
ON THE DECOMPOSITION OF LATTICES

BORIS HEMKEMEIER AND FRANK VALLENTIN

ABSTRACT. A lattice in euclidean space which is an orthogonal sum of nontrivial sub-
lattices is called decomposable. We present an algorithm to construct a lattice’s decom-
position into indecomposable sublattices. Similar methods are used to prove a covering
theorem for generating systems of lattices and to speed up variations of the LLL algorithm
for the computation of lattice bases from large generating systems.

1. INTRODUCTION

Let
�

be a lattice on euclidean � -dimensional space �������	�
�������� i.e.
�����������

����� �������
for a basis � � � �� � � !� ���#" of � � � is called integral if � ��$ � �&% �(' � holds for all)�*,+ �.- * � �

Definition 1.1. A nontrivial lattice
�

on � is called decomposable if there exist (proper)
sublattices

�/� � �10324�
such that

�5�6�/��78�10
and � ��� � �10 � �69 � otherwise indecompos-

able.

Throughout this paper we denote an inner direct, orthogonal sum with
7 � The norm of

a shortest nonzero lattice vector in
�

is called :<;>= � �
For each nontrivial lattice

�
there exists a decomposition

�6�?���7 ����� 7,��@ into in-
decomposable sublattices

� $ � This decomposition is unique up to the order of summands.
The first proof of this fact is due to Eichler [Eic52], later M. Kneser gave a constructive,
much simpler proof [Kne54]. He used an Erathostenes’ sieve construction to find generat-
ing systems for these sublattices

� $ �
In section 2 we summarize the basic steps to illustrate the geometric concepts of his idea.

In section 3 we present the improved Algorithm 1 to solve the decomposition problem.
The original method has a quadratic running time with respect to the size of a complete
generating system, ours is linear.

A very common problem is the construction of a lattice basis from a generating system.
There are some well known methods to solve this task like the computation of the Hermite
Normal Form, the Buchmann-Pohst-LLL [BP89] or the MLLL [Poh87], Pohst’s modifica-
tion of the basis reduction algorithm of Lenstra, Lenstra, and Lovász [LLL82]. But also the
fast MLLL will slow down if the generating system is large (e.g. see Figure 1, p. 8). We
observed that even in large generating system there is often only a small number of vectors
needed to span the lattice. We use the methods from Section 3 to prove Theorem 3.5: In
every (finite) generating system of a lattice with vectors not longer than A we will find at
most � �

�0�BDCFE 0 �G�IHJ�LKM �
�
��'ON<�G� B>CPE

�
KM � vectors which generate the lattice. It is possible

to identify such a vector by inspection of the result of a single matrix vector multiplication.
Thus we get a significantly speed up of algorithms which construct a lattice basis if we
restrict their input to these vectors. More exactly: let an integral � -dimensional lattice

�
be generated by Q vectors of norm not larger than A � Then Algorithm 2 constructs a lattice
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basis of
�

in at most N<� � BDCFE �G�!A �� �G� � � � � BDCFE A � � Q��
0
� 2 N<� � � BDCFE 0 � �!A(� � Q��

0
�

arithmetic operations (Theorem 4.1). This is better than the worst-case bound of at most
N<�&�G� � Q�� � BDCFE A arithmetic operations for the Buchmann-Pohst-LLL cited above. Also
simple iteration methods which need at most N<� Q/ � � � � � � B>CPE A(�&� arithmetic operations
are not superior.

2. KNESER’S METHOD

Definition 2.1. A vector � ' ���39
is called decomposable if there are � �	� ' �

with
�
 � 
�
��
�
 � 
�
���
�
 � 
�
 and � � � � � � otherwise indecomposable.

Let A '�� be such that ��� � ��� � �� � � !����� "3� ��� ' ��� 9 
�
�
 � 
�
 * A " is a generating
system of

� � We call such a set a complete generating system. Let � be the set of inde-
composable vectors in � � We define the orthogonality graph  � �!� �#" ���$" � �����#��% " 
� �	% '&� and �'� �	% �)(��9 " � Let  $ � �*� $ ��" $ ��� )
* +1*,+

be all connected components of  
and

��$ �.- � $0/	1 �
Theorem 2.2 ([Kne54]). All

��$
are indecomposable,

�8�4� � 7 ����� 7O� @ � and this decom-
position is unique up to the order of summands.

