R and o Wadksim @eyprel it teyrecel "B it Sets and
Partial Derandomization™

DIMITRIS A. FOTAKIS"? PAUL G. SPIRAKIS!?

1 Computer Engineering and Informatics Department
University of Patras, 265 00 Rion, Patras, Greece

2 Computer Technology Institute — CTI
Kolokotroni 3, 262 21 Patras, Greece

Email: fotakis@cti.gr, spirakis@cti.gr

Fax: +30-61-993973

Abstract. In this work we use random walks on expanders in order to relax the properties
of hitting sets required for partially derandomizing one-side error algorithms. Building on a
well-known probability amplification technique [AKS87, CW89, 1Z89], we use random walks on
expander graphs of subexponential (in the random bit complexity) size so as to avoid particular
sets of “misleading” strings, while reducing the random bit complexity of the algorithm.

Then, we introduce the idea of conditional hitting sets in order to avoid the remaining “mis-
leading” strings. In particular, given a set C, a C; C C, and an s ¢ C}, we suggest to exploit s
for constructing a set that avoids C'. Furthermore, we show how to combine random walks on
expanders of subexponential size with conditional hitting sets so as to reduce the random bit
complexity of any one-side error randomized algorithm.

On the other hand, an application to PCP systems for NP suggests that, if our techniques can
substantially reduce the random bit complexity of arbitrary probabilistic systems, then NP
has subexponential deterministic simulations.

Keywords: Derandomization, Hitting Sets, Random Walks

* This work was partially supported by ESPRIT LTR Project no. 20244—ALCOM-IT.

ISSN 1433-8092

1 Introduction

A central research question in complexity theory is whether randomized algorithms, which are
allowed to make desicions based on the output of a random source, are more powerful (in terms
of language recognition) than deterministic algorithms of similar running time. As a consequence,
many general methods have been proposed for decreasing (or even removing) the amount of random
bits used by randomized algorithms.

In this direction, the idea of pseudo-random generators has been extensively used. A pseudo-
random generator, starting from a short truly random seed, produces long strings that appear in-
distinguishable from truly random strings to any reasonably fast algorithm. The papers of [Yao82]
and [BM8&84] introduced the idea of constucting a pseudo-random generator from cryptographically
secure one-way permutations. Since then, many researchers have proposed methods for derandomiz-
ing probabilistic algorithms based on “hardness” assumptions. [Imp97] provides an excellent survey
on the use of hard problems for derandomization. In this framework, hitting sets are a useful tool
for obtaining derandomization results about particular complexity classes [ACR96, ACRT97].

In addition to the design of general derandomization techniques, it is important to identify the
properties of the probabilistic systems that are susceptible to certain derandomization techniques.
Following this direction of research, quantitative aspects of randomness in Arthur-Merlin games
are studied in [BGG93]. Also, [FK95] proved that there exist natural interactive proof systems for
which repetition using truly random bits can reduce the error rate to be polynomially small, while
repetition using bits produced by any pseudo-random generator cannot reduce the error below a
constant.

In this work, we exploit random walks on expander graphs in order to relax the properties
of hitting sets that suffice for derandomization. Thus, we obtain general sufficient conditions for
reducing the random bit complexity of any one-side error randomized algorithm.

1.1 Previous Work

The techniques for analyzing the “hitting” properties of random walks on expander graphs were
first introduced by [AKS87]. Then, random walks on expanders used for decreasing the error rate
of randomized algorithms [CW89, 1789, MR95] and interactive proof systems [BGG93], while not
substantially increasing the random bit complexity. Up to our knowledge, the first time that re-
cursive random walks on expanders were used for decreasing the random bit complexity of certain
hypothetical one-side error probabilistic systems was in [FS96].

Hitting sets are one of the basic combinatorial objects studied in the framework of derandom-
ization [ACRT97]. Given a set S and a S’ C 5, a set H is hitting for S/, if S'NH # (. Alternatively,
H is hitting for §’, if it avoids the complement of §’, denoted S’ = § — S/, at least once. If we
consider an one-side error randomized algorithm A, a set is hitting for A, if it is guaranteed to
contain at least one element causing A to produce the correct outcome. Polynomial time Hitting
Set Generators (HSGs) are known to derandomize one-side bounded error, polynomial time, ran-
domized algorithms (RP), and recently were shown to derandomize the class of two-side bounded
error, polynomial time, randomized algorithms (BPP) [ACRI6].

A deterministic construction of a hitting set for combinatorial rectangles of dimension d and
volume at least € is presented in [L1.SZ93]. For positive integers d and m, a combinatorial rectangle
R within § = [m]?is defined as R = Ry X -+ X Ry, where, for all i € [d], R; C [m]. The volume of
R is [Tigpq | Ril /m”.

In [SSZ95], explicitly constructed dispersers were used for a polynomial simulation of any RP
algorithm from a weak random source of min-entropy 7. A random source has min-entropy r7, if it
outputs bit strings of length r and no string has probability of being output larger than 2" [CGSS].
Disperser graphs may be thought as the analogue of hitting sets, when simulations of randomized
algorithms from weak random sources are considered instead of derandomization. Additionally, a

polynomial time simulation of any BPP algorithm from the output of a weak random source of min-
entropy r” was obtained using some properties of hitting sets [ACRT97]. In both [SSZ95, ACRT97],
the simulation asks the random source for a polynomial number of “weakly” random bits.

