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INCREMENTAL ALGORITHMS FOR LATTICE PROBLEMS

BORIS HEMKEMEIER AND FRANK VALLENTIN

ABSTRACT. In this short note we give incremental algorithms for thiofeing lattice
problems: finding a basis of a lattice, computing the sudeessinima, and determining
the orthogonal decomposition. We prove an upper bound éontimber of update steps for
every insertion order. For the determination of the orttnadecomposition we efficiently
implement an argument due to Kneser.

1. INTRODUCTION

Many problems in computational geometry permit a naturahgatation by an incre-
mental algorithm. Incremental algorithms process only alpiect at a time and insert it
into a data structure. Most incremental algorithms follawadbstract framework: After
processing a new object it is inserted into a data structtirgfirst located where the data
structure has to be changdddalization step). Then the data structure has to be updated
locally (update step) in order to perform the insertion of a new object.

Here we apply the incremental construction paradigm to éségh of lattice algorithms.
Letwvy,..., v, be vectors which span a Euclidean sp&tand letL = Zvy + - - - + Zw.,
be the lattice which is generated by these vectors. Suppaseve want to compute a
property of L. First, we compute the property of the lattife = Zv,. Then we check
whetherv, € L, (localization step). e € L1, then nothing has to be done.f ¢ L,
then we compute the property of the lattifte = L, + Zvy (update step), etc. In every
update step we compute a lattice basis for the new laftjeehich is computationally more
expensive than the localization step. Hence, this algoiithiramework is attractive if the
number of update steps is small.

After fixing notation in Section 2 we state an upper boundterrtumber of update steps
for every insertion order in Section 3. In Section 4 we givgoathms for the following
lattice problems: an algorithm which finds a basis of a latfjiven by a set of generators,
an algorithm for the computation of the successive minimalattice given by a complete
set of generators (a generating Seof a lattice L is calledcomplete if S contains every
vectorv € L\ {0} with |jv]] < maxyeg ||w|]), and an algorithm for determining the
orthogonal decomposition of a lattice given by a completebgenerators.

These considerations result in a simple meta algorithm witictical impact. 1t of-
fers a significant performance benefit compared with sttiigliard implementations for
classical algorithms. For experimental results see thenieal report [6]. This note is a
concise version of this report where we in particular emdegfe incremental algorithmic
framework.
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2. NOTATION

Let E be ad-dimensional Euclidean space. Its inner product is denoydd, -) and the
associated norm by- || = 4/(+, ). Thed-dimensional unit ball is denoted g,. A point
setL C F is called alattice if there exist linearly independent vectdrg ...,b, € E
such thatl, = Zby + --- + Zb,. Then,(by,...,b,) is called abasis of L andn is called
therank of L. Thevolume of L is given byvol L = |det(b1,...,b,)|. AlatticeL’ C E
is called asublattice of L if L’ C L. If the rank of L’ and L is d, then the index of.’ in
Lis[L : L'l = vol L' / vol L. Thek-th successive minima A, (L) is the minimum value\
such that\ B, contains at least linearly independent lattice points &f We will need the
following theorem of Minkowski (see e.g. [5]).

Theorem 2.1. Let L C E be a lattice of rankd. Then
2d
G VolL < AL(L)A2(L) - Ag(L) vol Bq < 2¢vol L.

3. CHAINS OF SUBLATTICES

We want to construct a lattick, which is generated by the vectars, ..., v,,, incre-
mentally. Update steps are necessawy ¥ Zvy + - - - + Zv;—1, Wherei = 1,...,m. The
next theorem gives an upper bound for the number of update.ste

Theorem 3.1. Let v4,...,v,, € E be vectors which spa® and which generate the
lattice L. DefineB = max ||v;||. Consider the chain of lattices

=1,...,

Q) Zvy C Zviy +Zwy C ... C Zwvy + Zwy + -+ + Zoy,.
Then, in (1) inequality holds at mogt+ log, (d!(B/A1(L))%) times.

