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A Discrete Approximation and Communication
Complexity Approach to the Superposition Problem

Farid Ablayev* Svetlana Ablayeval

Abstract

The superposition (or composition) problem is a problem of repre-
sentation of a function f by a superposition of "simpler” (in a different
meanings) set Q of functions. In terms of circuits theory this means a
possibility of computing f by a finite circuit with 1 fan-out gates Q of
functions.

Using a discrete approximation and communication approach to this
problem we present an ezplicit continuous function f from Deny class, that
can not be represented by a superposition of a lower degree functions of
the same class on the first level of the superposition and arbitrary Lipshitz
functions on the rest levels. The construction of the function f is based
on particular Pointer function g (which belongs to the uniform AC?) with
linear one-way communication complexity.

1 Introduction

In complexity theory the superposition approach provides a new proof of the
separating of monotone NC' from monotone P [KaRaWi]. In classic mathe-
matic the problem of representation of functions by functions of ”simpler” (in
some sense) quality has a long history and is based on the following problem.
It is known that a common equation ayz” 4+ a2z™ ' + -+ 4 anz + ay1 = 0 for
n < 4 can be solved over radicals. In terms of the superposition problem this
means that the roots of the equation can be represented by a superposition of
arithmetic operations and one variable function of the form {/a (n = 2, 3) of
coefficients of the equation. Galua and Abel proved that a common equation
of the 5-th order can not be solved in radicals (can not be represented as a
superposition of this special form). Hilbert [Hi], formulated the 13-th problem
the problem of representing a solution of a common equation of the 7-th order
as a superposition of functions of two variables. The importance of the 13-th
Hilbert problem is that it demonstrates one of the points of growth of function
theory: it motivated an investigation of different aspects of the superposition
problem.
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Arnold [Ar] and Kolmogorov [Ko|] proved that arbitrary continuous func-
tion f(z1,...,2x) on [0,1]Fcan be represented as a superposition of continuous
functions of one variable and sum operation:

2k+1 k

flxr,. . 2p) = Z fi th‘(%‘) (1)

Note that the functions h;; are chosen independently from f and as it is proved
in [Lo], the functions h;; belong to Hélder class.

Vitushkin made an essential advance in the investigation of the superposi-
tion problem. Let ]—'Zf denote the class of all continuous functions of k variables
which has restricted continuous partial derivatives up to the p-th order. Vi-
tushkin (see a survey [Vi]) proved the following theorem

Theorem 1 There exists a function from ]—'é“ which can not be represented by

a superposition of functions from f; zfg > é

Later Kolmogorov gave a proof of Theorem 1 that was based on compar-
ing complexity characteristics (entropy of discrete approximation of functional
spaces) of classes }"Zf and ]-";. Kolmogorov’s proof shows that the classic su-
perposition problem has a complexity background. The notion of entropy of
functional spaces that was introduced by Kolmogorov was a result of the influ-
ence of Shannon’s ideas. Note that Kolmogorov’s and Vitushkin’s proofs show
only the existence of the functions of Theorem 1 and do not present an example
of a function from .7-';“ that can not be represented by a superposition of functions
from F}. See the survey [Vi] and [Lo] for more information on the subject.

Further advance in presenting “constructive” continuous function which is
not presented by certain superposition of simpler functions (“hard continuous
function”) was made in the paper [Ma]. It was proved that a function fg € ]:Zf
that is defined by a most hard (in terms of general circuits complexity) boolean
function G can not be represented by a superposition of functions from f; if
E >~ 1 Remind that almost all boolean functions are hard, but an explicit
example of hard boolean function is not known, yet.

In this paper we generalize results of [Ab] where first example of ezplicit
“hard continuous function” was presented. We use a discrete approximation
of continuous functions and the communication complexity technique for the
investigation of the superposition problem. Using certain Pointer boolean func-
tion g from the uniform ACY with the linear one-way communication complexity
we define an explicit continuous function that can not be represented by a su-
perposition of a lower degree functions of the same class on the first level of the
superposition and arbitrary Lipshitz functions on the rest levels.