1.2 Summary of Results

We start with proving that a combination of the probability amplification techniques of [CW89,
1789, BGGI3] with random walks on expander graphs of subexponential size can be used for
reducing the random bit complexity of one-side error algorithms fulfilling a particular condition. In
fact, given a set S of strings of length r (i.e. |S| = 2"), we show how to avoid any subset of 5, which
can be expressed as a combinatorial rectangle of dimension «, using only = + O(a) random bits.
Consequently, we obtain a non-trivial upper bound on the number of random bits, that suffice for
constructing hitting sets for complements of combinatorial rectangles. Additionally, we provide a
simple structural description of the algorithms, whose random bit complexity can be reduced using
this technique.

Given any one-side error algorithm A and any set C' of strings causing A to produce wrong
outcome (“misleading” strings), there always exists a C; C C, such that Cy can be written as a
combinatorial rectangle of an appropriate dimension. Therefore, random walks on expanders can
be used for avoiding C, while reducing the random bit complexity of A. Furthermore, obtaining a
string s ¢ C' from an s; known not to belong to C'; cannot be harder than obtaining an s ¢ C' from
scratch. This observation leads to the idea of conditional hitting sets, which are used for obtaining
general sufficient conditions for reducing the random bit complexity of one-side error randomized
algorithms. Additionally, we suggest an implementation of a conditional hitting set generator from
an one-to-one function that maps the strings of C' to the vertices of an expander graph G, so as
the vertices of Cy = C' — (7 to belong to “small” connected components of the subgraph induced
by C.

Finally, an application to Probabilistic Proof Systems for NP implies that either the efficiency
(in terms of derandomization) or the complexity (or both) of any algorithm for the construction
of conditional hitting sets depend on the family of the “misleading” sets that should be avoided.
Notice that similar results can easily be obtained for hitting sets.

We are not aware of any non-trivial construction of hitting sets for complements of combinatorial
rectanges. Furthermore, up to our knowledge, this is the first time that random walks on expanders
are combined with a generalization of hitting sets for reducing the random bit complexity of one-
side error probabilistic systems. The results of [SS7Z95, ACRT97] are different in nature because, if
min-entropy is considered as a measure for the (truly) random bit complexity of a random string,
the simulations increase the random bit complexity by a polynomial factor.

All our results exploit random walks on expander graphs of subexponential size to avoid com-
binatorial rectangles. Additionally, the idea of using a string not belonging to a particular subset
Cy in order to avoid the whole set C' (conditional hitting set) appears for the first time in the
framework of derandomization.

2 Preliminaries

In addition to the input z, a randomized algorithm A makes a series of random choices, which can
be grouped together as the random string r. The output of the algorithm solely depends on the
input z and the random string r. A(z,r) denotes the outcome of A on input z, where the string
r determines the (random) choices of A. Wlog. we only consider algorithms that produce Boolean
output. An one-side bounded error algorithm A for a language I may err with probability at most
1

7 in either accepting some € L, or rejecting some 2 ¢ L, but not in both. In the sequel, the

probability is with respect to the uniform distribution on all the binary strings of length |r|. [MR95]
provides an excellent treatment of randomized algorithms.

A language L C Y* is in the class RP, if there exists a worst-case polynomial time, randomized
algorithm A, that for all inputs z € L™, A always rejects all z ¢ L, while it may reject an z € L with
probability at most i. Similarly, the class co-RP consists of languages that have polynomial time,
randomized algorithms erring only for 2 € L. The choice of the bound of % on the error probability
is arbitrary, because the error probability of an RP algorithm A can be made arbitrarily (but
constantly) small by repeating A a (suitable) constant number of times.

Although the complexity classes RP and co-RP are defined in terms of decision problems, we
will also use the complexity class labels for referring to algorithms. In particular, an RP algorithm
A belongs to the class RPs(r(n)), if, for all inputs z of length n, A uses at most #(n) = O(r(n))
random bits, and achieves an error rate at most 6, i.e. if # € L, Prob[A(z) = REJECT] < 6.

Given an one-side error randomized algorithm A using #(n) random bits, let S be the set of
all the bit strings of length #(n), and, for any fixed integer a > 1, S* be the set of all the bit
strings of length [ﬂaﬂ-‘ The cardinality of S is sometimes denoted by N = 27("), A set S’ is the
complement of a combinatorial rectangle, if, for some integer @ > 1 and constant ¢ > 0, there
exists a combinatorial rectangle R within § = HﬁaﬂHa of dimension a and volume ¢, such that
S — 8" C R. Therefore, for S’ being the complement of a combinatorial rectangle R, if a set H
avoids R then H hits S’

Let 0 < € < % be the error rate of A. Given an input z, there exists a set of strings C' C 9,
|C| < €| S|, that cause A(z) to result in wrong outcome, i.e. REJECT instead of AccepT if A € RP.
We also refer to such sets C' as the set of “misleading” strings for A on input z. We can define a
family of sets

C = {C is a set of “misleading” strings for A(z):z € ¥*}

Obviously, C depends on the algorithm A, and is not necessarily equal to the family of all possible
subsets of S of cardinality at most ¢|5].

In the following, we sometime restrict our attention to RP and co-RP algorithms, because
of the importance of these classes in randomized computation. However, our results hold for any
one-side error randomized algorithm, independently of its worst case running time.

