Electronic Colloquium on Computational Complexity, Report No. 53 (1998)

Time-Space Tradeoffs for Branching Programs

Paul Beame* Michael Saks'
Dept. of Computer Science and Engineering Dept. of Mathematics
University of Washington Rutgers University
Seattle, WA New Brunswick, NJ
beame@cs.washington.edu saks@math.rutgers.edu

Jayram S. Thathachar*
Dept. of Computer Science and Engineering
University of Washington
Seattle, WA
jayram@cs.washington.edu

July 31, 1998

Abstract

We obtain the first non-trivial time-space tradeoff lower bound for functions f :
{0,1}™ — {0,1} on general branching programs by exhibiting a Boolean function f that
requires exponential size to be computed by any branching program of length (1 + €)n,
for some constant € > 0. We also give the first separation result between the syntactic
and semantic read-k models [BRS93] for k& > 1 by showing that polynomial-size semantic
read-twice branching programs can compute functions that require exponential size on
any syntactic read-k branching program. We also show a time-space tradeoff result on
the more general R-way branching program model [BRS93]: for any k, we give a function
that requires exponential size to be computed by length kn g-way branching programs,
for some ¢ = q(k).

1 Introduction

One of the long-standing open questions of complexity theory is whether polynomial-time is
the same as log-space. One approach to this problem has been to look at tradeoffs between
time and space for problems in P. This leads to questions of the following type: if we restrict
running time to some specific polynomial bound, for example linear time, can we show that
some problem in P cannot be solved in log-space within this time bound? Despite significant

* Research supported by NSF grant CCR-9303017.
t Research supported by NSF grant CCR-9700239. This work was done while on sabbatical at University

of Washington.

ISSN 1433-8092

progress given by Fortnow’s recent time-space tradeoff lower bounds for SAT [For97], this
question remains unsolved.

One natural model for studying this question is that of Boolean branching programs,
which simultaneously capture time and space in a clean combinatorial manner. In this model,
a program for computing a function f(z1,z,... ,z,) is represented as a DAG with a unique
start node. Each non-sink node is labeled by a variable, and the arcs out of a node correspond
to the possible values of the variable. The sink nodes are each labeled by an output value.
Executing the program on a given input corresponds to following a path from the start node
using the values of the input variables to determine the arcs to follow. The maximum length
of a path corresponds to time and the logarithm of the number of nodes corresponds to space.
An algorithm running simultaneously in linear time and logarithmic space corresponds to
a linear-length, polynomial-size branching program. Thus the question of finding explicit
functions in P for which no such branching program exists has been of significant research
interest. (In fact, finding any explicit function for which this is known is still open; since
branching programs are a non-uniform model of computation, Fortnow’s lower bound does
not apply to them.)

This paper gives results on two distinct problems for branching programs, which we sum-
marize in the next two subsections.

1.1 Lower bounds for single-output functions

There has been a great deal of success in proving time-space tradeoff lower bounds for multi-
output functions in FP such as sorting, pattern matching, matrix-vector product, and hash-
ing [BC82, Bea91, Abr90, Abr91, MNT93]. However, for single-output functions (those whose
output is one bit) the state of our knowledge is pathetic: prior to this paper, there were no
lower bounds known that are better than n + o(n) for any explicit n variable function. The
existing techniques for multi-variate functions involve some sort of “progress measure” which
quantifies how much of the output has been produced. These techniques do not seem to give
any non-trivial bounds for functions with a single output bit. For example, it is not known
how to relate the apparently very similar problems of sorting and element distinctness, al-
though time-space tradeoffs for element distinctness on the structured comparison branching
program have been shown [BFMadH*87, Yao88].

The branching program model allows the domain of the variables to be any finite set.
For variables taking values in a ¢ element set, the nodes in the program have outdegree ¢,
corresponding to the possible values. While the case of greatest interest is the case that vari-
ables are 2-valued, the general g-valued case is an interesting challenge, which can potentially
provide insights into the 2-valued case. Owur first result is to exhibit an explicit family of
functions F;, where for each ¢, the functions in ¥, are single output functions on g-valued
variables, such that the following property holds: for any k, there is a g such that the functions
in family ¥, can not be computed in length kn and polynomial size.

This result is unsatisfying because of the dependence on ¢q. For each k, the ¢ required
for the bound can be quite large. For g-valued variables, the number of input bits is nlog, ¢
and what we really want is a lower bound that is superlinear in the number of input bits.

Nevertheless, we believe this result is of some interest, both in its own right, and because the
proof illustrates some basic ideas which we think may prove useful in this area.

Our second lower bound pertains to the “real” model, single output functions on 2-valued
variables, i.e., Boolean functions. For this model, we obtain the first non-trivial length lower
bound for polynomial size branching programs for functions whose output is a single bit: we
exhibit an explicit family of functions in P and show that any sub-exponential size program
for it must have length—mow hold on to your hats—at least 1.0178n. While this is only just
barely non-trivial, it is the first such result in which the length divided by the number of
variables is bounded away from one. Our lower bounds also apply to the more general model
of non-deterministic branching programs.

The proofs introduce some new proof techniques, some of which extend past techniques
of [BRS93, Tha98]. First, we show that if a function f has a small size and length branching
program, then it is possible to find a small set of decision trees, each of height that is a small
fraction of n, such that the AND of the functions computed by the trees accepts no 0’s of f
and accepts a substantial fraction of the 1’s of f. So proving a size-length lower bound on
branching program reduces to showing that no such set of decision trees exists.

Similar decision trees arise in analyzing the special cases of restricted branching programs
considered in [BRS93, Tha98] but these trees are “oblivious” and thus depend on only a small
fraction of variables. The main new step uses an interesting entropy argument. Very roughly
what we show is that for two decision trees of height (1/2 + €)n, either it is the case that
for the vast majority of inputs, the two trees together fail to look at a positive fraction of
the variables, or the trees are “approximately oblivious” in the sense that the set of variables
examined by each tree does not depend very much on the input.