Informally speaking our method based on the following. Having continuous
function f we suppose that it is presented by a superposition S of some kind
of continuous functions. We consider their proper discrete approximations df
and DS and compare the communication complexity Cy and Cpg of df and
DS respectively. By showing Cpg < Cys we prove that f can not be presented
by the superposition S.



The theoretical model for the investigation of communication complexity of
computation was introduced by Yao [Yao]. We refer to the book [KuNi] for
more information on the subject.

2  The Function f,

We define explicit continuous function f, ; of k arguments on the cube [0, 1]*by
explicit boolean function g (more precisely sequence g = {g,} of explicit boolean
functions). Informally speaking our construction of f,, can be described as
follows. We partition cube [0, 1]*to the infinite number of cubes (to 25" cubes
for each n > ng). The function f, , in each of 2k7 cubes is defined by boolean
function g, of kn arguments. Now tern to the formal definition of f, ,.
We consider n = 2/ — 1, j > 1 throughout the paper in order not use ceiling
and floor brackets. Let I, = [nlﬁ, nQﬁ] be a closed interval, 15 =1, x - x I,,
k
and IF =, 5, IF. Let ¥ = {0, 1}. We consider the following mapping a : ¥* —
[0,1]. For a word v = 0y ...0, we define

1

n _ 1
a(v):n+1<1+20¢2 +2n+1)-
=1

Denote A, = {a(v) : v € ¥"}. For a number a(v) € A, denote

1 1
In(a(v)) = [a(u) - Wa a(v) + W] .
a closed interval of real numbers of size 6(n) = W From the definitions of
A, and I, (a(v)) it holds that:
1. For a(v), a(v') € A, and a(v) # a(v') segments I,,(a(v)), and I, (a(v"))
can intersect only by boundary.

2. Ua(U)EAn ]’fl(a(,‘])) =1

Let us define the function W, ,(,)(z) on the segment /,(a(v)), a(v) € A,
as follows

1+ 55 —a@®), o) -4 <z <a(v)
V(@) =4 1= 5E5(—a(v)),  a(v) <o <a(v)+ 52 (2)
0, zd [a(u — ﬂzﬂ,a(v) + %ﬂ}

From the definition it follows that the function \I/n’a(y)(m) reaches the max-
imum value 1 in the center of the segment I, (a(v)), a(v) € A,, and value 0 in
the border points of this segment.

For asequence v = (vy, ..., v), wherev; € ¥, 1 <4 <k, denote I¥(b(v)) =
In(a(vy)) X -+ x I,(a(vg)) a k-dimension cube of size 6(n), where b(v) =
(a(v1),...,a(vy)).

Consider the following continuous function W, ;) (z) inside each cube 1E(b(v)),

v=(v1,...,08) € Sp, b(v)=(a(v1),...,a(vy)).



Function W, 3,y () has following important properties: it reaches the max-
imum value 1 in the center of the cube 1¥(b(v)); for all border points z of cube
1¥(b(v)) it holds that W, 50y (2) = 0.

Let g = {gn(v)}, where

Gn X" x o x X" —{0,1}
—_—
k
be the sequence of the following Pointer boolean functions. For a sequence v =
(v1,...,vg), where v; € X", 1 < i <k, we will consider the following partition
pat(n, k): each word v; of the sequence v is divided into two parts: the beginning

u; and the end w; of length /(n,k) = n — d(n, k) and d(n, k) = [(logkn)/k]

respectively. We will write v = (u, w) and call uw = (uq,...,ux) the first part
of the input sequence v and w = (wy,...,w;) the second part of the input
sequence v.

Function g, (u, w) =1 iff (ord(wy ...wy) + 1)-th bit in the word uy ... uy is
one (ord(o) denotes the integer whose binary representation is o. The numer-
ation of bits in the words starts from 1). We will use both notation g, (v) and
gn(u, w) for the boolean function g,.