Proof. Assume � '2� �3- � / 1 and

�
 � 
�
 be minimal with this property. There are � �	�O'2�

with

�
 � 
�
��4
�
 � 
�
��4
�
 � 
�
 and � � � � � � At least one of them is not in

- � / 1 and we have a
contradiction to the minimality of


�
 � 
�
 � This proves
- � / 1 �5- � / 1 and thus

� ��6 @$�7 � � $ �
�*� $ �#� % � ��9

for all
+ (� - implies � ��$ � � % � ��9 � Then it follows from the definiteness of

���
���� that
�8�98 @$�7 � ��$ �

For a fixed
+

let
�;: � �<: :>= �1$ � �?: (� 9

be sublattices such that
��$ � �?: 7 �<: : � For

each � '5� $ it holds either � ' �?:
or �6' �?: : � With � �?:�@ � $ � �?: :�@ � $ � � 9

we have�?:A@ � $ � � $ because  $ is connected. This shows
�;: ���1$

and that
��$

is indecomposable.
From �*�#�#� % � � 9

for all -B(� +
follows that

��$
is the unique indecomposable sublattice of�

containing � � thus the given decomposition is unique up to the order of summands.

We give a sketch of Kneser’s simple algorithm to construct  � �!� �#" �;�
Construct � : For each pair � �	% 'C� do: If � � % 'D� and


�
 � � % 
�
�� :FEHG � 
�
 � 
�
 � 
�
 % 
�
 "
then mark � � % as decomposable. Let � be the set of all unmarked vectors.

Construct " : For each pair � �	% '&� do: If �'� �	% �)(�49
then add ��� �	% " to " �

To mark all the decomposable vectors in � is an expensive task because we have to
inspect I �0KJ pairs of vectors. This method is infeasable for large Q �
Remark 2.3. In the original definition [Kne54] a vector is called indecomposable if it is
not a sum of nonzero orthogonal lattice vectors. This notion is completely analogous to
Definition 1.1 but slightly weaker than ours. In generic lattices all nonzero lattice vectors
are indecomposable in the latter meaning, for example

�8�L- � ) � 9 � ���'M � ) � /K1 with M 0ON'�P �
In particular every nonzero vector of a one-dimensional lattice is indecomposable. Our
next lemma shows that with respect to Definition 2.1 there is only a finite number of inde-
composable vectors.

Lemma 2.4. Let
�

be a lattice on the � -dimensional euclidean space � with covering
radius Q � Then a vector � ' � is decomposable if


�
 � 
�
R��S Q � In particular the number of
indecomposable vectors of

�
is finite.

Proof. Let Q be the covering radius of
� � i.e. Q � :FEAGRT�UWV :<;>=RX�U�Y 
�
 � �2� 
�
 � Let � ' �

be a lattice vector with

�
 � 
�
��,S Q � There exists a % ' � with


�
 %,� �0 � 
�
 * Q � Then holds
�
 % 
�
 * 
�
 %,� �0 � 
�
 � 
�
 �0 � 
�
 * Q � �0 
�
 � 
�
Z4
�
 � 
�
 and

�
 %,�C� 
�
 * 
�
 %,� �0 � 
�
 � 
�
 � �0 � 
�
 *
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Q � �0 
�
 � 
�
 Z�
�
 � 
�
 � Thus � is decomposable because it is the sum of the strict shorter lattice
vectors % and �<� % � The proof will be completed by the fact that there are only finitely
many vectors of norm smaller than

S Q �
3. AN IMPROVED ALGORITHM

The main observation is that it is not necessary to determine all decomposable vectors.
It suffices to delete all decomposable vectors from � which are a sum of indecomposable
vectors from more than one

� $ � We show that we can determine such a vector with a single
matrix vector multiplication. Additionally we need to update our stepwise generated

� $
’s

but we will show that these updates are cheap and rarely needed with respect to Q �
Theorem 3.1. Let

