take by = 21986 * for k < K, where K def L%J
After that we can no longer proceed, because the power of the logarithm
would become negative.

o The sub-logarithmic phase. We use b = 2 for three additional iterations.

These values of b define the resulting cube-system. We need to show that the
resulting cube-system indeed possesses the desired parameters.

12

The Parameters During the b Reduction Phase

Denote U3, ¥y, ... the systems obtained from the b3, by, ... transformations re-
spectively. Let us analyze their parameters.
The parameters of ¥z, calculated as in the definition of the b-transformation:

[t] 2(¥a) = 4(¥2) + 4
[D] D(¥3) = t(¥2)log,, (¥2)
[x] 7(¥3) = ¢(¥2)bs log,, 7(¥2)
Actually this calculation is good for the general k iteration in the phase :
[t] 8(¥e) = 8(¥r-1) +4
[D] D(¥x) = t(¥r—1)logy, 7(¥r_1)
[r] 7(¥r) =t(¥r—1)bx logy, 7(¥r_1)
Let us now analyze the explicit behavior of these parameters, as functions of n.

Proposition 4 For every2 <k < K — 1,

(1—ke) n

T(‘I’k) S 2210g

Proof: We prove the proposition by induction on k. Let us check the base of
the induction (k = 2):

T'(\I’z) — 21051_2'11. < 221051_2'11.
Now for the inductive step. From the inductive hypotheses we have
r(¥r_1) < 92logl!~(*=1) n

. 1—lke
Since we chose b — 2!°8 *

logy, 7(¥k—1) < 2log‘n (1)

Recall that € = (loglogn)~¢ for ¢ < 1, and that K = [1]. Thus

gent = 2t(¥%) < O(K) < O((loglogn)?) (1)
< (loglogn)'~*
— 2eloglogn
= log‘n
Let us also note that
1—ke>e (3)

13

Therefore, by the recursive formula for r,

r(¥x) = t(Wr_1)bg log,, 7(¥k_1)
(é) O(t(Tr_1)2"°8" ") log" n
(%) 0(10g26 nolog ™ ™)
< 9log* nzlogl-’" n
@ 221051—’"n

|
The last parameter in this phase, bx, can be computed similarly, and we
obtain

’I‘(\I’K) = O(K)bK logbx T(‘I’K_l) S 2210g'n

The Parameters During the Sub-Logarithmic Phase

Wk is the last system constructed using b > 2. The parameters of Ui are

[t] ¢(¥x) = 0(¢)

1] r(x) < 22008

We now calculate the parameters of the systems generated from ¥g. The reader
is reminded that we use b = 2 from now on, and since we only make a constant
number of additional steps, it is enough to assume ¢t < O(K) for these systems.
It is thus only left to calculate ». We use the general b transformation formula :

r(¥ky1) t(¥k)bry1logy, , T(¥k)
O(K)log, 22108°™
O(K log® n)

log®*n

ININAIA

Following the same calculation for ¥x 2 we have
r(Tx42) < O(K) - 2eloglogn = O(loglogn)
Last but not least, the r parameter for ¥k ;3 is bounded by
r(¥xy3) < O(K logloglogn) = O(K log® n) = O(K?)

3.4 The Size of the Construction

The previous section completed the description of the construction. ¥g 3 is
our final SSAT test system. In this section we show that it is polynomial in
size. Its correctness is proven in the next subsection.

14

The Variable Range

The variables of ¥ 3 range over [r,d]-LDFs where » and d are the r» and d
parameters of g 3. Let us compute the size of the range. The number of
monomials of degree r(¥x,3) = O(K?), and dimension d(¥x13) = O(K) is
bounded by

Td — O(K2)O(K) — 2O(K log K) — 2(loglogn)°0(log(s) n)

The number of polynomials is therefore bounded by

g(log log n)cO(log(s) n) N 2(103 log ‘n)CO(log(s) n) _(losn)(l—ﬂe)

1| _,
This is polynomial iff the following inequality holds,
(log n,)‘z'E . 2(10810gn)°0(1og(3) n) <1

indeed substituting e gives,

—2loglogmn

(log n)—ZE — 9 loglogn)® — 2—2(10g10gn)1_°

and,
(log ’n,)—2E i 2(loglogn)=0(log(;) n) _

— 2—2(log10gn)1_° i 2(loglogn)C0(log(’) n)
2—2(loglogn)1_c+(loglogn)co(log(") 'n.)

and therefore, since 1 —¢ > ¢ (¢ < %), the range is polynomial in n.

The Number of Tests and Variables

It is only left to verify that the blowup is polynomial (i.e. the number of tests
and variables is polynomial).