The function g, can be formally described by the following formula:

kd(n,k)
gn(ua ’UJ) = \/ /\ yiai A Lord(a)s

0<ord(@)<hul-1
where y; (z;) is the j-th symbol of the sequence w (u) in the common numer-
ation of its elements. Clear that g is in the uniform class ¥, (ACY).
Let w(d) be a continuous function such that lims_ow(é) = 0. Define a
continuous function £, , on cube [0,1]* as follows:

fug@)= D > (2ga(v) = Dw(8(n)) W, p0)(2), (3)

n=27—1,vEX"
izk

3 The Result

Remind definitions from functions theory. Denote C to be a class of continuous
functions of k > 1 variables which are defined on closed cube [0,1]%. It is
known that functions from C are uniformly continuous. Following functions
theory for each f(z1,...,24) € C define modulus of continuous ws(§). That is,
ws(8) is a least upper bound of |f(z) — f(2')|, for all z,2" € [0,1]* such that
|z — 2’| = maxi<i<k |2i — 2!| < 6.

Use the follo_wi_ng standard definitions. Denote

M, ={f €C:ws(d) < Mw(s), for some M > 0},



Denote 7-Alw an essential subset of H,,. That is,
Hy, = {f € C: Miw(8) < ws(8) < Maw(8), for some My, My > 0}.
The following classes are known as Hélder classes in functions theory:
Hy={feC:ws(d) < M4, for some M > 0} (v € (0,1])).

The following properties are known as classic properties:

LMy CHy Iy <.

2. Well known class F C C of continuous functions which have continuous
derivatives is a proper subclass of H;. The class H; is known also as Lipshitz
class.

3. Class H, — is a class of constant functions if v > 1.

More common class of functions

. 1
D:{fEC.%gr})wf(é)logg—O}

is called Deny class. Deny class contains Holder classes properly.
Let p>1,a=1/(e’™"), and

1/(In1/8)? if 0<z<a
wp(9) :{ 1/(Inl/a)? if x> a,

Class H,,, is a subclass of Deny class D.

Let © be some set of functions. We define the superposition of functions of
Q as a function computable by a leveled circuit with a constant number of 1
fan-out gates from the set 2.

Theorem 2 [unction f,, ,(z) over k > 4 variables belongs to the class Hfup
and is not represented by a following superposition of functions:

1. Superposition contains on the first level functions of t, t < k, variables
from the class H, .

2. Superposition contains arbitrary continuous functions from Hy on the re-
maining levels of superposition.

Below we present more general theorem 3. Theorem 2 is a corollary of it.
Let A', B® be some classes of continuous functions of ¢ and s variables. Define
Sp*[At, B®] class of continuous functions of k variables that can be represented
by a superposition of the following form

F(hl(ac},...,:v%),...,hs(xf,...,xf)),

where F(yy,...,ys) is a function from class B*, and {h;(z1,...,24) : 1 <i< s} C
Al

From the definition it holds that for modules of continuous w;(8), wq(4)
it holds that the function w(d) = wy(wy(d)) is a modules of continuous and

wi1?



Theorem 3 Let wi(8) be an increasing function such that MT@ does not in-

crease when & increase and

log %@ =0 (<log %)1_’5/’“) . (4)

Then for s > 1, M > 0,y € (0,1], w(d) = M7, w(d) = wy(wi(d))
function f, 4(z) belongs to HE\Sp*[HL, , HE, ).

The proof of general theorem 3 we present in the next section.

Proof of theorem 2. First. Function w,(4) satisfy the conditions for the

wy of theorem 3 for arbitrary constant ¢ > 0 and especially forc = 1—- %, t < k.

L
Next. Superposition of arbitrary functions from the class #; is again a function

from H;. From theorem 3 results the statement of theorem 2. O

4 The proof

The proof of the fact that f, , € 7?[5 results from the following property.
Property 4.1 For the function f, , it holds that

1. In each cube IE(b(v)) € I* function f,, gets its mazimum (minimum)
value w(§(n)) (—w(d(n))) in the center and value zero in the border of the

border of the cube IF(b(v)).