1.2 Semantic versus syntactic read-k branching programs

As a step towards proving super-polynomial size lower bounds for linear length branching
programs, a natural restriction is to require that each input bit be read at most some fixed
number of times. This led to the definition of read-k branching programs [Weg87] in which
each input can be read at most k£ times. Many lower bounds have been shown for several
functions on read-once branching programs (for example, see [Raz91, SS93]).

(Another branching program restriction that has also been considered is that of oblivious
branching programs which test the same variable at each time-step along any path. For
oblivious branching programs, linear length and read-k for some constant k are essentially the
same and several size-length tradeoff lower bounds for oblivious branching programs have been
shown using this connection [AM88, BNS92]. Oblivious read-once branching programs, known
as OBDD’s, have been very useful as representations of functions used in verification [Bry86,
BCL194] and so have generated significant independent interest.)

Borodin, Razborov, and Smolensky [BRS93] observed that read-k branching programs
come in two flavors, syntactic read-k in which all paths in the branching program must satisfy
the read-k restriction and the more general semantic read-k in which only the paths consistent
with some input must satisfy the restriction. They also proved strong size lower bounds for
the syntactic read-k model. However, obtaining super-polynomial size lower bounds even for

semantic read-twice branching programs is an open question. (It is easy to observe that there
is no distinction between syntactic read-once and semantic read-once branching programs.)

Here, we show the first separation between the syntactic and semantic read-k models for
k > 1 by showing that polynomial-size semantic read-twice branching programs can com-
pute functions that require exponential size for any syntactic read-k branching programs.
The functions we construct are based on a class of functions that were by introduced by
Thathachar [Tha98] to separate the power of read-k and read-(k+1) in the syntactic model.
These functions are exponentially hard for syntactic read-k, and seem to be hard for seman-
tic read-k. We modify these functions so as to make them semantic read-twice while still
retaining hardness for syntactic read-k.

2 Notation

Throughout X denotes a set of (usually n) variables which take on values from some finite
set D; usually D = {0,1}. We say X is a D-valued variable set, and additionally d-valued if
d = |D|. An input o is, as usual, a point in DX, the set of mappings from X to D. A Boolean
function over X is a function mapping DX to {0,1}.

Since we are only interested in the computation of Boolean functions here, we present our
definitions of branching programs only for this case. A non-deterministic branching program
B on a D-valued variable set X is an acyclic directed graph with the following properties:

e There is a unique source node, denoted startp.

e Every sink node v has a label output(v), which is 0 or 1.
e Each non-sink node v is labeled by a variable z(v) € X
e Each arc a is labeled by an element value(a) of D.

We say that an input o is consistent with an arc a, where a = (u,v), if the value given by o
to z(u) is value(a). We extend this definition to any path P: o is consistent with P if it is
consistent with each arc in P. A path P is maximal if it starts at startp and ends at a sink.
A path that ends at a sink with output value 1, resp. 0, is a 1-path, resp. 0-path.

We say that B accepts the input ¢ if there is a maximal 1-path that is consistent with o.
The Boolean function computed by B is the function fp defined over the variables X that
maps o to 1 if and only if it is accepted by B.

Two measures associated with B are size which equals the number of nodes, and length
which is the length of the longest path.

(In [BRS93], a non-deterministic branching program also contains free arcs, namely arcs
which are consistent with any input. Such branching programs can be modified to conform
to our definition with at most a quadratic blow-up in size.)

A branching program is deterministic if there are exactly |D| arcs out of each non-sink
node, each with a different value. For a deterministic program, each input is consistent with
exactly one maximal path. Intuitively, a deterministic program is “executed” on input o

by starting at startp, reading the variable z(startp) and following the unique arc labeled
by o(z(startp)). This process is continued until a sink is reached and the output of the
computation is the output value of the sink. The non-deterministic version can be similarly
viewed as a process, where from each node, v, one can choose from among the arcs labeled
o(z(v)) (if any); the output of the function is 1 if and only if some sequence of allowable
choices leads to a sink node with output value 1.

A decision tree is a deterministic branching program B whose underlying graph is a tree
rooted at startp. Every function on n variables is computable by a length n decision tree.
Following tradition, the length of a decision tree is referred to as its height.

A branching program of length d is leveled if the nodes can be partitioned into d sets
Vo, Vi,..., V4 where Vj is the source, V; is the set of sink nodes and every arc out of V; goes
to Viy1, for 0 < ¢ < d. It is well known[Pip79] that every branching program P of size s and
length d, can be converted into a leveled branching program P’ of length d that has at most
s nodes in each of its levels and computes the same function as P (and is deterministic if P

is).

3 Decision Programs

For a given Boolean function f, and a given length d > n, we want to lower bound the
size of the smallest branching program that computes it. This section gives a simple lemma,
which shows that such lower bounds can be obtained by analyzing a different model based on
decision trees.

An (7, @)-decision program R is an r-tuple of decision trees (71,73, ... ,T,), each of height
an. The function computed by R, denoted as fg, is /\ie[l,r] fi, where f; is the function
computed by T;, for ¢ € [1,7]. We say that R is compatible with the function f if it accepts
only 1’s of f.

Theorem 1. Let f be a Boolean function. Suppose that any (r,a)-decision program R that
is compatible with f, accepts at most t inputs. Then, any nondeterministic (or deterministic)
branching program of length arn computing f has size at least (‘f*1(1)| JHY (=1,

Proof. Let P be any branching program of size s computing f in length d = arn and let
P’ be an equivalent leveled program of length d with at most s nodes per level. An input is
accepted by P if and only if there exist nodes v1,v9,... ,v,_1 at levels an, 2an,... ,(r—1)an
in P’ such that there is a path consistent with that input of length an from v; to v; 1 for
1=0,...,r — 1 where v is the start node and v, is the unique accepting node at level ran.
Let Ty, v;,, be a decision tree of height an creating by expanding the an levels of P' rooted
at v; into a tree and labeling a leaf 1 if and only if the corresponding path in P’ starting at
v; would reach v;11. Therefore

r—1
f = \/ /\ Tvi,vi_,_l-

UVlye.Up—1 iZO

Each conjunction in this expansion is an (7, «)-decision program, therefore it can accept
at most ¢ inputs of f~!(1). By construction, there are at most s"~! many choices for
V1,02, .- ,VUp_1, SO 8" 1t > |f*1(1)|, from which the bound on s follows. O

4 Functions based on quadratic forms

The functions for which we prove lower bounds are based on quadratic forms. (Similar
functions based on bilinear forms were considered in [BRS93].) Let M = M,, be an n X n
matrix over GF(q). Define the function QFys : GF(q)" — {0,1} to be true if and only if for
any input o (viewed as a vector of length n), 0T Mo = 0(mod ¢q). We define the function
BQPF)y to be the restriction of QFjs to the domain {0,1}".