Let ¥’ be the outcome of the transformation procedure on ¥. The blowup
in the transformation step, i.e. the ratio between v(¥') and v(¥), is the number
of ¢(¥') dimensional cubes in the extension of each cube of ¥. The formula for
the extension’s dimension D(¥') is ¢(¥)log, , 7(¥). By proposition 4 we have

that r(¥) < 92108 ") n here k is the number of the transformation step. By
the choice of by we get that

logy,, 7(¥) <log,g—(ht1)en (22(logn)(1—k=)) < 2(log n)®

and therefore

D(¥') < 24(¥)(log n)* < O(K)(log n)’
The blowup in a single step is bounded by

(|f|D)t — |f|t(\F')D(\F') S |]_-|O((loglog'n.)2c(logn)‘)

15

and since we take K = O((loglogn)®) steps, the overall blowup is bounded by
the O((loglogn)®) exponent of the single step blowup. The overall blowup is
therefore bounded by

|]_-|O((1(:vg1cvg'n.)sc log® n) < 20((10511,)1_“)(105logn)“(logn)‘

< 20((log'n.):"_‘)(loglogn)sc < 9logn

and is therefore polynomial in n.

3.5 Correctness of the Construction

We have shown a sequence of polynomial-sized cube-systems ¥j, ¥3, ..., Yk 3.
In this section we will prove that each of them (and in particular, the final
cube system) possess the SSAT gap property. For simplicity of notation we
shall rename the cube-systems ¥y,...,¥x (stretching K to be K + 2) where
¥, is the naive cube-system, and ¥ is the cube system taken to be the final
construction. We need to show completeness and soundness of the construction.

Completeness. We need to show that ’yes’ instances of PCP map to ’yes’
instances of SSAT; i.e. if the original test system ® was satisfiable, then Uk
is satisflable. Let I be the satisfying assignment for ®. Taking the low-degree-
extension of I, and then projecting it to the cubes, will obviously satisfy ¥, (the
naive construction). A satisfying assignment to ¥; translates into one for ¥; 4
by computing (for each cube C) the embedding extension of the LDF assigned to
C and then computing its restrictions to cubes of the extension domain ezt(C).
The resulting super-assignment for ¥k is obviously consistent.

Soundness. We need to show that 'no’ instances of PCP map to 'no’ instances
of SSAT. We assume that the constructed SSAT instance has a satisfying
super-assignment of norm < g, and show that ® — the PCP test system we
started with — is satisfiable.
def 1 1K

Theorem 4 (Soundness) Let g = |F|™ = for some constant a > 1. If
there exists a satisfying super-assignment of size < g for Yk, then ® (the PCP
system we began with) is satisfiable.

Before proceeding to the soundness proof, let us verify that the above g gives
the desired parameters in the g-SS.AT theorem (theorem 1).

Proposition 5 Ve < %, de<c < % such that

—GC'
F| = 2eg T
g=|F|PE = e On

where €(c) def (loglogn)~°.

16

Proof: The proposition follows from the following inequalities. In the use of ezp
here, we intend to the exponent in base 2.

Ve<05: aT < gVioslosn

Jiogosm logn.

> |F|= = ez
9> |F| p(a ogtogn 1og?*)
logn)

log*(¢)

)

> exp(

the last inequality following from,

aV1°gl°g"10ge(c’)n = emp(O(«/loglogn)%—(loglogn)l_c')

ezp(O((loglogn)'~*))
2(loglogn)1_c

AN

log*(?) n

|
This proposition implies that the soundness parameters indeed provide the

desired hardness result for SSAT .

We proceed to prove the soundness theorem.

Proof Structure

We begin with Mg, a consistent super-assignment for g, of size < g. it
induces (by projection) a super-assignment m for the variables (points). Since
Mk is consistent, m is well defined. m is used as the “underlying point super-
assignment” for the rest of the proof.

Let us return to the tree view of the construction. We put every cube of
the final construction as a leaf in the tree, and the internal nodes are cubes of
the intermediate cube-systems (level 7 in the tree corresponds to the cubes of
¥,). We define a ’good’ cube (node in the tree) by considering the leaves of its
sub-tree:

Definition 7 Let C be a cube in ¥;. C is said to be good if avg(C) < g* *+1;
where avg(C) is the average norm of Mg, over the cubes in i that are derived
from C (i.e. cubes of ¥ that are leaves in C’s subtree). We denote by Good;
the set of cubes of U; that are good.

The proof consists of four propositions. We shall first show that most cubes
are good (proposition 6), and that most of the children of a good cube are good
(proposition 7). We then proceed to show that for every good cube there is
a super-polynomial that agrees with m on most of the cube’s points (propo-
sition 8). Finally, we take these super-polynomials, and obtain from them an
assignment that satisfies more than half of the PCP test system & (proposi-
tion 9).