�
be a � -dimensional lattice and let � � � ��� � �� � � !��� � " � ��� ' �D��9 

�
 � 
�
 * A " for a A ' � such that � is a generating system of

� � Then Algorithm 1
computes the decomposition of

�
into indecomposable sublattices

� $ =,� � )�*8+�*�+ �

Algorithm 1 Decomposition of a lattice
�

Input: A '&� and a generating system � � ��� ' ����9 
 
�
 � 
�
 * A " of
� �

Output: Indecomposable sublattices
� $

s.t.
�8� �/�I7 ����� 7 ��@ �

// For a
��$

let � $ �P��� - �1$ /��
be the orthogonal projection on the vectorspace spanned

by it.
// 1. Initialize.
Choose � '&� with minimal


�
 � 
�
 .��� � � ��� " , �	� )
,
��
 � - � /	1

// 2. Join vectors of � into indecomposable sublattices.
while � (�� do

Choose � '&� with minimal

�
 � 
�
 .��� � � ��� " .

if �C(' �/�I7 ����� 7 � 
 then
// � is indecomposable.� � � + ' � ) �� � � ��� " 
 � $ �*� �3(� 9 "

.�� � � � � 8 $ U�� � $
// Reorder list of lattices

� $
� �/� �� � � � � 
���� � � " � � � $ 
 + N' � " � � 
���� � � � � � �� ���	���(� 
 � 
 � )

end if
end while

Proof. We will show that the sublattices
�/$

,
+ � ) �� � � ��� , are indecomposable and pair-

wise orthogonal. Further we have
� � - � /K1 � 6 
$�7 � �1$ in all loops, in particular is� � 6 
$�7 � ��$ after all � are processed. We prove now the loop invariance of these proper-

ties.
Assume that indecomposable, orthogonal sublattices

�� �� � � � � 
 are already constructed
and let � ',� be a vector with smallest norm. If � ' 8


$�7 � � $ we skip � � otherwise we
add it. And so is

�8�.- � / 1 ��6

$�7 � � $ at the end of each loop.

Let now � N
' 8 
$�7 � � $ � Then � is indecomposable. In particular the orthogonal sum� � �*�(� � $ �*� �&� � � $ �'�L��� )(*�+ * � forces that either � $ �*� � � 9

or � $ �'�L� N' � $ � So there
is no nontrivial projection of � on

- � $ / �
which is in

� $ �
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Set
� � � - '?� ) �� � � ��� " 
 � % �'�L��(� 9L" � Choose vectors � % '�� % ��-4' � such that

�*� % �	�L� (� 9 � � The star ����� % ��� "1" % U�� =  is connected and thus
� � �46 % U�� �I% is in-

decomposable. Further
6 $ U������ � $ 7 � 6 % U�� � % � � �L� is an orthogonal decomposition

because � $ �'�L� ��9
for

+ N' � �
This proves the correctness of algorithm 1.

3.1. Data structures and analysis. We represent vectors as tuples of real numbers re-
gardless of the machine precision or (possible) rational approximation. We count addition,
multiplication and comparison of real numbers as a single arithmetic operation.

We use an ordered list as data structure for � �
A crucial rôle in this algorithm is played by the orthogonal sum

� � 7 ����� 7 � 
 � Now
we describe these data structures precomputed by induction and the update mechanism
when processing � � Each

��$
is described by a lattice basis � $ � �� � � !�	� $ @�� � Further we have a

vector space basis % � �� � � �	% � ��� of the orthogonal complement
- � � �� � � � � 
H/	� � of

8 $ �1$
with 
 � 6 $ + $ (possibly empty). We write all these vectors as column vectors and set� � I*� � �  � � � 
 @� % �  � � % � ��� J

� �
�

For a � ' � it holds � ' 8 
$�7 � ��$ iff all the first 
 coefficients of
� � are in

�
and

the last �O��
 coefficients are zero. So we can lookup a vector using
S � 0 � � arithmetic

operations. If � ' 8

$�7 � � $ we can skip � � Otherwise we have to compute

��
with its lattice

basis.
�

is a diagonal matrix with the blocks I � $ �  � � � $ @ � J
� �

on its diagonal. For each
of the first 
 coefficients of

� � which is not in
�

we lookup its corresponding block (say - )
and join - into

� � At last we have to compute a basis of
�� � reorder the decomposition and

update
� �

We suggest to compute a basis of
��

with a variation (e.g. the algorithms described in
[Poh87] or [BP89], see section 4 for a discussion of these possibilities) of the well known
LLL algorithm [LLL82].