To prove size-length tradeoffs for BQFys or QFys, we will require that the matrix M
satisfy certain properties, which are stated in the next section. Explicit examples of matrices
satisfying these properties are the Sylvester matrices. For any odd prime power ¢ and any
n = 2% the n xn Sylvester matrix N is defined over GF(q) and has rows and columns indexed
by binary vectors of length k. The (i, j)-th entry of N is (—1)(7), where (i,;) denotes the
inner product of ¢ and j. We also consider the modified Sylvester matriz, NI, obtained by
setting the diagonal entries of a Sylvester matrix N to 0.

Below are the statements of our main results which demonstrate size-depth tradeoffs for
the functions defined above.

Theorem 2. There is an € > 0 such that any branching program of length (1+€)n computing
BQFyN, where N is the n x n. Sylvester matriz over GF(3), requires size 292(n)

Theorem 3. For every integer k there exists a prime power q and a constant v > 0 such that
for all sufficiently large n the following holds: Let NI% be an n x n modified Sylvester matriz
over GF(q). Then any length kn non-deterministic branching program for QFyo requires
size at least ¢

The conclusion of Theorem 3 holds, more generally, whenever N is a Generalized Fourier
Transform (GFT) matrix (see [BRS93]). For any finite Abelian group G, let G* be the set of
multiplicative characters of G mapping elements of G to GF(q)*, that is, x(g192) = x(g91)x(g2)
for any ¢1,92 € G and x € G*. Provided that ¢ is relatively prime to |G| (see, e.g., [BRS93]),
it is known that there are |G| distinct characters and that they are linearly independent when
viewed as a vector space over GF(q). Let N = Ng g« be the matrix in which the (g, x)™
element equals x(g), for all g € G and x € G*. Sylvester matrices of dimension n x n, where
n = 2¥ for some k, can be shown to be special cases of GFT matrices corresponding to the
additive group of GF(2)*.

5 A lower bound criterion

Our lower bounds for the functions described in the previous sections are obtained in two steps.
First, we identify two parameterized combinatorial properties of functions and show that, for

any function f satisfying these two properties, the branching programs for f obey certain
length-size tradeoffs (depending on the parameters). Second, we show that the functions of
the previous section satisfy these properties with values for the parameters that are good
enough to give non-trivial tradeoffs.

Let f denote any Boolean function on a D-valued set of n variables, X. The first of
the two properties, P(6), is parameterized by a real number 6 € (0,1), the second, Q(®), is
parameterized by a non-decreasing function @ : [0,1] — [0, 1].

P(0): For any partial assignment p to at most (1 — #)n variables of X, f[, is a non-constant
function. In particular, f has at least |D|(1_0)" satisfying inputs in DX,

Q(®): For any pair of functions g1, g2 such that g = g1 A g9 is compatible with f, if there are
two disjoint subsets A1, A9 C X, each of size at least én, such that g; does not depend
on the variables in A;, then g accepts at most |D|(17¢(‘S))" inputs of f~1(1).

For our functions, these properties can be realized for the specific ® and 6 as stated in the
lemma below. We postpone the proof of this lemma to Section 8.

Lemma 4. Let M be a GFT matriz over GF(q), where q is a prime power.

1. For any subset D of GF(q) of size at least 2, the restrictions of the functions QFys and
QF 10 to D™ both satisfy Q(®) for ®(6) = 62.

2. QF,u satisfies P(2/n).
3. If M is the Sylvester matriz over GF(3), then BQFy satisfies P(241logn//n).

Our main general lower bounds on branching program size are expressed in terms of these
two properties. The first such result is:

Theorem 5. Let f be a boolean function on D™, where n is sufficiently large. Suppose f
satisfies P(0) and Q(®) for some 0 and ®. Then, any length kn non-deterministic branching

program for f requires size at least
|D[*®~0 o1
4 3

The proof of this theorem is given in section 6. The theorem yields exponential size
lower bounds for linear depth branching programs in the case that D is “large enough”. In
particular, we obtain Theorem 3: Taking f to be the function QFyn for some ¢ and n,
then, by Lemma 4, the hypotheses of Theorem 5 are satisfied with # = 2/n and ®(§) = §2.
Choosing ¢ so that loglogq > Ck for some sufficiently large constant C, the conclusion of
Theorem 5 implies the conclusion of Theorem 3.

Theorem 5 is of no use for the case |D| = 2. For this case we have the following theorem:

where §=1/(3-2F71).

Theorem 6. Let €,0 > 0 with e+ 60 <1/4, let ®:[0,1] — [0,1] and let n be a sufficiently
large integer. If f : {0,1}" — {0,1} satisfies P(0) and Q(P) then, any length (1 + €)n
non-deterministic branching program for f requires size at least 2(%/3=0n—1 "yhere

a=a (1%_0) —e—0—(1+¢H (2(;:5)) —2H(0),

and H(p) = —plogyp — (1 — p)logy(1 — p), is the binary entropy function.