2. If in addition function w(§) is such that @ does not increase when §

increase then for modules of continuous wy of the function f, , it holds
that

(@) w(3(0)) < w05 (5()) < 2heo3()).
(b) for arbitrary 6 ws(0) < 2kw(0).

Proof. The proof use standard arguments from functions theory. It will be
presented in a complete paper. O

The proof of the second part of the theorem 3 use communication complexity
arguments and is based on computing communication complexity of discrete
approximations of the function f, ,.

Let f be an arbitrary continuous function defined on the cube [0, 1]¥. Denote

. g](kn}) = min{f(z) : 2 € I} = [L,2]¥}, and B(n) = max{f(z) : 2 € I} =

Definition 4.1 Let f(x1,...,2%) be a continuous function on the cube [0,1]F.
Call a discrete function df : X" x --- x X" — [a(n), B(n)] an e(n)-approzimati-
—_————
k
on of the function f(xq,...,xy), if for arbitrary v = (vy,...,vg) € X" X+ x X"

it holds that
|f(b(v)) — df (v)| < e(n).



We will use the standard one-way communication computation for com-
puting the boolean function g, € g. That is, two processors P, and P, ob-
tain inputs in accordance with the partition pat(n,k)of input v. First part,
w = (u1,...,ut), of input sequence v is known to P, and second part w =
(w1, ..., wg) of input v is known to P,.

The communication computation of a boolean function g, is performed in
accordance with a one-way protocol ¢ as follows. P, sends message m (binary
word) to P,,. Processor P, computes and outputs the value g, (u,w). The com-
munication complexity C'y of the communication protocol % for the partition
pat(n, k)of an inputs v = (vy,...,v;) is the length |m| of the message m.

The communication complexity C, (pat(n,k)) of a boolean function g, is
min{CYy, : 1 computes g, }.

Lemma 4.1 For the boolean function g, € g it holds that
Cy. (pat(n, k)) > k(n — 1) — log kn.

Proof. With the function g, (u, w) we associate a 28/(%#) x 2kd(k) commu-
nication matrix CM,, whose (u,w) entry is g, (u, w).

Using the fact that C,, (pat(n, k)) = [log nrow(CM,, )], where nrow(CM,,)
is the number of distinct rows of communication matrix CM,,, (see [Yao]) and
the fact that for the g, it holds that nrow(CM,, ) = 2k(nk) > Qk(]:n_l) we obtain

the statement of the lemma. O

We will use the same one-way communication computation for computing
a discrete function df(v). Let pat(n,k)be a partition of input v, v = (u, w).
Let P, and P, be processors which receive inputs according to pat(n, k). Let
¢(pat(n,k)) be a one-way communication protocol, which compute df (u, w).
The communication complexity Cy of the ¢(pat(n,k)) is the total number of
bits transmitted among processors P, and P,,.

The communication complexity Cys(pat(n,k)) of a discrete function df we
define as follows

Cus (pat(n, k)) = min{Cl : ¢(pat(n, k)) compute df (v)}.

Definition 4.2 Define a communication complexity Cy¢(pat(n,k),e(n)) of an
e(n)-approzimation of the function f as follows:

Cy(pat(n,k),e(n)) = min{Cy(pat(n, k)) : df (v) — e(n)-approzimation of
f}.

Lemma 4.2 For e(n) < w(d(n)), for arbitrary £(n)-approzimation df of the
function f, 4 it holds that

an (pat(nv k)) S Cf(pat(nv k)v g(n))
Proof. Suppose that

Cy.(pat(n, k)) > Cy(pat(n, k), e (n)). (5)



This means that there exists an £(n)-approximation df of the function f(z1,..., )
such that for 28/0%k) x 2kd(nk) communication matrices CM,, and CMy of func-
tions ¢, and df it holds that

nrow(CM,,) > nrow(CMgy).