2.1 Probabilistically Checkable Proofs

All recent results on hardness of approximating some NP-hard optimization problems rely on
a probabilistic definition of AP based upon the complexity class of Probabilistically Checkable
Proofs, PCP. According to this definition, the class A/P contains exactly those languages whose
membership proofs can be checked by a polynomial time, probabilistic verifier using logarith-
mic number of random bits and inspecting constant number of proof bits, NP = PCP(logn,1)
[ALMSS92, Aro94, BGS96, Sud96].

A wverifier V is a probabilistic polynomial time Turing machine with access to an input z, a
random string r, and a proof 7 via an oracle. The outcome of V is either ACCEPT or REJECT. A
verifier is (r(n), g(n))-restricted if, for all inputs z of length n, it uses at most #(n) = O(r(n))
random bits, and queries at most §(n) = O(¢(n)) bits from the proof.

Definition 1 [AS92]. A language L is in PCP(r(n), ¢(n)) iff there exists an (r(n), ¢(n))-restricted
verifier V' such that:

(a) For all € L, there exists a proof 7, that satisfies Prob,[V(z,r, 7;) = ACCEPT]| = 1,

(b) while for all z ¢ L, every proof 7 satisfies Prob,[V(z,r,7) = AcCEPT] < 1.

Notice that a verifier V is similar to a co-RP algorithm, in the sense that, there exists a proof,
so as V to always accept 2 € L, while, for all proofs, V may accept some z ¢ L with probability at
most i. The following lemma relates the random and the query bit complexity of a PCP system
for a language [, with the deterministic time complexity of deciding whether an input 2 is in L.

Lemma 2 [ALMSS92]. Let L be any language over X* and V be a (r(n), q(n))-restricted verifier
for L. Then for any x € X* there exists a Boolean formula B, on (’)(27:(”)(}(71)) variables that is
satisfiable iff x € L.

2.2 The Hitting Properties of Random Walks on Expander Graphs

A technique presented in [AKS87] uses random walks on expander graphs for producing long
pseudo-random bit strings.

Lemma 3 [AKS87]. Let G be an infinite family of d-reqular graphs with the following property: If
G = (V, FE) is a member of G and A denotes its adjacency matriz multiplied by 1/d then all but the
largest eigenvalue of A are less than 1 and positive.

Then for every subset C' of V with |C| < |V|/16 there exists a constant ¢ such that the probability
that a random walk on G of length k - ¢ arrives in every c-th step in a vertex of C is at most 27",

The existence of families of graphs G satisfying the requirements of Lemma 3 is based on the
existence of constant degree expanders. An explicit construction of constant degree expanders is
given by Gabber and Galil [GG81]. The so-called Gabber-Galil expander has the advantage that
we do not need to explicitly construct the entire graph. In particular, for any vertex in the ex-
pander, it is possible to compute the neighboring vertices in time polynomial in log|V|. Random
walks on expanders are widely used (e.g. [CW89, 1789, BGG93, MR95]) for obtaining probability
amplification results. We also use the following version of Lemma 3 that is proved in [BGG93] using
the techniques of [AKS87]:

Lemma4 [BGG93]. For any family G of d-reqular expander graphs there is a constant n > 1 such
that the following is true. Suppose ¢ < 1/2 and let ¢ = nloge™'. Letv € N and C4,...,C,, be subsets
of V' having density at most €. Let b < v be an integer and 1 < j1 < ... < jp < v be a sequence of
indices between 1 and v. Consider a random walk of length ¢ - v on the expander and denote by Y
the vertex visited at time ¢ -5, j = 1,...,v. Then, Prob[Y;, € C},,...,Y;, € Cj;,] < (2€)¥/2.

2.3 Hitting Sets and Derandomization

A set H C S is called hitting for a §" C 5, if H N S" # (. Alternatively, H is said to avoid the
complement of §/, denoted 57 = § — §’. Additionally, a set H C S is called e-hitting for security b,
if for any Boolean circuit A of size at most b, Probycs[A(z) = 1] > € implies that there exists at
least one string A € H such that A(h) = 1 (e.g. [Imp97, ACRT97]). A polynomial time algorithm
H that, given in input a number n in unary, returns a set H(n) C {0,1}", which is e-hitting for
security n, is called a quick e-Hitting Set Generator (HSG) [ACRT97].

If we restrict our attention to RP algorithms, given an A € RP, aset H C 5 is called e-hitting
for A, if, for any input z, Prob,cs[A(2,r) = ACCEPT]| > ¢ implies that there exists at least one
h € H such that A(z,h) = accgepT. If C is a set of “misleading” strings for the algorithm A,
a hitting set H for A is required to hit the complement of C, i.e. C = § — C. H is sometimes
said to avoid the set of “misleading” strings C'. Similar definitions can also be obtained for co-RP
algorithms, and in general, for any one-side error randomized algorithm. Obviously, if quick HSGs
exist for the whole class RP, then P = RP. Moreover, quick HSGs are shown to derandomize BPP
[ACR96], and some properties of hitting sets are used for obtaining polynomial time simulations of

BPP using weak random sources [ACRT97]. On the other hand, quick HSGs are unlikely to exist
for arbitrary probabilistic systems, even if the random bit complexity is logarithmic. Otherwise, an
application of such HSGs to (logn, 1)-restricted verifiers would imply some unexpected bounds on
the deterministic time complexity of the whole NP (e.g. NP C P).