17

Most cubes are good

Proposition 6 Let 0 < ¢ < K, at least 1 — g_“i of the cubes in level i of the
tree are good.

Proof: For every cube in level 4, consider the average norm of its subtree’s leaves.
The average over the subtree averages is simply the average norm of the leaves,
g. By the Markov inequality, no more than % of the subtrees have an average

larger than lg. Taking [def g“i concludes the argument.]

Most Subcubes of a good cube are good

For any cube C, denote by child(C) the set of cubes directly beneath C in the
tree. These are the cubes in the embedding extension exzt(C).

Proposition 7 If C € Good;, then

P ! dl 1 _ —(a.—l)-a,'.
Clechilid(C)(c € Goo +1) > g

Proof: C is good, hence avg(C) < g“i‘*'l. Had there been more than a g_(“_l)"‘i
fraction of bad subcubes, then the total average would be

> g—(a—l)-ai . ga’.+1+1 — ga-ai—(a—l)-a’.+1 —]

ga

A Super-Polynomial per Good Cube

Proposition 8 Let Co € Good;. There ezists a super-polynomial of norm <
2K-igug(Co) that agrees with m on a 1 — g~ fraction of Co’s points.

Proof: We prove this statement by induction on K — 3.

The Base of the Induction (i = K). We know that Mg is a consistent
super-assignment. Every C € Goodg has a super-polynomial (Mg (C)) of norm

< g“x+1, by definition of Goodx. Mgk (C) agrees (non-ambiguously) with m on
at least 1 — amb(r,t, s) of the points of C. Since

rts?

<|F|7:
7 =7

amb(r,t,s) <

the claim follows, using the consistency lemma (see below).

18

The Inductive Step (i < K). avg(Co) > avgc:Echud(co)nGoodHl(avg(C')),
since taking only the good children can only decrease the average. By the
inductive hypothesis, every C' € child(Cy) N Good;;1 has a super-polynomial
with norm < 2X~i~1gyg(C'). Define a super-assignment to the cubes in C’' €
Good,; 1 N child(Cy) by setting M(C') to be that super-polynomial. The av-
erage norm of these super-polynomials is < 2X~i~lqug(Cy). For any cube
C' € child(Co) — Good; 41 assign the trivial super-polynomial. It then follows
that [|M]| < 2K~i~1aug(Co).

We now state a consistency lemma that will imply the existence of the desired
super-polynomial on Cg.

Lemma 2 (Consistency Lemma) Let T be a set of t-tuples. Let D be a
domain, and let St be the set of (t + 3)-cubes of D that contain the points of
at least one tuple in T. Let M : St — SLDF, ;.3 be a super-assignment;

M| < s < |_7-'|ﬁ Let m be the underlying super-assignment to the points.
Denote by G C ST, the set of all cubes C for which M(C) agrees with m on at
least 1 — a of C’s points, for some 0 < a < ﬁ.

If at least 1 — a of the cubes in St are in G then there exists a global super-
polynomial G of degree r on D, with ||G|| < 2s and

Pr (M(C) =me(G)) > 1 — |F|"% (25 + 1)
Ccr@

We defer the proof of this lemma to section 5. We would like to apply this lemma
to the domain D = exzt(C), and the super-assignment M defined above. Let us
see that the super-assignment M obeys the requirements of the consistency
lemma. We take @ = g=(2=1)%" and s = g *!. For every cube C' € Good;1 N
child(Co), M(C') agrees with m on at least 1 —g_“1+1 > 1 —a (by the inductive
hypothesis). The fraction of good cubes in child(Co) is, by proposition 7, >
1—g(e=1a" — 1 _ o, Finally, we can apply the consistency lemma (lemma 2).

We thus obtain a super-polynomial on D of norm < 2 - 2K-i=1aqyg(Cy) =
2K-igug(Co) that agrees with 1—|.7-'|_% (2K -taug(Co)+1) of the super-polynomials
on the cubes C' € child(Co)NGood; 1. Recall that on every good cube M agreed
with m on the tuple-points of the cube. This means that G agrees with m on
’almost all’ of the tuples (because agreeing with one good cube on a tuple means
agreeing with the tuple). Let us examine the meaning of ’almost all’:

Since 2X~taug(Cy) < |.7:|%, we have
F _ 1 _at
FI7™ 9

[FI73 (2% avg(Co) +1) < |F| 7 < S — < T

hence the fraction of cubes in child(Co) that are good, and agree with G is at

least 1 — g_“i (the good cubes make up at least half of the cubes). This implies
that G agrees with at least this fraction of tuples. Since we have exactly one
tuple per point in the manifold of Co (as defined in the construction), we have

that Ge¢, (the restriction of G to the manifold) agrees with > 1 — g~* of the

19

manifold points that correspond to Co, and with all of the tuple-points of Co
itself.
|

Constructing an assignment for &

Proposition 9 There is an assignment that satisfies more than half of the PCP
test system P.