��
has a generating system ��� %&$ 
 - ' � � ) *,+�*�+ % "�� ��� " of at

most � � )
vectors. Now we reorder the list of lattices

� $
such that they are indexed by

)
up to � � 
 � 
 � ) � At the end we update A.

The idea of this algorithm is based on the fact that almost all vectors � 'C� are already
in
�/��7 ����� 78� 
 � The expensive construction of

��
is rarely needed. We use Minkowski’s

second theorem [Min96] to prove a worst-case boundary. At first we recall some notions
from the geometry of numbers.

We define the determinant of
�

as ����� � � � �������&� � �  � � ��� ���  � � �  � � ��� �&� for an arbitrary
basis � � � �� � � � � � " of

� � This is an invariant of the lattice and in particular independent
from the choice of the basis. For

)
* � * � we define the � -th successive minimum � 
 � � �
as follows. There are linear independent � � �� � � �	� 
 ' � with


�
 � $ 
�
 * � 
 � � � and � 
 � � �
is minimal with this property.

Theorem 3.2. Let
�

be a lattice on the � -dimensional euclidean space � with successive
minima � � � � ���� � � ��� � � � � , and A � � ���8',� 
 
�
 � 
�
 * ) "

the � -dimensional unit ball.
Then, S �

�IH �����
� * � � � � �  �����  �� � � � �  �� CFB A � * S � ����� � �(1)

Proposition 3.3. Let
�

be a lattice on the � -dimensional euclidean space �1��� �
its

minimum, and
�?:3= �

a sublattice of rank � generated by vectors of norm at most A �
Assume further that there is a finite chain of sublattices

� $ = �
such that� : ����� 2  � � 2 �

�
�4�

(2)

Then
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i) � *
�0 � BDCFE 0 K ������ Y � B>CPE 0 � � � �
	0 ���� � � � ��� ���

ii) � *
�0 � BDCFE 0

0 � ����� Y��M � � BDCFE 0 � � � ��	0 � �� � � � ��� � �
iii) � *

�0�BDCFE 0 � �IHD� KM �
�
� �

Proof. i) We set Q $ ��� � � � $�� for the index of
� $

in
� � ) *5+1* � � With the determinant-

index formula Q
0$ ��� � � �1$ � 0 � ����� Y ������ Y we have� ����� � : N ����� �8��� � � � : � � Q � �  � � � Q �

��� � � � � � ) �
Q $ � �  � � $ � � � � $�� � Q $ implies that Q $ � � divides Q $ � So the maximal number of lattices
in (2) is bounded by the maximal possible length of a divisor chain of

� ����� � : N ����� � �
So we have an upper bound of B>CPE 0 � ����� � : N ����� � for � �

With Theorem 3.2 we have

����� � : * �IHS � � CFB A �  � � � � : �  �����  �� � � � : � * �IHS � � CFB A � A
�

and further

Q
0 � ��� � � � : � 0 � ����� �?:

����� �
* �IH� CPB A �S � ����� �8A

� �
Finally it follows with � CPB A � � � � ��� � � � ��� that � * BDCFE 0 � ����� � : N ����� � * �0 � B>CPE 0 K ������ Y �B>CPE 0 � � � �
	0 � �� � � � ��� � �

ii) Similar to i) but using the left inequality in (1).
iii) Similar to i) and ii) but using both inequalities in (1).

Corollary 3.4. Let
�

be a lattice with minimum � on the � -dimensional euclidean space
�1� and sublattices

� $ % = � � 9 * - *�� $
of rank

+
generated by vectors of norm smaller

than A such that � � � 2,� � � 2,� �	0 2  � � 2,���"! # � � � 2 �1�$# � ��� �(3)

Then the length
6 �$�7%� � $ of this chain is bounded by � �

�01B>CPE 0 � �IHD� KM �
�
� �

Proof. Let % $ a vector such that
� $ � � ! # ��&
' � � % $ � � $ �

and set ( �5- % � �� � � �	% � / 1 � We
add ( to each lattice in (3) and examine the new chain of lattices which are all of rank �

�)( � � � � �I� ( = ����� = � �*# � � ( � � � � �(4)

It is easy to verify that the following holds

i)
� $ % � ( 25� $+! % � ��� ( for all

9 *,+1* � and - Z � $ �
ii)

� $ � � ! # ��&
' � ( ��� $ �I� ( for all
9 Z +�* � �

This implies that in chain (4) equality holds in exactly � positions. We apply Propo-
sition 3.3 iii) to (4) and see that the chain (3) has not more than � �

�0 B>CPE 0 �G�IHJ� KM �
�
�

lattices.