In this paper, we introduce the idea of conditional hitting setsin order to partially derandomize
(i.e. reduce the random bit complexity) one side-error randomized algorithms. At first, we show
that, given any one-side error algorithm A, there exists a subset C'; of any set C' of “misleading”
strings for A, such that C'; can be avoided with probability at least 1 — ¢ using only a constant
fraction of the random bits used by A. Since a set avoiding C'y = C' — C is not guaranteed to also
avoid Cy, we suggest to exploit a string s € C; in order to construct a hitting set for C' = § — C.
Loosely speaking, this seems more difficult than avoiding Cy, but easier than avoiding the whole
(', because a piece of information about 4 is available, since Cy has already been avoided by s.

Definition 5. Given any one-side error randomized algorithm A, any set of “misleading” strings
(for A) C, a subset C; C C, and a string s € 5, a set W, ; is said to be a conditional hitting set
for A, if s € C; implies that W, , is a hitting set for A.

The dependence on the algorithm A may be implicit. In particular, we sometimes refer to a
We, s as a hitting set for C = 5 — C, where C is any set of “misleading” strings of some algorithm
A. Obviously, a hitting set for A is also a conditional hitting set for A corresponding to the partition
Cy = 0,Cy = C. Therefore, conditional hitting sets generalize the idea of hitting sets, and any quick
HSG is also a quick Conditional Hitting Set Generator (CHSG). However, we do not know whether,
for all C7; C C and randomized algorithms A, the existence of a quick CHSG corresponding to Cy
would imply the existence of a quick HSG.

3 Using Random Walks for Reducing Randomness

The following probability amplification result is a consequence of Lemma 3. We provide a simple
proof for the sake of completeness.

Lemma6. Let A be an RPy16(r(n)) algorithm for a language L. Then for any 0 < § < 11—6, there

exists an RPs algorithm A’ for L that uses #(n)+ clogd (log %) random bits (c,d are the constants
of Lemma 3).

Proof. The algorithm A’ with the desired properties will result from multiple invocations of A. In
particular, A’ proceeds as follows:

(1) It constructs a d-regular expander graph G(V, E) that contains 27(") vertices and fulfills the
hypothesis of Lemma 3.

(2) It reads a random string r of length #(n) + clogd (log %), ¢ is the constant of Lemma 3.

(3) It performs a random walk on the graph G. Let & - ¢ be the length of the random walk. Let
r; be the bit string that is associated with the vertex reached by the random walk at the
(i-¢)-th step, i = 0,1,...,k. (ro corresponds to the initial vertex determined by #(n) truly
random bits). Then A is invoked with the same input z for each bit string r; (x + 1 times).
A’ rejects z iff A rejects z for all (pseudo) random strings r;.

Since error probability of A is at most ;= there exists a C C V,|C| < |V|/16 such that a
vertex u € C iff it is associated with a bit string r; causing A(z,r;) to result in wrong outcome (i.e.
REJECT instead of ACCEPT). Let k be log]g. Then Lemma 3 implies that the probability of all bit

strings r; € C' 18 Pepror < 2= log(1/8) — glogé — § Furthermore, a (truly random) bit string of length
7(n) + clogd (log %) completely determines a walk of length clog % on (.
If the error rate of the algorithm A is 11—6 <e<]5, we can use Lemma 4 instead of Lemma 3 so

as to obtain an algorithm A’ that uses at most #(n) 4+ 2nlog d (log %) (logl/26 %) random bits, and
achieve error probability at most é.

Next, we show that random walks on expander graphs can be exploited for decreasing the
number of truly random bits used by any RP algorithm A which satisfy a particular condition.
Moreover, this can be performed without increasing the error probability of A. Let A be any
RP(r(n)) algorithm and, given an input z, C' C S be all the random strings that cause A(z)
to produce wrong outcome (i.e. REJECT instead of ACCEPT). In the sequel, we only consider RP
algorithms A such that, ginen any input z, the corresponding set C' of “misleading” strings is
characterized by the following:

Assumption 7. There exist an integer a > 1 and sets CY,CS,...,CS C 8%, such that a bit string
s € C iff s can be written as sq 0 83+ 0 84, for some s1 € C7,50 € CF, ..., 8, € C2.

Obviously, Assumption 7 restricts the set of “misleading” random strings to the bit strings
produced by the concatenation of substrings s; € Cf, C C 5%, i =1,...,a. Consequently, C' is
contained in a combinatorial rectangle of dimension a within S that should be avoided at least
once, i.e. the complement of C', C' = § — C, should be hit. Then, we prove that Assumption 7 is a
sufficient condition for reducing the number of random bits used by A.

Theorem 8. Let A be an RP(r(n)) algorithm for a language L. If A fulfills Assumption 7 for some
integer a > 1, then there exists an R'P algorithm A for L that uses at most [ﬁaﬂw +O(va) random

bits, and achieves error rate 277, for any integer v > 1. Moreover, A invokes A at most O(ya)
times.

Proof. At first, we obtain an algorihm A’ for I using at most 74 = #(n) 4+ 4(a 4+ 1)clogd random
bits and achieving error rate at most 2=4(+1) (Lemma 6). Moreover, the proof of Lemma 6 implies
that A’ invokes A at most 4(a + 1) times. Wlog. we assume that 4(a + 1)clogd < [@w

We prove that Assumption 7 allows a (pseudo) random string for a run of A’ to be produced
by a random walk on an expander graph containing 2[7(")/1 vertices. In particular, the algorithm
A operates on any input z as follows:

(1) It constructs a d—regular graph G'(V, E) that fulfills the hypothesis of Lemma 4. The graph
G contains a vertex for every possible bit string of length [ﬁaﬁ” Let é be the constant of
Lemma 4.