Proof: We now have an super-polynomial for every good cube. Define M,
to assign (as before) the cubes in Good; this super-polynomial, and the trivial
super-polynomial to the rest of the cubes in level 1. By proposition 6 we have
that 1 — g~(2=1)e of the cubes are good, and their super-polynomial agrees
with 1 — ¢g72 of their points and with their tuple points. We know that the
average norm of M, is < 2K-laug(root) = 2%¥-1g. Using the consistency
lemma one more time with @ = g~* yields a global super-polynomial that
agrees with almost all of the good cubes, and in particular with half of the
cubes in ¥;. This super-polynomial is not trivial, because m — the underlying
point super-assignment — is non-trivial on most of its points (this follows from
the low-ambiguity proposition, proposition 2).

Take one LDF P that appears in this super-polynomial. It appears in most
of the good cubes (it may be canceled on a negligible fraction of the cubes).
For every point z € H¢, assign P(z). This will satisfy at least half of the tests
in the PCP test-system, ®. This follows since each ¢ € ® is represented by a
tuple that is, in turn, contained by a cube that with probability > % has P’s
restriction appearing in its super-polynomial. Note that the PCP property that
we used was a constant error probability.

Using the PCP property of & we deduce that it is satisfiable. This completes
the proof of lemma 4 (the soundness of the reduction).]

4 ¢-CVP is NP-hard

We begin by defining the Closest Vector Problem (CVP), and its gap version g-
CVP. We then define an intermediate problem called Shortest Integer Solution
(SIS), and show a reduction from g-SIS to g-CVP. We then show the simple
reduction from g-SSAT to g-SIS and therefore to g-CVP.

4.1 ¢-CVP

A lattice L = L(v1, .., vn), for vectors vy,..,vn € R™ is the set of all integral
linear combinations of vy, ..,vn, L = {d_ a;v; | a; € Z}.
The closest-vector problem is defined as follows:

CVP. Given (L,y) where L is a lattice and y a vector in R™, find the lattice
vector closest to y.

20

Approximating CVP to within factor g = g(n) means finding a vector whose
distance from y is no more than g times the minimal distance. The gap version
of CVP is a decision problem as follows,

g-CVP. Given (L, y) for a lattice L and a vector y € R™, distinguish between
the following two cases:

[Yes] The closest lattice vector to y is of distance d or less.
[No] All lattice vectors are of distance at least g - d from y.

Proving that g-CVP is NP-hard means that having an approximation algorithm
to within factor g were to imply P = NP.

4.2 Shortest Integer Solution - SIS
Definition of SIS and g¢-SIS

We define a variant of CVP named Shortest Integer Solution (SIS), its gap
version referred to as g-SIS. We then show a simple reduction from g¢-SIS to
g-CVP.

SIS: Given (B, t) for an integer matrix B with columns by, .., b, and a target
vector t € L(b1,...,bn), find integer coeflicients a; such that Y a;b; = ¢t (we
assume such a; exist), and such that > |a;| is minimal. In other words, find the
shortest integer solution for the linear system B -z = t¢.

The gap version of SIS is as follows,

g-SIS: Given (B, t) as before, distinguish between the following two cases:

Yes: The shortest integer solution is of length d or less.

No: The shortest integer solution is of length at least g - d.

Reducing g-SIS to g-CVP

Given an instance of g-SIS, (B, t), we efficiently construct a lattice L and a target
vector y such that ’yes’ instances of g-SIS are translated into ’'yes’ instances of
g-CVP and ’no’ instances are translated into 'no’ instances. The lattice L is
constructed by multiplying the matrix B by a very large number w, and adding a
distinct 1-coordinate to each column. The vector y (that we are to approximate
from within the lattice) will be ¢t multiplied by w with zeros in the n additional
coordinates:

wB wt

L= =
1 0 Yy 0
0 1 0

21

To see that ’yes’ instances map into 'yes’ instances just note that any solution
a, B-a = t, gives a lattice vector L-a such that ||L-a—y|| = ||a||. We shall choose
w so that the entries in the upper half of the matrix are all integer multiples
of g-d+ 1. The next lemma will show that 'no’ instances of g-SIS (where the
shortest solution is of size > g - d) map into 'no’ instances of g-CVP.