We summarize this in the following “covering theorem”.

Theorem 3.5. Let
�

be a lattice with minimum � on the � -dimensional euclidean space
� � Let � 2 �

be a generating set for
�

of vectors all not longer than A � Then there is a
subset � : = � which has not more than � �

�0 BDCFE 0 �G�IHJ� KM �
�
� elements with

- � : /	1 � � �
Proof. For � � ��� � �� � � ����� " we set

� $ � - � � �� � � �	� $ / 1 � 9 * + * � � Now we define
with � :1� ��� $ '�� 
 � $ � � 2 � $ " � Then

- � : / 1 � �
and the stated bound follows from

Corollary 3.4.
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Corollary 3.6. The number of update operations of Algorithm 1 is in N<�G� BDCFE
�
KM � �

Proof. We apply Stirling’s formula to Corollary 3.4.

For our next theorem we heavily use the properties of LLL-reduced lattice bases.

Lemma 3.7. Let
�

be an integral lattice on the � -dimensional euclidean space � gener-
ated by � � ) vectors, all not longer than � A � A LLL-reduced basis � � � �� � � � ��� " of

�
can

be computed in N<� � � BDCFE A � arithmetic operations and in particular for each
) * - * �

holds 
�
 �&% 
�
 * S � &
'�  � % � � � * S �
&
'� A �

Proof. With [BP89] Theorem 3.2. we can compute a lattice basis in at most N<��� � �
� � � ) ��� � BDCFE A � � N<� � � B>CPE A(� arithmetic operations. This basis is LLL-reduced. Thus
[LLL82] Proposition 1.12 gives us the stated bounds for the


�
 ��% 
�
 �
We are now ready to prove

Theorem 3.8. Let
�

be an integral � -dimensional lattice, and A '4� such that � � �
��� � �� � � ��� � " � ��� ' � � 9 
 
�
 � 
�
 * A " is a generating system of

� � Then we can compute
an orthogonal decomposition

� � 8 @$�7 � �1$ of
�

into indecomposable sublattices
�/$ = �

in at most N<�G� � B>CPE 0 A � Q��
0
� arithmetic operations.

Proof. We analyze the running time of algorithm 1. We use the data structures described
in section 3.1.

With radix-sort ([Knu74]) we sort all vectors of � with respect to their norm, short-
est first, and put them into an ordered list in N<��Q�� � operations. Now let � �&� �� � � ��� 
 @ � �% � �� � � !�	% � ��� and

�
be precomputed by induction. We pick a � of minimal norm from� and test the first � � 
 coefficients of

� � to be in
� � The overall cost for all �6'5�

is N<� Q��
0
� � Corollary 3.6 and :<;>= � � )

imply that the number of update steps is at
most N<� � B>CPE � �!A(��� � In each update step we compute a lattice basis from at most � � )
vectors. These vectors are either vectors of � or a result from a previous LLL, in par-
ticular their norm is bounded by

S � &
'� � � � � � * S � &
'� A � Using Lemma 3.7 this costs
N<� � � B>CPE � S �

&
'� A(�&� � N<�G� � � � � BDCFE A � arithmetic operations. The update of
�

can be
done in N<� ����� arithmetic operations using Gauss transformations (cf. e.g. [GL96]). This
results in an overall running time of at most N<� � � BDCFE �G�!A � � � � BDCFE �G�!A � B>CPE A � opera-
tions. For brevity we state here the slightly weaker bound of N<�G� � BDCFE

0
�G�!A � � Q��

0
� �

Remark 3.9. Conway and Sloane found a lattice with a generating system of minmal vec-
tors but but with no basis of minimal vectors, see [CS95]. Thus in general we can not avoid
long vectors in lattice bases. However the LLL algorithm finds usually lattice bases much
faster and better than stated in Lemma 3.7.