(2) A performs a random walk on the graph G. Let y(a + 1)é be the length of the random walk,
and s; be the bit string associated with the vertex reached by the (7-¢é)-th step of the walk, i =
1,...,7(a+1). Bit strings r;, |r;| > 74,7 = 0,...,7—1, are constructed by the concatenation
of @ + 1 consecutive results of the random walk, 7; = $j(441)41 © Sj(at1)42 " © Sj(at1)+at1-

(3) A invokes A'(z) 7 times with (pseudo-)random strings r;, j = 0,...,7 — 1, and rejects z iff
all invocations of A’ rejects z.

Let C be the set of the “misleading” strings for A’(z). Since Assumption 7 holds for A and
(a+1) [daﬂw > 141, there should exist sets C{,C5,...,C5,Coyy C 9%, such that a bit string
seCiff s=38108y:::08,08441, for some s; € CF,50 € CF,...,8,41 € C§ . This implies that

A’ results in wrong outcome iff all the strings Sj(a+1)+i produced by the random walk of the step
(2) belong to the sets C%, 7 =0,...,7y—1,i=1,...,a+ 1.

Furthermore, [CT||Cg|---|Co] < 9=4(e+1)|V|2+1 heacuse the error rate of A’ is at most
2-4(e+1) Hence, for at least one 1 < i < a4 1, the cardinality of C# should be at most |V|/16. An
application of Lemma 4 implies that all 4 invocations of A’ err with probability at most 277.

Obviously, the algorithm A is invoked exactly 4(a+ 1)y times, and A uses at most [daﬂw +v(a+

1)élog d random bits. O

Clearly, the proof of Theorem 8 also applies to any one-side error randomized algorithm, in-
cluding algorithms in co-RP, i.e. polynomial time algorithms always accepting inputs z € L, but
also accepting with probability at most }Z inputs z ¢ L.

The previous theorem implies that Assumption 7 describes a family of sufficient conditions for
reducing the need of true randomness in one-side error randomized algorithms. However, even for
small constant values of a, Assumption 7 is quite general and restrictive. Hence, it is not expected
to hold for arbitrary values of the efficiency parameter a. On the other hand, any polynomial time
randomized algorithm can be reduced to a Boolean circuit B(Y1,Ys,...,Yy), A = O(poly(n)). In
general, each Y; is a random variable denoting the outcome of a probabilistic test invoked by the
algorithm. Therefore, the actual values of Y;’s depend on the input z, the random string r, and the
particular probabilistic test. It is not hard to verify the following proposition:

Proposition 9. Assumption 7 holds with parameter « for any one-side error randomized algorithm
B(Y1,Ya,...,Y)\), such that

(a) Y;’s can be partitioned into independent groups of random variables, and

(b) the outcome of each group only depends on at most [daﬂ-‘ positions of the random string.
Many natural one-side error, randomized algorithms fulfill Proposition 9 and Assumption 7 for
small integers a > 1. Therefore, Theorem 8 can be applied to such algorithms in order to reduce
the need of true randomness.

4 General Conditions for Reducing Randomness

Given an algorithm A and an integer a > 1, for any set of “misleading” strings ', there exists
a C7 C C, such that C consists of all the strings s € C' that fulfill Assumption 7 with the given
parameter a. Then, Theorem 8 shows how a randomized algorithm A, that uses less random bits
than A, can avoid C7 with probability at least 1 — 277, Moreover, assume that the strings of
Cy = C — Cy are distributed in the vertices of the expander graph G (proof of Lemma 6) such
that, in the subgraph G¢ induced by the vertices of C', the vertices of Cy are only contained by
“small” connected components. Provided that C; is avoided, one can exhaustively invoke A on all
the vertices belonging to a “small” connected component of G¢ so as to avoid the whole C'.

Then, we exploit the aforementioned idea so as to derive a family of general conditions for
reducing randomness in one-side error randomized algorithms. These conditions are general in the
sense that they can be applied to any one-side error algorithm, although their efficiency still depends
on the algorithm (see also Theorem 14 and Corollary 15). We further generalize these techniques
by introducing the notion of conditional hitting sets.

Let A be any one-side error algorithm using #(n) random bits and achieving error rate at most
6, 0<eL i, and G(V, F) be a d-regular expander graph on N = 27(") vertices. Also, let F: § — V
be an one-to-one, computable function, that maps the bit strings of length #(n) to the vertices of
G, and for any set of “misleading” strings C' C 5, |C| < €N, let Gi(V;, E;), F(C) = U; Vi, be the
connected components of the induced subgraph Grc(F(C), EF(O)). Given an integer pair (a,g),

1 < a, g < N, consider a partition of C' into sets (1, Cy, so as, for some sets Cy,C%,...,CY C 5%,
Ci=0NCYy xCyx---xCY,and Cy = C'— (4. Alternatively, there exist sets Cy',C5,...,C2 C 5%,
such that a string s € C1 iff s € C'and s = s1059---05,, for some 51 € Cy, 50 € CF,...,5, € CZ.
Suppose that the bit strings of S can be distributed (by F') to the vertices of the d-regular expander
graph G in order the following to be true:

Assumption 10. Given an one-side error algorithm A, and an integer pair (o, g), 1 < a, g < N,
for any set of “misleading” strings C C S, |C| < €N, there exist a partition of C' into C1,Cy as
above, and an one-to-one computable function F : S — V', such that for all s € C at least one of
the following holds:

(1) s € Cy, i.e. =51 08y++:03,, for some s; € C7,s9 € CF,...,3, € CS.