The proof of this theorem appears in Section 7. Using the theorem we can deduce Theo-
rem 2 as follows. Fix n large enough and let N be the nxn Sylvester matrix over GF(3). From
Lemma 4, BQFy satisfies P(#) for 8(n) — 0 and Q(®) for ®(6) = 6. Applying Theorem 6, we
conclude that for any € > 0 and for sufficiently large n, if & < (1—€)%/4—e—(1+€)H(2¢/(1+¢€))
then any branching program for BQF); of length at most (1 + €)n has size at least 20m/3,
It can be checked that for ¢ < 0.0178, the expression upper bounding « is strictly positive.
Hence, any branching program of length at most 1.0178n that computes BQFjs must have
exponential size.

The next three sections give the proofs of Theorems 5 and 6 and Lemma 4.

6 Lower bounds for functions over large domains

In this section, we prove Theorem 5. Let f be as hypothesized. Because f satisfies P(6),
71| > DU=9n_ Fix any (2k,1/2)-decision program R = (T}, Ty, ... ,Th) that is compat-
ible with f. We will prove that |R™'(1)| < |D|(17¢(6 P gn The conclusion of the Theorem
then follows immediately from Theorem 1.

A combinatorial lemma from [Tha98] says that given a collection of 2k subsets of [1,n]
each of size at least n/2, where n is sufficiently large, there exists a pair of disjoint sets A and
B of size at least fn, where 8 = 1/(3 - 2¢~1), such that each set of the collection contains A
or B.

For each input o, let S;(o) be the set of variables that are not read by T; on input 0. Note
that each set Sj(o) has size at least n/2. Consider all pairs (A;, Ay) where |A;| = |Az| = fn
are disjoint sets of variables. We say that (A1, As) covers input o if for each 4, either A7 C
Si(c) or Ay C S;(0). By the combinatorial lemma, every input o is covered by some pair
(A1, As). We now upper bound the number of accepted inputs covered by a given pair.

Given a subset A of variables, define g4 to be the function that accepts o if and only if, for
every i for which S;(o) contains A, T; accepts o. It is easy to see that g4 does not depend on
the variables in A. Also for any pair (A1, Ay) of disjoint subsets of size n, an input o € f~1(1)
is covered by (A1, Az) if and only if it is accepted by ga, 4, = g4, Aga,. Therefore, by property

Q(), 9211,,42(1)‘ < |D|(17<I>(ﬂ))". Since the number of distinct pairs (A7, A2) can be crudely

upper bounded by 4", we conclude that [R™!(1)| < ‘U(Al,fb) 9;1,13(1) < [D|-2Bn g0 4
complete the proof.

7 Lower bounds for Boolean branching programs

In this section, we prove Theorem 6. Let f, n, ¢, # and ® be as hypothesized. We will apply
Theorem 1 with ¥ = 2 and r = (1 + €)/2. Fix a (2, (1 + €)/2)-decision program R = (T}, T5)
that is compatible with f. We will prove that |[R~1(1)| < 2(1=¢/3n+1 where o is defined
as in the conclusion of the theorem. Since property P(f) implies that |f_1(1)| > 20-0)n
Theorem 1 yields the required conclusion.

As in the previous proof, we define S;(o), for input o and i = 1,2, to be set of variables
that are not read by 7; on input 0. We say that S;(o) is the set of variables missed by o in T;.
Note that |S;(o)| is always (1 — €)/2. For a pair of sets (S1,S2) each of size (1 — €)/2, define
Miss(S1, S2) to be the set of inputs o such that S1(0) = S and S2(0) = S and Accept(St, S2)
to be the subset of Miss(S1, S2) accepted by R. Then |R™!(1)| = 25,5, |Accept(S1, S2)l, and
we upper bound ‘R_l (1)| by classifying the terms in the sum, and bounding them accordingly.

We first dispense with the cases that follow easily from the properties satisfied by f.
Consider those terms Accept(S1, S2) where |S1 N S| > On. Because f satisfies property P(#),
any pair of consistent paths that miss a common set of more than #n variables must be
followed by at least one falsifying input of f. Since R is compatible with f, no input following
this pair of paths can be accepted since at least one of the two leaf labels of these paths must
be 0. Therefore, Accept(S1, S2) is empty.

Thus we may restrict attention to the terms in the sum corresponding to (S7,S2) with
|S1 N S2| < On. For such pairs, we can choose disjoint sets A; C S; and Ay C Sy such that
|A;| = én, where § = (1 — e — 6)/2. Because f satisfies property Q(®), applying this property
with respect to A; and Ay, we have that |Accept(Si, S2)| < 2(1=2()n We could now naively
bound the sum by multiplying by the number of possible pairs (S1,S;) with |S1 N Sy| < On,
but the resulting bound is too large to be of any use. Instead we will divide the terms of the
sum into two parts depending on the size of Miss(S1,S2). Let 0 < v < 1 be a constant to
be fixed later. Call a pair (S1,S2) common if Miss(S1, So) > 2= and rare otherwise, and
denote the sets of common and rare pairs by Peommon and Prare- Let Beommon (resp. Brare)
be the (disjoint) union of Accept(Si,S2) for all (S1,S52) € Peommon (resp. (S1,S52) € Prare)-
Thus |R (1)| = |Becommon| + | Brare|; we will upper bound |Beommon| and | Brare| separately.

The number of common pairs (S7, Sy) is clearly at most 27", and thus:

(1) | Beommon| < 207H1-#E)n,

To bound |Brare| we will show that the overall number of inputs (accepting or rejecting)
that correspond to rare pairs can not be too large. Let A denote the union of Miss(S1,S2)
over all rare pairs. Then B, C A. We prove:

Lemma 7. Let €,0 >0 with e+ 6 <1/4, lety € (0,1), and let A be defined as above. Then,
2(e+0) n
1+e) +2H(0)_7> 2

Using this lemma, we complete the proof of Theorem 6. We have ‘R*1(1)| < | Beommon| +
|Al, and we choose 7 so that the above upper bounds for | Beommon| and |A| are equal. For this

(2) log, |A| < (e +O0+(1+e)H (

choice of 7y, |A|, | Bcommon| < 2(1=a/3)n where « is as defined in the statement of Theorem 6.
As noted earlier, Theorem 1 now yields the desired bound.