Lemma 3 If there is a lattice vector, L -a, r = dist(L - a,y) < g - d, then there
is an integer solution to (B,t) of size r.

Proof: v < gd means that L -a = y in the upper n coordinates, otherwise
the distance r would be of size at least g -d + 1. In other words, a is a solution
to the g-SIS instance. The lower n coordinates of L - a are exactly equal to a,
and therefore ||a|| = r. [|

4.3 From SSAT to g-SIS

We shall prove that g-SIS is NP hard for g = 2(1°8™)'™* for ¢ = (loglogn)~* for
any a < 3 by reducing it to SSAT.

We take this SSAT test system ¥ and (efficiently) construct from it an
instance of g-SIS, (B,t). We then show that the 'yes’ instances of SSAT are
mapped to ’yes’ instances of g-SIS and 'no’ instances to 'no’ instances.

We show that a natural consistent assignment to ¥ translates to a short
solution for (B,t). On the other hand we show that any solution that is shorter
than g, translates to a consistent super-assignment of size < g for ¥.

The General Construction

The matrix B will have a column for every pair of test ¥ € ¥ and an assignment
r € Ry for it. We will be able to translate the shortest integer solution into
a consistent super-assignment for ¥. The upper rows of B will take care of
consistency, and the lower rows will take care of non-triviality.

Non-Triviality Rows. There will be a row designated to each test. In the
row of ¢ all of 9’s columns will have a 1, and all other columns will have zero.

Consistency Rows. We shall have |F| rows for each pair of tests ; and ;
that depend on a mutual variable z. The columns of tests other than ; and ;
will have zeros in all of these rows. These rows serve as a consistency-ensuring
gadget and only the vectors of 4; and 1; will have non-zero values in these rows.
The gadget will ensure that the super-assignments to 9; and v, are consistent
on their mutual variable .

The target vector will be an all-1 vector.

We now turn to describe the structure of the gadget itself. This will complete
the description of the g-SIS instance.

22

A row for
each value
of 2

T1|e’s row

i Yj

rT T2 Tk r ry
G‘lpi,‘l‘j,ﬁ
0 0 0 . 1 1
0 1 0 > wia wja T |l]_ 0
10 0 0
0 0 0 \ 11
0 0 /
Consistency Rows 1 1| i
Non-Triviality Rows— /
11 : Y;
0 0 /

Figure 1: The SIS matrix B

The Gadget. Let’s concentrate on the gadget for the pair of tests v; and 1;
with mutual variable 2. This is a pair of matrices Gy of dimension (|F| x |Ry;,|)
and G, of dimension (|F| x |R¢j|). Let r € Ry, be a satisfying assignment
for 4; and ' € Ry, be a satisfying assignment for ;. The column in G,
corresponding to r is a unit vector with a 1 in the r|z-th coordinate. The
column in Gy corresponding to r' is the negation of a unit vector (all ones
except for one 0) with a zero in the »'[;-th coordinate (see figure 1).

Proving Correctness

We will now show that ’yes’ instances of the SSAT map to ’yes’ instances of

the g-SIS.

Lemma 4 If there is a consistent natural assignment, then there is a solution
of length |¥| to the above g-SIS instance.

Proof: We take the consistent natural assignment M and construct from it a
solution to the g-SIS. We will concatenate the vectors M (11)M (92)... to obtain
our alleged solution to g-SIS. The target vector is reached in the non-triviality
rows because M is natural i.e. it assigns a +1 coeflicient to exactly one column
of every test.

To show that the target vector is reached in the consistency rows, consider
the set of |F| rows belonging to an arbitrary pair of tests ¢; and 4; with mutual
variable . Suppose M(;)[r1], M (1;)[rs] are the single 1’s in M (v;), M ()
respectively (M is natural). M is consistent so ry|; = r3|,. By the construction
of B we see that

23

71|g’s row

1/0 1/1 1
1o 2 i
’I‘1|z 1 + "'le 0 e 1
1o o 1
|[FI \ 0 |F] \1 1

and the target vector is reached in these rows.

The length of the solution is the sum of the lengths of the M (z)’s, and since
[|M]|| =1, it’s size is |¥|. [|

We will now show that ’no’ instances of the SS.AT map to ’no’ instances
of the g-SIS by showing that if we ended up with an instance that isn’t a 'no’
instance, then we must have started with a non-'no’ instance.

Lemma 5 Let s be a solution to the above g-SIS instance, ||s|| < g|¥| then
exists a consistent super-assignment M of size < g for the SSAT instance.

Proof: We show how to construct M from s: we ’break’ s into |¥| pieces,
one for each test ¥ € W.