Proof. First we transform (1) into a new chain of lattices which alleo&full rank d.
Choose indiced < 43 < ip < ... < ig < m such that for allj € {1,...,d} the
rank of Zv;, + -+ + Zv;, is j andi; is minimal with this property. We define the lattice
L' = Zw;, + - -+ + Zwv;, and consider the transformed chain

2 L'=7Zv +L' CZvy +Zvy + L' C... C Zvy + Zvy + -+ + Zvy, + L' = L.

The number of inequalities in (1) is at mogtplus the number of inequalities in the
chain (2). Defindl, = Zvy + - -- + Zv; + L', wherei = 1, ..., m. Since we have
vol I/ /vol L = [L : '] = [ [[L : Li_,],
=2
the number of inequalities in the chain (2) is at most the remdf prime factors of
vol L' / vol L which is at mostlog,(vol L’/ vol L). To finish the proof we apply Theo-
rem 2.1 to the quotientol L’/ vol L and use the facty(L’) < B. O

An immediate consequence of Theorem 3.1 is an upper bounkdaize of a minimal
generating set.

Corollary 3.2. Let L C E be a lattice of full rankd. Let.S C L be a finite generating
set of L. Then there exists a subsgt C S which generated, of size at mostd +
log,(d!(B/A1(L))%) whereB = max,¢g ||v||.

Note that having long vectors in a lattice basis is not avaliglan general: Conway
and Sloane [3] constructed a lattice in dimensidrwhich is generated by i34 shortest
vectors but in which no set dfl shortest vectors forms a basis.
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4. ALGORITHMS

In this section we propose algorithms for lattice problentéciv take advantage of the
incremental construction. The first two algorithms for cautipg a lattice basis and for
computing the successive minima are straightforward. R®@icbmputation of the unique
orthogonal decomposition we develop new ideas based orgamant of Kneser.

4.1. Lattice Basis. For computing a lattice basis fromlarge set of generators we use
an algorithm for computing a lattice basis fronsraall set of generators as a subroutine.
Such an algorithm is the LLL algorithm for linearly depentieectors of Pohst (see e.g.
[2], Chapter 2.6.4). Buchmann and Pohst ([1]) showed forgi@ant of) this algorithm
that the number of needed arithmetic operatior3(ig + m)* log B). For the incremental
algorithm the number of arithmetic operations is lineamin

Algorithm 4.1 Lattice Basis

Input: Generating system, ..., v, € E of the latticeL.
Output: Basisby,...,b, of L.

n+ 0, L « {0}.

for i =1tom do

if v; & L then
Use a subroutine to getand a basis,, ..., b, of L + Zuv;.
L+ 7Zby +---+ Zb,.
end if
end for

4.2. Successive Minima.For computing the successive minima of a lattice our algorit
is similar to Algorithm 4.1. However there are a few impottdifferences: We need a
complete generating system (see Section 1), the insenttsr & no longer arbitrary, and
in every update step it is enough to compute a basis of a sobgpestead of a lattice).
Hence the number of update steps equals the rank of theelattic

Algorithm 4.2 Successive Minima

Input: Complete generating syste$h= {v € L\{0} : |jv|| < B} of L.
Output: Successive minimay (L), ..., A, (L) of L.
Choosev € S with minimal norm,S « S\{v}.

n+ 1, U < Rou, A\ (L) < ||v]|
while S # () do
Choosey € S with minimal norm,S « S\{v}.
if v ¢ Lthen
U<+ U+ Ru.
if dim U > n then
n<n+1, A (L) + |Jv]].
end if
end if
end while

4.3. Orthogonal decomposition. A lattice is calleddecomposable if it can be written as
an orthogonal direct sum of two non trivial sublattices. Higc ([4]) proved that every
lattice can be decomposed into indecomposable sublatticies are pairwise orthogonal
and that the decomposition is unique up to order of summaialg7] Kneser gave a
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constructive and much simpler proof. In this section we show one can efficiently
implement Kneser’s argument.

We are given a basik,...,b, € FE of the latticeL, a constantB, and a complete
generating systen§ = {v € L\{0} : |jv|| < B}. We want to find the number of
indecomposable sublatticesindicesi; =1 <i3 <...<i. <n<n+1l=i.4;anda
basisbi, ..., b, of L such that for every € {1,...,r} the vectorﬂygj,...,bgﬁr1 form
a basis of an indecomposable sublattice.

Now we give Kneser’s argument.