From the last inequality it follows that there exist two inputs « and «’ such
that two rows row,, (u) and row,, (u') are different but two rows rowgs(u) and

rowgs(u') are equal. This means that there exists an input sequence w for which
it holds that

Let gn(u, w) =1, gn(v/, w) = 0. Let us denote v = (u, w), v' = (v/, w).Then
form the definition of the f,, we have:

Jug(b(v)) = w(d(n)), (8)
fug(b()) = —w(8(n)). (9)

From the definition of the e(n)-approximation of the f, , and the property (4.1)
it holds that

|fug (b)) = df (0] < e(n) < w(8(n)), (10)
|fug (b)) = df (V)| < e(n) < w(8(n)). (11)

From our conjunction that df (v) = df (v'), from (8), (9), (10), and (11) we have
that

20(5(n)) = [fug(b(v)) = fug(B())] <
< | fug (b(v)) = df (0)| 4 | fu,g (b(v1)) = df (v)| < 20 (3(n)).
The contradiction proofs that df (v) # df(v'). O
Let dh; : ¥" x ---x X" — Z,1<1<t, be a discrete functions and DF :
XX e x X" o Zt, here Z denote the set of real numbers, be a following

k
discrete function:

DE = F(dhy(v],...,v}),...,dhs(vi, ..., vF)),
where function F(y1,...,ys) is an arbitrary continuous function.

Lemma 4.3 For a discrete function DF(vy, ..., vg)it holds that

Cor(pat(n, ) < 3" Can, (pat (n, k)

1=1



Proof Communication protocol ¢*(pat(n, k)) for the function DF consists
of processors P and P}. Given an input u,w ¢*(pat(n,k)) simulate in paral-
lel protocols ¢y (pat(n, k)), ¢2(pat(n, k)),..., ¢s(pat(n, k)) which computes dhy,
dhy, ..., dhs, respectively. The processor P, on received a message from P and
the input w computes outputs y1,. .. ,ys of protocols ¢ (pat(n, k)), ¢2(pat(n, k)),
... ¢s(pat(n, k)) and then computes and outputs a value F'(y), y = (y1,...,Ys).
O

Lemma 4.4 Let functions wy,wq satisfy conditions of the theorem 3. Let for
the function w(8) = wa(w1(8)) the function f, 4(z1,...,25) can be represented
as a superposition of the form

F(hl(m},...,ml),...,hs(mf,...,mf)),

where F € H;, and {h;(x1,...,24):1<i<s}C ﬁil
Then there exists an €'(n) < w(d(n)), such that
Cy, ., (pat(n, k),e'(n)) = o(n).
Proof. We will denote f our function f, , in the proof of the theorem.
Lete = w; (6(n)) / log m Consider arbitrary function h € {h1, ..., hs}.
Let a(n) = min{h(z) : 2 € I} = [L, 2]}, and B(n) = max{h(z) : v € I} =
(121 Let

Ry = {0 s 0s = a(n) +e(n)i, i € {0,1,..., | 2=t L {5(n)}.

Due to selection of the value ¢(n), from the condition (4) of the theorem 3,

and from the equality é(n) = @ 1

En We have that:

1—t/k)

|Remy| = 2°0° (12)

Or |R.my| < 2". This means that there exists an e(n)-approximator dh of
continuous function A,

dh : X" X oo X X" = R
————

t

For the prove of the statement of the lemma we show that the discrete
function

DF(vi,...,v1) = F(dhy(v],...,v}),...,dhs(v{,... vf))

is the ¢’(n)-approximation of the function f and

Con(pat(n, ) = o(n). (13

Let v = (vy,...,v5) € X" X -+ X X", First we prove that for some £'(n) <
w(d) it holds that

|f(b(v))_DF(,U17"'7’Uk)| Sgl(n)' (14)



Denote z = (z1,...,2%) = b(v) = (a(v1),...,a(vy)). Due to the fact that
for each ¢ € {1,2,...,s} function dh; is £(n)-approximation of the continuous
function h; it holds that

|hi(zh, ... 2h) — dhi(vi, ..., v))| < e(n).

As function w(5) decreases when & decreases then we have
|F(hl(x},...,m}),...,hs(mi,...,mg)) -
F(dhl(vh N '7”7})? . '7dhs(vf7 . avf)” S

M,
T (e (6(n))) = € ().
(o8 i)

From some ng for n > ng it holds that

Swr(e(n)) <

g'(n) < w(d(n)).