So it remains to prove Lemma 7, which is the crux of the entire argument. The proof
uses elementary information theory. We review the basic definitions and results. Let X be
an arbitrary probability space. For any event A, we write Prob[A] for the probability of A
and p[A] for log, Prob[A]. If C is a random variable taking values from a finite set S, the
binary entropy H(C) is defined to be — 3 __sProb[C = 5] u[C = s].

Proposition 8. If C is a random wvariable taking on values from some set S then H(C) <
log, |S].

If A is an arbitrary event (measurable subset) of the probability space then the conditional
entropy of C given A is H(C|A) = — > .4 Prob[C = s|A4] log, Prob[C = s|A].

Proposition 9. Let C be some random variable taking values on a finite set S and let A be
an event.

1. H(C|A) < H(C).

2. Let Sc(A) denote the set of s € S such that Prob[C = s|A] > 0. Then H(C|A) >
pulA] — MaXseSc(A) pu[C = s].

If B; and By are random variables on the same probability space taking values in S
and Sy, respectively, H(B1,B3) is the entropy of the random variable consisting of the pair
(B1,B32). The conditional entropy of B; given By is defined by H(B;|Bs) = H(B1,B3) —
H(By) = 25652 H(B1|B2 = s) - Prob[By = s|. The mutual information of B; and By is
defined to be I(Bl, B2) = H(Bl) + H(BQ) — H(Bl, B2)

Proposition 10. Let B, By be random variables taking values on finite sets S1 and Ss.
Then

1. H(Bl, BQ) = H(Bl‘B2) + H(B2|B1) + I(Bl, Bg)
2. H(B1,By) < H(By) + H(By).
3. H(B1|B2) S maXses, H(B1|B2 = S).

Given two random variables B, C we say that B determines C if C is a function of B.
We have:

Proposition 11. 1. If B and C are random wvariables such that B determines C then
(a) H(C) < H(B) and (b) H(C|B) = 0.

2. If B1,Bg, Cy1, Cy are random variables such that By determines Cy, and By determines
CQ then I(Cl, Cg) S I(Bl, Bz).

10

Proposition 12. Let B1,By and C1,Cs be pairs of random wvariables such that B; deter-
mines C; for i =1,2. Then

H(Bl, Bz) + H(Cl, Cz) < H(Bl) + H(Bg) + H(Cl|02) + H(CQ|Cl).
Proof. By Proposition 10(1) and Proposition 11(2):

H(Cl,CQ) = H(Cl'CQ)+H(CQ|Cl)+I(CZ,Cl)
< H(Cl|Cz)+H(CQ|01)+I(B2,B1)
= H(CﬂCQ)+H(CQ|01)+H(B1)+H(B2) —H(Bl,Bg).

O

We will need a well known technical fact concerning sums of binomial coefficients (whose
proof we give since we don’t know a reference).

Proposition 13. If k <n/2, logy(>,;<; (%)) < nH(k/n).

Proof. By the binomial theorem, for any p <1/2, we have 1 > 37, pt(1—p)" (") > pF(1—
p)k o <k (?) Setting p = k/n and taking logarithms yields the desired inequality. U

Proof of Lemma 7. Consider the probability space on {0,1}* with the uniform distribution.
We define the following random variables. For ¢ = 1,2, let P; be the path taken in 7T; and S;
be the set of variables missed in T; by a random input. Observe that S; is a function of P;.

The basic intuition for the proof is this. We are trying to upper bound the size of A
by something like 2(1~2" where A > 0 and for this it suffices to upper bound u[A] by —n.
Note that A is defined to be the event that (S1,S2) € Prare, and so by Proposition 9(2),
nlA] < H(S1,82|A) + max(s, s,)ePrare #[(S1,82) = (51, 52)]. The second term is at most
—vn by the definition of Pyre. Thus we want to upper bound H(Si,S9|A) = H(S1]S9,4) +
H(S2|S1,A)+ I(S1,S2|A) by v'n, where ' is a constant less than 7. Now observe that given
A, |S1NSy| is small, and therefore S; and Sy are “approximately” complementary subsets of
variables, and so one of them approximately determines the other. This allows us to conclude
that the first two terms in the sum are small. We use Proposition 11 to upper bound the third
term by I(P;,P2|A). Intuitively, this represents the amount of information P; reveals about
P, (and vice versa) given that A holds. Now A implies that P and P read very few variables
in common, and this can be used to show that the mutual information is small. Although the
intuition is based on mutual information, in the formal argument we use Proposition 12 and
do not explicitly mention mutual information.

We now proceed with the proof by considering H(P1,P9|A) + H(S1,S2|A). As noted
Proposition 9(2) implies H(S;,S2|A) > ul[A] + yn. To apply the same proposition to
H(P1,P3y|A) we note that any pair of paths (P;, P;) corresponding to a point in o € A
contains at least (1 — @)n variables and so p[(P1,P3) = (P1, P2)] < —(1 — #)n. Consequently
H(P1,P3y|A) > p[A] + (1 — 0)n and so

H(Py,P3|A) + H(S1,82|4) > 2u[A] + (1 — 0 4+ 7)n.

11

On the other hand, by Proposition 12 and Proposition 9(1),

H(Py1,Py|A) + H(S1,8,|A) < H(Py|A) + H(P2|A) + H(S1|Ss, A) + H(S2|S1, 4)
< H(Py)+ H(Py) + H(S1|S2, A) + H(S2[S1, A)
< (I+e)n+ H(S1[Sy, A) + H(S2[S1, A)

where the last inequality comes from Proposition 8 and the fact that the number of paths in
each tree is 2(1+e)n/2,

Since the two remaining terms are symmetric it remains to upper bound H(S;|Sy, A).
Define the random variables I = S; N Se and J = X — (S; U Sy) and observe that the triple
(S2,I,J) determines S;. Hence:

H(S:|S2,A) < H(Sy,1,J|S9,A) by Proposition 11(1)
< H(S9|Sq,A) + H(I|S2,A) + H(J|S2, A) by Proposition 10(2)
=0+ H(I|S2,A) + H(J|S2, A) by Proposition 11(1)
< H(I|A) + H(J|S2, A) by Proposition 9(1).