Definition 4.3. A vectorv € L\{0} is calledorthogonal decomposable if there exist
z,y € L\{0} withv = z + y and(z,y) = 0.

The orthogonal indecomposable vectorsSoform the verticex set of an undirected
graphG = (V,E). In G two verticesv,w € V are adjacent whenevép,w) # 0.
We decompos®” into vertex setd/, ..., V, of connected components &f. Then, the
orthogonal decomposition dfis L. = L; | ... L L, whereL; is the lattice generated by
V;.

Using standard algorithms from graph theory one can conipgteonnected compo-
nents in time linear i (|V'|+ | E|). In the following we show that in this case it is possible
to compute the connected components in time line@ (V).

O’Meara observed in [8] that for the procedure above it isteatessary to determine all
orthogonal indecomposable lattice vectorsSinThe length decomposable lattice vectors
are enough:

Definition 4.4. A vectorv € L\{0} is calledlength decomposable if there existz,y €
L\{0} with v = z +y and||z|| < [v]| and]ly]| < [[v]|.

On basis of this observation we propose the following atgari Its correctness follows
from Proposition 4.6. In what follows we denote fythe orthogonal projection df onto
the subspace spanned by.

Algorithm 4.5 Orthogonal Decomposition of a Lattice

Input: Complete generating syste$h= {v € L\{0} : |jv|| < B} of L.
Output: Indecomposable sublatticég with L =L, L ... L L,.

Choosev € S with minimal norm,S « S\{v}.
r+1, L, < Zv.
while S # 0 do
Choosev € S with minimal norm,S « S\{v}.
if vg >, L;then
J—{je{l,...,r}:m(v) #0}.
M + Zv +ZieJLi'
{L],...,Lr_ljl} — {Li B ¢ J},Lr_|J|+1 —~M,rr-— |J| + 1.
end if
end while

Proposition 4.6. At the end of each iteration the computed sublattices arciomhposable
and pairwise orthogonal.

Proof. By induction the sublatticeg, ..., L, are indecomposable and pairwise orthog-
onal. Letv be a shortest vector if. If v ¢ Y., L;, thenv is not length decompos-
able. In particular we have eithet(v) = 0 or m;(v) ¢ L; where; = 1,...,r. Define
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J={je{1,...,r} : mj(v) # 0}. One can choose vectors € L;, wherej € J,
which are not length decomposable and which are not orthadgory. In the graphG
these vectors are all adjacentuoHenceZv + 3. ; L; is indecomposable and we get
Yieng Li L (Zv + 3¢, Lj) becauser;(v) = 0fori € I\J. O

5. ACKNOWLEDGEMENTS

We thank Martin Kneser for pointing out the reference to [8].

REFERENCES

[1] J. Buchmann and M. Pohstomputing a lattice basis from a system of generating vectors, Lecture Notes in
Comput. Sci. 378, 54-63, Springer-Verlag, 1989.

[2] H. Cohen,A coursein computational algebraic number theory, Springer-Verlag, 1993.

[3] J. H. Conway and N.J.A. SloanAlattice without a basis of minimal vectors. Mathematika42 (1995), 175—
177.

[4] M. Eichler, Note zur Theorie der Kristallgitter, Math. Ann.125(1952), 51-55.

[5] P.M. Gruber, C.G. LekkerkerkeGeometry of numbers, North-Holland, 1987.

[6] B. Hemkemeier and F. VallentirOn the decompositon of lattices, Electronic Colloquium on Computation
and ComplexityTR98-52, 1998.

[7] M. Kneser,Zur Theorie der Kristallgitter, Math. Ann.127(1954), 105-106.

[8] O.T. O’'Meara,On indecomposable quadratic forms, J. Reine Angew. MattB817 (1980), 120-156.

UNIVERSITAT DORTMUND, FAKULT AT FUR MATHEMATIK , 44221 DDRTMUND, GERMANY
E-mail address: bhenkenei er @nai | . com

CENTRUM VOOR WISKUNDE EN INFORMATICA (CWI), KRUISLAAN 413, 1098 SJ MSTERDAM, THE
NETHERLANDS
E-mail address: f . val | enti n@wi . nl

ECCC ISSN 1433-809

http://eccc.hpi-web.de/