For any arbitrary ¢ € ¥, the target vector is reached in the 1-th row of the
non-triviality rows. This implies that

> M) =1 @)

’I‘E'R.¢

and in particular M is non-trivial.

Let 1;,v%; € ¥ be arbitrary tests with a mutual variable 2. We shall
show that m,(M(v;)) = m(M(v;)). Consider the |F| rows that correspond
to 1;,%;, 2. In each of these rows the sum of the vectors is 1, in other words,
for any f € F,

3o M)+ Y My =1 (3)

TiT|a=f Tr|aES
Subtracting (2) for ¢, from (3) gives,

Z M(ys) = Z M(+;)
ri7|a=f Ti7|a=f

which, by definition of the projection means m (M (v;)) = m(M(¢;)). We
hence have a consistent super-assignment of size ﬁ”s” <g.

|
The two above lemmas complete the reduction of SSAT to g-SIS.

4.4 CVP over 7,

We can actually show that g-CV P over a finite field Z, (for any prime p) is
NP-hard. This problem (with p = 2) was referred to as 'Nearest-Codeword’ in

24

[ABSS93] and shown to be quasi-NP-hard to approximate to within a factor of
2(logn)' ™" for any constant € > 0.

We first need to define a variant of SSAT, SSAT mod p — where consistency
is defined as equality of projections modulo p — and show that it too is NP-hard.
The NP-hardness proof is carried on almost word for word if we notice that
a variable was considered ambiguous if any two of its assigned values collided,
disregarding the value of the coefficient.

The result for Nearest Codeword easily follows, using the same reduction

from SSAT mod p 10 CV Ppiog p.

5 The Consistency Lemma

Lemma 2 (Consistency Lemma) Let T be a set of t-tuples. Let D be a
domain, and let St be the set of (t + 3)-cubes of D that contain the points of
at least one tuple in T. Let M : St — SLDF, ;.3 be a super-assignment;
M| < s < |.7-'|ﬁ Let m be the underlying super-assignment to the points.
Denote by G C ST, the set of all cubes C for which M(C) agrees with m on at
least 1 — a of C’s points.

If at least 1 — o of the cubes in St are in G then there ezists a global super-
polynomial G of degree r on D, with ||G|| < 2s and

(PrM(€) = me(9) > 1 |F| 7 (25 +1)

Before we prove the Consistency Lemma, let us state and prove the poly-
nomial extraction lemma, which we shall use in the proof of the Consistency
Lemma.

Lemma 6 (Polynomial Extraction) Let M,G, s and o be as before. If B >
3a of the points are assigned non-trivial values by m (the underlying point super-
assignment), then there ezist a polynomial P € LDF, 4 and a coefficient c, such

that P’s restrictions to 1 — |.’F|_% of the cubes C € G appear in M(C) with
coefficient cp.

We use the polynomial extraction lemma to extract a polynomial from M and
m. We then “peal off” this polynomial and repeat the process until we extract
the whole super-polynomial from M and m, and obtain the consistency lemma,
lemma 2. We first prove lemma 6.

5.1 Proof of the Polynomial Extraction Lemma
The proof proceeds by four propositions.

Proposition 10 Most (1 — ﬁ) cubes in G are non-trivial.

25

Proof: We know that the assignment for a 8 fraction of the points is non-trivial.
We now state a hitting lemma that shows that most of the cubes must hit a
non-negligible fraction of these points.

Lemma 7 (Hitting Lemma) Let 0 < 8 < 1. Let N C D be a set of points,
|N| > B|D|. Most (1— E’%) cubes in St have at least % of their points in N.

The lemma is easly to obtain using simple probabilistic methods. We deduce
that for (1 — ﬁ) of the cubes, % of their points are non-trivial. G consists
of more than half of the cubes, hence 1 — ﬁ of G’s cubes have this property.

Since % > 37" > a we deduce that M on the cube must be consistent with m
on a non-trivial point - and must itself be non-trivial.]

Proposition 11 There ezists an LDF P and a coefficient c, such that

. . def 1
Pr (P th = —
ceé(appears in C with cp) > § 0079

Proof: Consider the following procedure:

1. For each non-trivial point z € D choose a random value that appears in
z.

2. For each non-trivial C € G choose a random LDF that appears in it.
3. Choose a random cube C € 8§ and a random point z € C.

We consider all pairs (C, z) of cube C and point z € C, and eliminate some of
these pairs,

e Pairs (C, z) where C ¢ G (o fraction).

_2

lEa fraction by proposition 10).

e Pairs containing trivially assigned cubes (

e Pairs containing cubes with norm > 10 - s (no more than % fraction).

e Inconsistent pairs (C,) where m,(M(C)) # m(z). (no more than « frac-
tion).