(2) F(s) belongs to a connected component G;(V;, E;) of the subgraph induced by F(C') with |V;| <
g (“small” connected component).

Notice that Assumption 10 is a generalization of Assumption 7, because the former with pa-
rameters (a, 1), Cy = (, and any function F, implies the latter with parameter a. Therefore, the
following theorem is a generalization of Theorem 8.

Theorem 11. Let A be any one-side error randomized algorithm for a language L, that runs in
time Tx(n), uses #(n) random bits and achieves an error rate ¢, 0 < ¢ < . Also, for N = 27(n) an
integer pair (a,g), 1 < a, g < N, and a d-reqular expander graph G(V, E), |V| = N, let F: S — V
be a function that fulfills Assumption 10 with parameters (o, g) and can be constructed in time
Tr(N).)

Then, there exists a one-side error randomized algorithm A for L, that runs in time O(yagTs(n) +
Tr(N)+ poly(N)), uses at most [ﬁaﬂw +0(ya) random bits, and achieves error rate 277, for any
integer v > 1.

Proof. In the following, we assume that A € RP. However, the same arguments hold for any one-

side error, randomized algorithm. The algorithm A will be the result of multiple invocations of A.
In particular, given an input z, |z| = n, and a random string r of length [@w +O(va), for some

integer v > 1, the algorithm A proceeds as follows:

(1) It constructs a d-regular graph G(V, E) that fulfills the hypothesis of Lemma 4. The graph

G contains a vertex for every possible bit string of length F(a—nw Let é be the constant of
Lemma 4.

(2) It constructs a d-regular graph G(V, E), |[V| = N = 27(") that fulfills the hypothesis of
Lemma 4 (and Lemma 3). Let ¢ be the constant of Lemma 4. Also, the algorithm A constructs
an one-to-one computable function F : 5 +— V that fulfills Assumption 10 with parameters
(@, g). Obviously, both steps (1) and (2) can be performed in time O(T#(N) + poly(N)). In
the sequel, wlog. we assume that an access to I can be done in time O(1).

(3) A performs a random walk of length (e + 1)é on the graph G. Let s; be the bit string
associated with the vertex reached by the (i - é)-th step of the walk, i = 1,...,y(a + 1),
and r;, be the bit strings constructed by the concatenation of a 4 1 consecutive s;’s, r; =

Si(at1)41 © Sj(at1)42 " O Sj(at)tat1, J =0,y — 1.

(4) A uses pseudo-random strings r; for performing a random walk of length a-c on the graph G.
Let 7‘{ be the outcome of the the (7 - ¢)-th step, and Wy = {Tf €85:57=0,...,y—landi=
0,...,a}. A(z) is invoked for each bit string of W; as random string. If A accepts 2 for some
string of Wy, then A accepts z and terminates.

(5) For each vy = F(s;), s; € Wy, the algorithm A computes a tree (Vi, E;) of G that contains
exactly g + 1 vertices including v;. Let Wy = {s € 5 : F(s) € Vi — {v}}. A(z) is invoked for
each bit string of W; as random string. A rejects z iff all invocations of A for strings in W,
reject z. The steps (3), (4) and (5) can be performed in time O(yagTa(n) + poly(n)).

Clearly, the time complexity of A is O(yagTa(n) + Tr(N) + poly(N)). Moreover, A uses at
most [ﬂaﬂw +v(a + 1)élog d random bits for the random walk on (.

Let C' be the set of the “misleading” strings of A with input z, and C, Cy be any partition of C
for which F’ fulfills Assumption 10 with parameters (a, g). The proof of Theorem 8 implies that all
the strings s € Wi belong to the set C'y with probability at most 277, Furthermore, if at least one
string s; € W belongs to 5 — (1, then either s; € C' or s; € Cy. In the latter case, Assumption 10
implies that any string that belongs to C' but not to C4, it is contained by a “small” (|Vi] < g)
connected component in the subgraph G¢ induced by C. Hence, there exists at least one string
s; € Vi — {s1} C W, that does not belong to C', and the error probability of Ais at most 277. O

Notice that the explicit construction of the function /' requires at least exponential time on the
number of random bits used by A. Therefore, for general RP (co-RP) algorithms A, a poly(#(n))
time algorithm for the implicit construction of /' is required so as A to be an RP (co-RP) algorithm.

If 27(")/2g = 97(") then the random bit complexity of A can be reduced to #(n)/a by invoking
A exactly g times for all the possible values of the remaining #(n) (1 — %) positions. Theorem 11
may be thought as a non-trivial generalization of this crude derandomization technique.

Theorem 11 suggests the use of random walks on expanders of subexponential size in combi-
nation with a conditional hitting set for the complement of ' = C7 U Cs, so as to reduce the
randomness used by the algorithm A. Theorem 8 shows that short random seeds can be used by
random walks on expander graphs in order to avoid the “misleading” strings that fulfill Assump-
tion 7. Hence, we can construct a set Wy, that avoids C'; with probability at least 1 — 277, while
reducing the random bit complexity of the algorithm A. Moreover, Assumption 10 can be used for
constructing a set of size g that avoids C'y; = C'— (. However, if ; is not empty, given an arbitrary
set W} that avoids Cy, it may not be the case that Wy U W} avoids the whole set C'. Theorem 11
suggests to exploit the strings s ¢ C; (than can be found using only a fraction of the random bits
used by A) in order to construct a set that avoids the whole C i.e. a hitting set for C = § — C.