Since A implies |I| < 6n, Proposition 8 and Proposition 13 imply that H(I|A) <3 ., (’;) <
nH(#). Now, by Proposition 10(3), H(J[S2, 4) < maxg, H(J|Sy = S3,4). Given 4, |J| <
(0 + €)n and given Sy = So, J is contained in Sy which is a set of size (14 €)n/2. Again, using
Proposition 8 and Proposition 13 we conclude H(J|Sy, 4) < %H (M) (here we use the

1+¢
hypothesis that e + 6 < 1/4). Thus:

1+6H<2(e—|—0)

<
H(S1|S2,4) < [5 T4e

)+ H(O)] n
and so

2p[A] + (1 — 0+ v)n < H(P1,Py|A) + H(S1,S]4)

<(1+en+2 [1 ;r ‘H (2(163:5)) +H(0)] n.

Solving, we find

ulA] < 6+0+(1+6)H<2(16+f)) +2H(0) —7] g

which is what we wanted to prove.]

8 Proof of Lemma 4

We being with the proof of the first part of the lemma. This will follow immediately from
two additional lemmas.

12

For any n x n matrix M and any 0 < § < 1, define ®,,(6) to be 1/n times the minimum
rank of any én X én minor of M that does not include any diagonal element of M. Trivially,
®,/(6) = On(6) if M and N have the same off-diagonal elements; in particular ®,(6) =

D, 101(6).

Lemma 14. Let M be a matriz over GF(q) and D C GF(q). The restriction of QFpr to D™
satisfies Q(®) for & = Py

Let G be a finite group. A G-matriz over GF(q) is a matrix N whose rows are indexed
by G, such that for all g1,¢92 € G and j € [1,n], Ng,.,; = Ng, jNg,,; (i-e., each column is a
multiplicative character of G).

Lemma 15. Let N be an n X n G-matriz of full rank, where G is a group of order n, and let
M be any n x n matriz that agrees with N off the diagonal. Then ®,,(6) = §2.

Since a GFT matrix associated to a group G is a G-matrix of full rank, Part 1 of the
Theorem follows immediately from the lemmas. So we now prove them.

Proof of Lemma 14. Let g = g1 A gs be compatible with Q) Fs such that for some disjoint sets
of variables A; and As of size each én, g; does not depend on the variables in A;. Consider an
arbitrary assignment p of the variables outside of A; U As. There are \D|26” assignments that
extend p; let I' denote the subset of these assignments that are accepted by g. We will show
that |T'| < \D|(26_¢M(6))n; the desired bound is then obtained by summing over the \D|(1_26)"
choices of p.

Since g; does not examine any variables in A;, I' = {p} x &1 x Xy, where

Y1 ={o1: (p,01,02) €T for some o9}

Y9 ={o2: (p,01,02) €T for some o1}

Substitute the values assigned by p into X7 M X. Because M is symmetric, we obtain a
polynomial of the form AT N A, + F1(A;) + Fy(Az), where N is a én X én matrix equal to
twice the minor of M indexed by A; x Ay and each F; is some polynomial function of the
entries of 4;. Lemma 16 below, which is a slight generalization of results in [BRS93, Tha98],
implies the required bound on |T|.

Lemma 16. Let N be a t X t matriz over GF(q). For i = 1,2, let F; : GF(q)! — GF(q)
be arbitrary functions, and let F denote the function from GF(q)! x GF(q)! to GF(q) given
by F(o1,09) = 01Noy + Fi(01) + Fy(03). For a set D C GF(q), suppose that ¥1,%9 C D!
satisfy F(o1,09) =0 for every (o1,09) € 1 X Xg. Then |31 X Xg| < |D|2t7rank(N).

Proof. For i = 1,2 fix some of € %;. Then for any (o1,02) € %1 x £y, we have (o1 —
0¥)N (o9 — 0%) = F(o1,09) + F(o},03) — F(o1,0%) — F(0},02) = 0. Defining V; for i = 1,2
to be the linear span of ¥ = {0 — o) : ¢ € %;} we have that v;Nvy = 0 for all v; € V}
and vy € V,. This implies dim(V}) 4+ dim(V32) < 2¢ — rank(N). The lemma now follows since

‘i‘ _ ‘z‘ < | D|dm(va) 0

13

This completes the proof of Lemma 14. O

We now turn to the proof of Lemma 15. This lemma is an immediate consequence of the
following lemma, which says, roughly, that every large minor of a GFT matrix has large rank.
The lemma both simplifies and improves a bound in [BRS93] which showed that every u x ¢
minor of such a matrix has rank at least ut/(n(n,u,t)n), where n(n,u,t) is a function that
is typically logarithmic in n. (This new bound also improves the lower bound on the size of
read-k branching programs proved in that paper by shaving off a factor of £ in the exponent.)

Lemma 17. Let N be any G-matriz over GF(q) where G is a group of order n. If N has
full column rank, the rank of any u X t minor of N is at least ut/n.

Proof. For V C G and any set J of columns, let Ny, ; denote the submatrix of N corresponding
to the rows of V and columns of J. Fix V of size u and J of size t. Since N has full column
rank, the columns of Ng s are independent implying that it has a ¢ x ¢ minor Ny, ;, for some
W C G, which has full rank.

For any fixed ¢* € V and a random g € G, Pr[gg* € W| = Pr[g € W(g*)~!] = t/n. By
linearity of expectation, when ¢ is randomly chosen from G, the expected number of ¢* € V
for which gg* € W is ut/n. Therefore, for some fixed g and some H C V where |H| > ut/n,
we have gH C W. We show that Ny ; has rank at least ut/n from which the lemma follows.