Ambiguous pairs (C,z) where M(C) is ambiguous on z. (no more than

amb(r,t +3,s) < |.7-'|_%).
With probability > (1—a— #— H—a—|F|” %) > 1 we have a pair of point and
cube such that the norm of the cube is < 10s, and they agree non-ambiguously.
For any value randomly chosen for a point, there must be a “matching value”
from the cube. This value is chosen from the cube with probability at least ﬁ.
The norm of the cube is < 10s, there are 20s possible coefficients with which
an LDF may appear. For a pair of a cube and a point that agree, we look at

the coeflicient of the agreed value in both of them (it is equal). There exists a

26

coefficient ¢, such that at least ﬁ . 2(1)5 = 20052 of the pairs not only agree but
also have coefficient c,.
We consider the procedure a success if the values are equal and appear with
1

coefficient ¢,. The success probability is therefore > % * 35057 = U(i_ﬂj' Using

the cube vs. point lemma of [DFK*98] (corollary of [RS96]), there exists an
LDF P that agrees with > 6 = ﬁ of the cubes and their chosen values. W
We have found a polynomial P that appears (with ¢,) in a non-negligible fraction
of the cubes. We now show that P, in fact, appears in most of the points with
Cp-
Proposition 12 P appears in most points with cp

Proof: Denote by N the set of points where P does not appear with coeflicient
cp. We shall prove that p wf % < 3. Using the hitting lemma (lemma 7),
we have that 1 — m%[of the cubes in G have § of their points from N. If
£ > a + amb(r, s,t) then every such cube must agree non-ambiguously with at
least one point from N. This implies that P does not appear in these cubes
with ¢, and hence § < ﬁ (because of proposition 11). Altogether we have
that
< max 2(amb(r, ,t) + o), ==) < 7
max | 2(amb(r, s a), — =
/Jl —= 1 ? 6 |.7_—| 2
|
Having P appearing in most points, we now show that P appears in most cubes
with ¢,.
P

Proposition 13 P appears in 1 — |.’F|_% of the cubes of G with coefficient cp.

Proof: Denote by I the set of points where P appears with coefficient c,. I has,
by propomtlon 12, > 5 fractlon of the points. Accordlng to the hitting lernrna
all except 7 | of the cubes (|7"| of G, since |G| > 1), have % of their points from

By the Markov inequality, at most &2 . s of the cubes in G are assigned

71
more than u polynomials. Therefore 1 — sls;'ld |}.| > 1—|F|” 2 of the cubes
in G have % i of their points from I, and are assigned no more than % LDFs.

Denote these cubes G(P).

Let C be a cube in G(P). The fraction of points of C which agree with C
non-ambiguously and belong to I is at least 3 —a—amb(r,1+3,5) > % For each
such point z € C, M(C) has an LDF @, Q(z) = P(z) such that the coefficient
of Q is c,. For every such point there are no more than % candidates, hence
there is at least one LDF @ in M(C), which has the coefficient ¢,, and is equal

to P on at least

1 8rd S rd
5 |7l |7
of C’s points. This polynomial is therefore equal to P.

27

We have shown that the assignment of each cube in G(P) contains P with

coefficient ¢,. Therefore all the good cubes but a |.7-'|_% fraction of the cubes
are assigned P with coefficient c,.]
|

5.2 Proof of the Consistency Lemma (Lemma 2).

Lemma 2 (Consistency Lemma) Let T be a set of t-tuples. Let D be a
domain, and let St be the set of (t + 3)-cubes of D that contain the points of
at least one tuple in T. Let M : St — SLDF, ;.3 be a super-assignment;

M| < s < |.7-'|ﬁ Let m be the underlying super-assignment to the points.
Denote by G C ST, the set of all cubes C for which M(C) agrees with m on at
least 1 — a of C’s points.

If at least 1 — a of the cubes in St are in G then there exists a global super-
polynomial G of degree r on D, with ||G|| < 2s and

Pr (M(C) = mc(G)) > 1 — |F|7% (25 + 1)
CerG
Proof: The proof proceeds by induction. The inductive hypothesis for k is
that the theorem is true for s < %

The Base of the Induction (k = 1). Assume s < 1. Then no more

than 8 = max(3a, %) of the points have a non-trivial assignment: Otherwise,

using the polynomial-extraction lemma (lemma 6) we extract a polynomial P
1

that appears with coefficient ¢, # 0 in 1 — |F|”? of the cubes, and deduce

that the || M]|| is at least |c,|(1 — |.7-'|_%) > 1. Hence most of the points are
trivial. Take G to be the trivial super-polynomial. By the hitting lemma,

1- % >1- |.7-'|_% (2s + 1) of the cubes in G are trivial, hence agree with G.