The proof of Theorem 11 implies that Assumption 10 can be used for the construction of a
conditional hitting set of size g for C. In particular, for each s ¢ C;, the corresponding component
V, of Wy is a hitting set for C'. Therefore, Wy U W, is a hitting set for C' with probability 1 —277.
In order to prove that a tree on g + 1 vertices of GG is a conditional hitting set for C', we exploit a
function F’ that distributes the strings of S to the expander graph G according to Assumption 10.

Obviously, given any one-side error algorithm, the techniques above can also be applied for any
construction of conditional hitting sets from strings s ¢ ;. Therefore, Theorem 11 holds for any
one-side error, randomized algorithm that achieve error rate € and fulfill the following generalization

of 10.

Assumption 12. Given an algorithm A and integers (o, g), 1 < a, g < |S|, for any set of “mis-
leading” strings C C 5, |C| < €|S|, there exist CY¥,...,C2 C S defining a partition of C into
Ci=CNCyx---xC% and Cy = C = C4, such that, for all s € C, either s € Cy, or a (conditional)
hitting set W, |W| < g, for C = § — C can be computed from s in time Ty (]S]).

Corollary 13. Let A be any one-side error randomized algorithm for a language L, that runs in
time Ta(n), uses 7(n) random bits, achieves an error rate €, 0 < € < i, and fulfills Assumption 12
for some integers (o, g).

Then, there exists an one-side error randomized algorithm A for L, that runs in time
(’)(’yagTA(n) + yaTw(27() —}—poly(n)), uses at most [daﬂw +0(ya) random bits, and achieves

error rate 277, for any integer v > 1.

Proof. The proof is similar to the proof of Theorem 11, apart from the steps (2) and (5). In the
step (2), we do not further need to explicitly construct the expander graph G and compute the
function F'. Thus, we save an additive factor of O(poly(N)+ Tr(N)) in the time complexity of
the algorithm A. In the step (5), the set Wy consists of the union of the conditional hitting sets
constructed from each s € Wi. Since |Wiq| = O(ya), |Ws2| = O(yag). Moreover, Assumption 12

implies that W; can be constructed in time (’)(7aTW(27:(”))). O

4.1 The Complexity of Computing Conditional Hitting Sets

Next, we apply the techniques above to PCP systems for NP in order to show that for a wide range
of parameters, the time complexity of computing conditional hitting sets for arbitrary probabilistic
systems bounds from above the deterministic time complexity of the whole class A/P. Since there ex-
ist PCP systems for NP that use logarithmic randomness (cf. [ALMSS92, Ar094, BGS96, Sud96]),
the sizes of the expander graphs and the hitting sets are polynomial in the input z. The following
theorem suggests that Assumption 12 cannot hold for arbitrary families of sets of “misleading”
strings C, even if | S| is polynomial in the input z.

Theorem 14. If Assumption 12 holds with parameters (o, g) for arbitrary families of “misleading”
sets C that contain elements of polynomial size, then there exist contants p,p > 1 such that 3-SAT
is included in ’DTIME(QZO(Q)”MQW + agpoly(n) + OLTW(np)).

Proof. For some appropriately chosen constants p, i, €,let V be a polynomial time restricted verifier
for 3-SAT, that uses plogn random bits, inspects u proof bits, and achieves error rate 0 < ¢ < %.
Obviously |S| = n”. If Assumption 12 holds with parameters (a,g) for arbitrary families C of
“misleading” sets C, |C'| = poly(n), then we can apply Corollary 13 to the verifier V' in order to
obtain a verifier V for 3-SAT, that uses at most Zlogn + O(a) random bits and inspects at most
O(aug) proof bits. Moreover, Assumption 12 and Corollary 13 imply that the verifier V runs in
time O(agpoly(n) 4+ aTw(n”))). Given any 3-SAT instance z, an application of Lemma 2 to the
verifier V results in a Boolean formula B, of O(QO(“)n/’/“,ug) variables, such that B, is satisfiable
iff = is satisfiable. 0

Corollary 15. For any g = o(n), there exists a constant ay such that, for any a > aj, Assump-
tion 12 does not hold with parameters (a,g) for arbitrary families C, unless NP is included in

DTIME (220 + poly(n) + Tw(n?)).

Proof. For any language I in A'P, there exist constants p, u, € such that I has a polynomial time
restricted verifier V', that uses plogn random bits, inspects p proof bits, and achieves error rate
€. Suppose that Assumption 12 holds with parameters ¢ = o(n), and @ = kp, for some constant
& > 2. Then, Corollary 12 can be applied to V in order to obtain a verifier V for I, that uses at
most 10% + O(xp) random bits, and inspects O(rpug) proof bits. Furthermore, V runs in time
O(poly(n) + Tw(n”)). Hence, given an input z, we can apply Lemma 2 to the verifier V so as to
obtain a Boolean formula B, on o(n) variables such that, z is in L iff B, is satisfiable. O

5 Conclusions

In this work, we show how to use a particular technique for generating long dependent pseudo-
random bit strings in order to relax the properties of hitting sets that suffice for partial deran-
domization. Consequently, we obtain general sufficient conditions for reducing the random bit
complexity of any one-side error randomized algorithm. Our results are based on the use of random

10

walks on expanders of subexponential size for avoiding combinatorial rectangles in combination
with conditional hitting sets.