4. A MODFICATION OF THE MLLL FOR LARGE GENERATING SYSTEMS

A much more common problem than performing an orthogonal decomposition of lat-
tices is the construction of a lattice basis from a generating system. There are some well
known algorithms to do this. A LLL-reduced basis of a lattice with minimum � can
be computed from a generating system � � ��� � �� � � !�	� � " � 
�
 � $ 
�
 0 * A with (naı̈ve) us-
age of Buchmann-Pohst’s algorithm in at most N<�&�G� � Q�� � BDCFE KM � arithmetic operations,
see [BP89]. This is not feasible for large Q � Other possibilities are Pohst’s MLLL algo-
rithm [Poh87] and the computation of the Hermite Normal Form, but to the best of the
authors’ knowledge their running time has not be determined carefully yet. However, for
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large Q all these algorithms slow down and one shouldn’t use them without modifications
on complete � � see Section 5 for examples. We can simplify Algorithm 1 to compute a
lattice basis instead of a decomposition. The resulting Algorithm 2 uses a subalgorithm
construct basis to compute a lattice basis from a generating system of at most � � )
vectors. To prove Theorem 4.1 we choose Buchmann and Pohst’s algorithm ([BP89]) but
in practice we prefer the MLLL algorithm ([Poh87]) because it is a widely implemented
and well performing algorithm. However we suggest to use some of the well known im-
provements of this algorithm if quality of the reduced basis is important (cf. e.g. [SE91]).

Algorithm 2 Computing a lattice basis from a generating system

Input: A generating sytem � � ��� � �� � � �	��� " of a lattice
� 2 � with


�
 � $ 
�
 0 * A �
Output: A lattice basis � of

� �
// 1. Initialize.
Choose

9 (� � 'D�I�#� � � � ��� " ��� � ��� "
// 2. Add vectors vectors of � successively.
while � (�� do

Choose � '&� � and set ��� � � ��� " .
if �C(' - � /�1 then

� � construct basis ��� � ��� " �
end if

end while

Theorem 4.1. Let
�

be an integral lattice on the � -dimensional euclidean space, gener-
ated by Q vectors not larger than A 'D� � Then Algorithm 2 computes a LLL-reduced basis
of
�

in at most N<� � � BDCFE
0
�G�!A � � Q��

0
� arithmetic operations.

Proof. We use the same data structures described in Section 3.1 and apply Buchmann and
Pohst’s method (see Lemma 3.7) for the subalgorithm construct basis. It is clear
that Algorithm 2 computes an LLL-reduced basis of

� � The proof of it’s running time is
completely analogous to the proof of Theorem 3.8.

5. EXPERIMENTAL RESULTS

Lenstra, Lenstra, and Lovász proved in [LLL82] an upper bound for the running time
of their algorithm of N<�G� � BDCFE A � arithmetic operations with the notations of section 4.
Experiments shows that this bound is pessimistc. This holds for variations of the LLL
like the MLLL, too. However, a large number of input vectors slow down the MLLL. The
idea to generate successively bases from at most � � ) generators is not a competetive im-
provement. We call this algorithm incremental MLLL which is only a simplistic version of
Algorithm 2, Figure 1 shows that the running times of the plain MLLL and the incremental
MLLL are very similar. The situation changes when we use algorithm 2.

Our samples are lattices generated by vectors with pseudo-random integer coefficients
of absolute value smaller than � � This implies in particular A * ���

0 � It is obvious that
the number of update steps which require an expensive MLLL is small with respect to Q �
A typical determinant of the first lattice of full rank is very large, e.g. for � ;>: � S 9 ��� �
) 9F9F9

we have determinants with two hundred binary digits. The final lattice has a very
small determinant, often it is unimodular. It has not escaped our notice that the determinant
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FIGURE 1. Running time in dimension
S 9

for � � ) 9F9
and � � ) 9P9F9

of a random integer lattices has usually a large prime divisor. Thus the number of update
steps in Algorithm 2 is much smaller than stated in Corollary 3.6.

All computations are done in exact rational arithmetic using Victor Shoup’s NTL li-
brary

�
and his implementation of the MLLL.
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