Because G is a group, |gH| = |H| > ut/n. Since Nypg, y is a submatrix consisting of at
least ut/n rows of Nyy, s, it follows that rank(Nyp, 5) > ut/n. By the definition of N, for each
J €J, Nggj = Ny ;iNp j, that is, each column of Ng y is multiplied by some constant to get
the corresponding column in Nyg . Therefore rank(Ng, ;) > rank(Ngg,w) > ut/n. O

This completes the proof of part 1 of Lemma 4. We now consider part 2. Let M be a GFT
matrix. It suffices to show that for any partial assignment p that fixes all but 2 variables, 21, 29
of X, the restriction QFy [, is not the constant function. Since M is symmetric, and its
off-diagonal elements are non-zero, the restriction satisfies QF0),= 2a(z1 +b)(22 +¢) +d for
some constants a # 0, b, ¢, d € GF(q). Since ¢ is odd, setting 21 to any value in GF(q) —{—b},
we have 2a(z; + b) # 0 and it follows that 2a(z; + b)(z2 + ¢) + d takes on all possible values
in GF(q) by varying zy. Thus, QF; 0, is non-constant.

Finally, to prove Part 3, let M be the n x n Sylvester matrix over GF'(3). Notice that the
above argument fails in this case, even for M [0 because the values of z1, z, are restricted to
be from {0,1}. To prove property P(f) in this case we first need a lemma showing that in
every sufficiently large principal minor of M, there exist principal minors whose entries sum
to arbitrary values.

Lemma 18. Let M be the n x n Sylvester matriz over GF(3) where n = 2%. Let I C [1,n]
be an arbitrary subset of size at least 4logn/+/n. For every a € GF(3), there exists J C I,
with |J| < 3 such that the sum of the entries in My j is a.

Proof. For a = 0, set J = (. So assume a € {1, —1}. Recall that the row and column index
set of the Sylvester matrix is the set of binary vectors of length k, which is identified naturally
with the set of subsets of [1, k] and we view I as a collection of 4logn/y/n such subsets. For

14

a =1 and for ¢ = —1, we want a subcollection J of I such that the sum of entries in M ; is
a. The following easily verifiable fact gives a criterion for a collection of size 3 to satisfy this.

Proposition 19. Suppose Ay, B1, By are distinct subsets of [1,k| such that |Ag|, |B1|, and
|B2| are all even or all odd and let J = { Ay, B1,Bs}.

1. If |Ag N By| and |Ag N By| are both even and |B1 N By| is odd then the sum of entries
mn MJ’J 18 -1

2. If |Ag N By| and |Ag N By| are both odd and |By N By| is even then the sum of entries
m MJ’J 15 +1.

We will also need the so-called “Eventown-Oddtown” theorems (see [BF92]), stated as a
proposition below:

Proposition 20. Consider the following properties on families of sets:
Al: Ewvery set in the family has odd size
A2: Every set in the family has even size
B1: Every pair of distinct sets in the family has odd size
B2: Ewvery pair of distinct sets in the family has even size

The following table gives an upper bound on the size of any family of subsets of [1, k] satisfying
particular subsets of the properties above.

Bl | B2
Al |22
A2 | k| 2k/2

Continuing the proof of Lemma 18, we now show that I contains a collection J =
{Ag, B1, By} satisfying the hypothesis of the first part of Proposition 19 and thus the sum of
entries in My s is —1. A similar argument handles the other case.

Since |I| > 44/nlogn, there is a sub-family F of size at least 24/nlogn such that every
set in F has even size or every set in F has odd size. Consider a sub-family G of F which
is maximal subject to the condition that for any distinct 4, B € G, |AN B| is odd. For each
set A € G, let £(A) be the subfamily consisting of those sets C € F — G such that |[AN C|
is even. By the maximality of G, UaegE(A) = F — G which implies) oo [E(A)| > |F — G|
Choose Ay € G for which |E(Ap)| is maximum and write & = £(A4p). Then |E]|G| > |F =G|,
or (|€] +1) |G| > |F|. To finish the proof it suffices to show that there are By, By € £ whose
intersection has odd size. Using Proposition 20, if every pair of distinct sets in £ has an
intersection of even size, then

1G] (|€] + 1) < max{2¥/2(k + 1), k(2*/2 + 1)} < 2k2%/%2 = 2¢/nlogn < | F|

which contradicts (|€] 4+ 1) |G| > |F|. Therefore, the claim holds. O

15

We now have the tools to prove Part 3 of Lemma 4. Let p be a partial assignment to
(1 —0)n variables of X, where # = 24logn/+/n and Z C X be the variables unset by p. Then
BQFwm|,= ZTBZ + A-Z + C, where B denotes the sub-matrix of M corresponding to the
rows and columns corresponding to Z, and A and C are fixed constants determined by p and
M. Tt suffices to show that ¢(Z) = ZTBZ + A - Z takes on all possible values in GF(3) for
the various choices of 0-1 assignments to Z.

Setting all variables to 0 makes the function 0. Fix @ € {—1,1}. Our goal is to identify
three variables such that setting them to 1 and everything else to 0 will make the function
equal to a. Classify each variable z; by the pair (M, ;, A;) € {—1,1} x {—1,0,1}. There are
6 possible values of this pair, and so there is a set of at least 4y/nlogn variables Z' C Z that
belong to the same class. If we set any three variables in Z’ to 1, and everything else to 0,
q(Z) evaluates to the sum of the off-diagonal entries in the 3 x 3 principal minor corresponding
to these variables. By Lemma 18 such a minor exists whose sum evaluates to a(mod 3), and
Part 3 of the lemma follows.

9 Semantic versus syntactic branching programs

A path P in a branching program is a semantic path if it is consistent with some input. A
path is not semantic if and only if there is some pair of nodes v and w on the path that have
the same variable label x, such that the arcs following them have different labels. A path P
is read-k for some integer k, if no variable appears in P more than k times. If Z is a subset of
the variables of a branching program B, we say that B is syntactic (semantic) read-k on Z if
every path (respectively every semantic path) in B is read-k. (If Z contains all the variables,
we omit the qualifying phrase in which case our definition is the standard one.)