In addition ||G|| = 0 < 2s.

The Inductive Step. Assume £51 < ||M|| < &. If less than 3 of the points
have a non-trivial assignment we use the hitting lemma to deduce, as above,
IM|| < %, hence a contradiction. Otherwise, we use the extraction lemma to

extract a polynomial P that appears with coefficient ¢, # 0in 1 — |.'F|_% of the
cubes in G.

We now ‘peal’ P from M and m. Denote by P(P,c,) the super-polynomial
that gives a coefficient ¢, to P, and zero to all other LDFs. We define new
assignments to the points and cubes:

M E M_PPc,), m Y m—PPc,)

where this notation means that for every point or cube, the super-assignment
to it is subtracted ¢, in P’s coefficient.

28

It now follows that || M']| is

M| < A= I1FI7)M = lepl) + 117 (M| + lep)
= M[=@ =2[F] 2)lep

It is easy to see that for every C € G, M’ agrees with m' on at least 1 — & of
C’s points.

We therefore proceed by induction, to obtain a global super-polynomial G’

that is consistent with m' and M’'. We claim that G def G' + P(P,cp) is the

desired super-polynomial:

1. The norm of G, using the inductive hypothesis is,

NGl < NGl + lep|
< 2lIMIf| + el
1
< 2||M||_2'§|Cp|+|cp|
< 2[M|]

2. By the inductive hypotheses, G’ agrees with M’ in 1 — (2s + 1) |.7-|_% of
the cubes. P appears in M with ¢, in 1 — |F| 2 of the cubes. In the
worst case, these cubes are disjoint, and G agrees with > 1 — (2(s — %) +

1) |7:|—% _ |]:|—% >1-(25+1) |]-'|_% cubes.

29

References

[ABSS93]

[ADY6]

[Aj£96]

[Ajt97]

[ALM*92]

[AS92]

[Bab86]

[CNOT]

[CooT1]

[DFK+98]

(GG]

[LLL82]

[LLS90]

[Mic98]

S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of
approximate optima in lattices, codes and linear equations. In Proc.
34th IEEE Symp. on Foundations of Computer Science, pages 724—
733, 1993.

M. Ajtai and S. Dwork. A public-key cryptosystem with worst-case
average-case equivalence. ECCC, TR6-065, December 1996.

M. Ajtai. Generating hard instances of lattice problems. In Proc.

28th ACM Symp. on Theory of Computing, 1996.

M. Ajtai. The shortest vector problem in l; is NP-hard for random-
ized reductions. manuscript, May 1997.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof
verification and intractability of approximation problems. In Proc.
33rd IEEE Symp. on Foundations of Computer Science, pages 13-
22, 1992.

S. Arora and S. Safra. Probabilistic checking of proofs: A new
characterization of NP. In Proc. 33rd IEEE Symp. on Foundations
of Computer Science, pages 2-13, 1992.

L. Babai. On Lovdsz’s lattice reduction and the nearest lattice point
problem. Combinatorica, 6:1-14, 1986.

J. Y. Cai and A. Nerukar. Approximating the SVP to within a factor
1+ ﬁ is NP-hard under randomized reductions. manuscript, 1997.

S. Cook. The complexity of theorem-proving procedures. In Proc.
3rd ACM Symp. on Theory of Computing, pages 151-158, 1971.

I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. A near optimal
PCP characterization of NP. manuscript, 1998.

0. Goldreich and S. Goldwasser. On the limits of non-
approximability of lattice problems. ECCC, TR97-031.

A K. Lenstra, H.W. Lenstra, and L. Lovéasz. Factoring polynomials
with rational coefficients. Math. Ann., 261:513-534, 1982.

J. Lagarias, H-W. Lenstra, and C.P. Schnorr. Korkine-Zolotarev
bases and successive minima of a lattice and its reciprocal lattice.

Combinatorica, 10:333-348, 1990.

D. Micciancio. The shortest vector in a lattice is hard to approximate
to within some constant. In Proc. 39th IEEE Symp. on Foundations
of Computer Science, 1998.

30

[RS96] R. Raz and S. Safra. A sub-constant error-probability PCP charac-
terization of NP; part II: The consistency-test. Manuscript, 1996.

[Sch85] C.P. Schnorr. A hierarchy of polynomial-time basis reduction al-
gorithms. In Proceedings of Conference on Algorithms, Pécs (Hun-

gary), pages 375-386. North-Holland, 1985.

[VEB81] P.van Emde Boas. Another NP-complete problem and the complex-
ity of computing short vectors in a lattice. Technical Report 81-04,
Math. Inst. Univ. Amsterdam, 1981.

31

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