Conditional hitting sets are not equivalent to hitting sets, unless, for all algorithms A and
definitions of (', the existence of a CHSG implies the existence of a HSG. Therefore, the following
question naturally arises from the definition of conditional hitting sets: Given an one side error
algorithm A and any set C' of “misleading” strings for A, does there exist a C; C C such that a
set avoiding C helps in constructing a set avoiding C' (i.e. a hitting set for the algorithm A)? A
research direction resulting from this question is whether, for any algorithm A, the existence of
a quick CHSG corresponding to some particular partition of C' (e.g. Assumption 10) implies the
existence of a quick HSG for A. A positive result would imply that, for the corresponding definition
of C; C C, the information that a string s is not in C does not help in avoiding the whole C'. A
complementary research direction is to obtain some non-trivial definitions for C'y so as a conditional
hitting set for a randomized algorithm A to be strictly easier to be constructed than a hitting set. A
definition of C'; should be thought as non-trivial, if avoiding the whole C' is (strictly) more difficult
than avoiding Cy (e.g. Assumptions 10 and 12 provide non-trivial definitions for C1).

Acknowledgements: We would like to thank Jose Rolim for his helpful comments on an earlier
draft of this paper.

References

[AKS87] M. Ajtai, J. Komlés, and E. Szemerédi. Deterministic simulation in logspace. Proc. of the 19th
ACM Symposium on Theory of Computing, pp. 132-140, 1987.

[ACR96] A. Andreev, A. Clementi, and J. Rolim. Hitting Sets Derandomize BPP. Proc. of the 23rd Inter-
national Colloquium on Automata, Languages and Programming, pp. 357-368, 1996.

[ACRT97] A. Andreev, A. Clementi, J. Rolim, and L. Trevisan. Weak Random Sources, Hitting Sets, and
BPP Simulations. Proc. of the 38th IEEE Symposium on Foundations of Computer Science, pp.
264-272, 1997.

[Aro94] S. Arora. Probabilistic Checking of Proofs and Hardness of Approzimation Problems. PhD Thesis,
UC Berkeley, 1994.

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness of
approximation problems. Proc. of the 33th IEEE Symposium on Foundations of Computer Science,
pp. 14-23, 1992.

[AS92] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of N'P. Proc. of the
33th IFEFE Symposium on Foundations of Computer Science, pp. 2-13, 1992.

[BGG93] M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in Interactive Proofs. Computational
Complexity 3, pp. 319-354, 1993.

[BGS96] M. Bellare, O. Goldreich, and M. Sudan. Free Bits, PCPs and Non-Approximability—Towards
Tight Results (3rd Version). TR 95-024. Electronic Colloquium on Computational Complexity. De-
cember 1995.

[BM84] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random
Bits. SIAM Journal on Computing, 13, pp. 850-864, 1984.

[CG88] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness and Probabilistic
Communication Complexity. STAM Journal of Computing, 17(2), pp. 230-261, 1988.

[CW89] A. Cohen and A. Widgerson. Dispersers, Deterministic Amplification, and Weak Random Sources.
Proc. of the 30th IEEE Symposium on Foundations of Computer Science, pp. 14-19, 1989.

[FK95] U. Feige and J. Kilian. Impossibility Results for Recycling Random Bits in Two-Prover Proof Sys-
tems. Proc. of the 27th ACM Symposium on Theory of Computing, pp. 457-468, 1995.

11

[FS96] D. Fotakis and P. Spirakis. (poly(loglogn), poly(loglogn))-restricted verifiers are unlikely to exist
for languages in N'P. Proc. of the 21th Mathematical Foundations of Computer Science, pp. 360-371,
1996.

[GG81] O. Gabber and Z. Galil. Explicit constructions of linear—sized superconcentrators. Journal of Com-
puter and System Sciences 22, pp. 407-420, 1981.

[Imp97] R. Impagliazzo. Using Hard Problems to Derandomize Algorithms: An Incomplete Survey. Proc.
of the 1st Symposium on Randomization and Approzimation Techniques in Computer Science, pp.

165-173, 1997.

[1Z89] R. Impagliazzo and D. Zuckerman. How to recycle random bits. Proc. of the 30th IEEE Symposium
on Foundations of Computer Science, pp. 248-253, 1989.

[LLSZ93] N. Linial, M. Luby, M. Sacks, and D. Zuckerman. Efficient construction of a small hitting set
for combinatorial rectangles in high dimension. Proc. of the 25th ACM Symposium on Theory of
Computing, pp. 258-267, 1993.

[MR95] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New York,
1995.

[SSZ95] M. Sacks, A. Srinivasan, and S. Zhou. Explicit Dispersers with polylog degree. Proc. of the 27th
ACM Symposium on Theory of Computing, pp. 479488, 1995.

[Sud96] M. Sudan. Efficient checking of polynomials and proofs, and the hardness of approzimation problems.
ACM Distinguished Theses series, Lecture Notes in Computer Science, Vol. 1001, Springer 1996.

[Yao82] A. Yao. Theory and Applications of Trapdoor Functions. Proc. of the 23rd IEEFE Symposium on
Foundations of Computer Science, pp. 80-91, 1982.

ECCC ISSN 1433-8092
12 http://www.eccc.uni-trier.de/eccc

ftp://ftp.eccc.uni-trier.de/pub/eccc

ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