Last inequality proves (14).
Consider now an arbitrary discrete function dh from {dhq, ..., dhs}.
It is sufficient to prove that

Can(pat(n, k)) = o(n) (15)

Then using lemma 4.3 the (13) results.
With the function dh we associate a 20/(%k) x 2t4(7k) communication matrix
CMgp,(n) whose (u, w) entry is dh(u, w).

Can(pat(n, k),e(n)) = [log nrow(CMyp(n))], (16)

2td(n,k)
} . (17)

From the definition of the partition pat(n, k) we have that I(n, k) = n —
d(n.k), d(n,k) = [%] Using (17), (12) for the equality (16) we obtain
inequality (15). O

and
nrow(CMgp(n)) < min {Qﬂ(”’k),

Re(n)

Finally combining statements of lemmas 4.4, 4.2, and 4.1 we obtain the
proof of the theorem 3.

5 Concluding remarks

The communication technique in this paper gives a clear information explana-
tion of the statements of theorems 2 and 3. That is, functions A from the class
7—231 which satisfies the condition (4) of the theorem 3 can be approximated
by discrete functions dh with small communication complexity o(n) (see (15)).
Such discrete functions dh on the first level of superposition “can mix” some
different inputs during transformation and no functions on the remaining levels

10



can reconstruct this information. Note that in contradiction functions A;; from
formula (1) are from the Hélder class H. = Uys0#H,. These functions do not
“lost the information of inputs”. They just reorganizing these information.

We conclude with open problems. Whether using discrete approximation
together with communication technique is possible to present an explicit func-
tion

(i) from H* which could not be presented by a superposition of functions
from HY if ¢ < k;

(i) from ]-"Zf which could not be represented by a superposition of functions

t ek S 19
from fq,lfp >4

Acknowledgment

We are grateful to Marek Karpinski for helpful discussions on the subject of
the paper.

References

[Ab] F. Ablayev, Communication method of the analyses of superposition of continuous
functions, in Proceedings of the international conference ”Algebra and Analyses
part II. Kazan, 1994, 5-7 (in Russian). See also F. Ablayev, Communication com-
plexity of probabilistic computations and some its applications, Thesis of doctor
of science dissertation, Moscow State University, 1995, (in Russian).

[Ar] V. Arnold, On functions of Three Variables, Dokladi Akademii Nauk, 114, 4,
(1957), 679-681.

[Hi] D. Hilbert, Mathematische Probleme, Nachr. Akad. Wiss. Gottingen (1900) 253-
297; Gesammelete Abhandlungen, Bd. 3 (1935), 290-329.

[KaRaWi] M. Karchmer, R. Raz, and A. Wigderson, Super-logarithmic Depth Lower
Bounds Via the Direct Sum in Communication Complexity, Computational Com-

plezity, 5, (1995), 191-204.

[Ko] A. Kolmogorov, On Representation of Continuous Functions of Several Variables
by a superposition of Continuous Functions of one Variable and Sum Operation.

Dokladi Akademii Nauk, 114, 5, (1957), 953-956.

[KuNi] E. Kushilevitz and N. Nisan, Communication complexity, Cambridge Univer-
sity Press, 1997.

[Lo] G. Lorenz, Metric Entropy, Widths and Superpositions Functions, Amer. Math.
Monthly 69, 6, (1962), 469-485.

[Ma] S. Marchenkov, On One Method of Analysis of superpositions of Continuous
Functions, Problemi Kibernetici, 37, (1980), 5-17.

[Vi] A. Vitushkin, On Representation of Functions by Means of Superpositions and
Related Topics, L’Enseignement mathematique, 23, fasc.3-4, (1977), 255-320.

[Yao] A. C. Yao, Some Complexity Questions Related to Distributive Computing, in
Proc. of the 11th Annual ACM Symposium on the Theory of Computing, (1979),
209-213.

11

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’