In this section we exhibit, for every k, a simple function f; that can be computed in linear
size by a semantic read-twice branching program but requires an exponential size syntactic
read-k branching program. The key to defining our separating functions is the construction of
functions gx(X,Y’) that can be computed by linear size branching programs that are semantic
read-twice on X but require exponential size on any branching program that is syntactic read-
k on X. Before we give the construction of gx(X,Y’), we describe the relationship between
9x(X,Y) and the separating functions.

DEFINITION 21. For a variable setY, let Y1,Y3,... ,Y}, be disjoint copies of Y. Write y = ¢/
if for some i,j, y € Y; and y' € Y; both correspond to the same variable in Y. The kth
extension of g on'Y, denoted by ¢®)(X,Y1,...,Y3), is defined to be one if and only if (i)
9(X,Y1) =1 and (ii) oll of the blocks Y1,Ys,... Yy have the same setting.

The relationship between computing g(X,Y’) and its k" extension on Y is given by the
following lemma:

Lemma 22. Let g(X,Y) be a Boolean function.

1. If g(X,Y) can be computed by branching program P that is syntactic read-k on'Y, then
g(k)(X, Y1,...,Yy) can be computed by a branching program Q that is syntactic read-

16

twice on |J;Y; and satisfies size(Q) = size(P)+ O(3_,; |Yi|). Furthermore, any syntactic
or semantic properties of P with respect to X also hold in Q.

2. If g<k)(X, Y1,...,Y%) can be computed by a syntactic read-k branching program, then
9(X,Y) can be computed by a branching program that is syntactic read-k on X and has
the same size.

Proof. Part 2 is easy: if Q' computes ¢*)(X,Y7,...,Y}), replace each occurrence of a variable
of any Y; in Q' by its corresponding variable of Y; the resulting branching program remains
syntactic read-k on X and has the same size.

For Part 1,) consists of two blocks and accepts an input if and only if both blocks
accept. The first block of () checks that all corresponding variables in the various Y;’s are
equal. This can be done in size O(}", |Y;|), looking at each variable exactly once. For the
second block, transform P as follows: at any node accessing a variable y € Y, replace it with
its corresponding variable in Y;, where ¢ denotes the maximum number of occurrences of y
along any path from the source to that node.

Observe that @ is syntactic read-twice on |J; Y; and has the desired size. Moreover, the
first block of () does not access X, and the second block of @) is structurally equivalent to
P where the nodes that are labeled with variables in X are identical. It follows that the
syntactic or semantic properties with respect to X are identical. O

Suppose that g(X,Y) can be computed efficiently by a branching program that is syn-
tactic read-k on Y and semantic read-once on X, but requires exponential size to be com-
puted by any branching program that is syntactic read-k£ on X. Lemma 22 implies that the
g(k)(X ,Y1,...,Y%) can be computed efficiently by a semantic read-twice branching program
but requires an exponential size syntactic read-k branching program. Thus ¢®*)(X,Y7,... ,Y};)
witnesses the desires separation. For the rest of this section, we focus on producing such a
9(X,Y).

DEFINITION 23. For a k-dimensional hypercube [1,n]* of side n, the n hyperplanes perpen-
dicular to the d™ azis, d € [0,k — 1] are referred to as d-planes. In other words, the ith
d-plane, for i € [1,n], is the set {v € [I,n]¥ : vg = i}. We define the predicate gi(X,Y)
as follows. Without loss of generality, let kK +1 = 27, for some r. Let X and Y be sets of
variables corresponding to a (k+1)-dimensional hypercube of side n. The variables of X are
Boolean but we use the Fourier representation where —1 and 1 are identified with true and
false respectively and also treated as elements of GF(3). For each v € [1,n)**1, Y contains r
variables y0,y., ... ,y7 =1 which together determine an integer v, = y7 =1 ...ylyd € [0,k]. For
any d € [0,k], v € [1,n]*!, define

d:{fﬂv ifyy =d

1 otherwise,

17

If y, = d, we say that x, is active for d. Define the following polynomial over GF(3):

Hy(x,v)=>] =¢

i€[1,n] ve[1,n]k+1,
v4=1

and set

ge(X,Y) = J\ (Ha(X,Y)=0 (mod 3))
def0,k]

Informally, we can describe gi(X,Y) as follows. The variables of X and Y can each be
viewed as defining two (k + 1)-dimensional arrays, denoted z and y respectively, where the
entries of x are in {—1,1} and those in y are in [0, k]. We construct £ + 1 additional arrays
z¢ whose entry in position v is z, if y, = d and is 1 otherwise. We say that z, is active in z¢
if yg = 1, and let X% C X be the set of such variables. Note that the sets X% partition X.
The functions H,; are computed by considering each d-plane of ¢ and summing the product
of the entries and summing the products. This can be done by a branching program of size
O(|X4| + |Y]) that reads each variable of ¥ U X? exactly once and no other entry of X.
Thus gx(X,Y) can be computed by a branching program of size O(|X| + (k + 1)|Y|) that is
read-(k + 1) on Y and read-once on X. On the other hand, we have the following hardness
result.

Theorem 24. Any non-deterministic branching program which is syntactic read-k on X re-
quires exponential size to compute gp(X,Y).

As noted above, Lemma 22 then implies:

Corollary 25. Let f; = g,(ckﬂ) be the (k+1)-st extension of gr on Y. There is a simple
semantic read-twice branching program of linear size computing fr. On the other hand, any
non-deterministic syntactic read-k branching program for fi requires exponential size.

The proof of Theorem 24 relies heavily on machinery developed in [BRS93, Tha98]. We
call a function R(X) a planar pseudo-rectangle of order m if there exist disjoint sets A, B C X
such that

1. R(X) can be expressed as R'(X\B) A R"(X\A), for some functions R’ and R".

2. For some d and index set J C [1,n] of size m, A={a;: j€ J}and B={b;: j e J}
such that for each j € J, a; and b; correspond to points in the % d-plane.

Proposition 26 ([BRS93, Tha98]). Let f(X) be a Boolean function, where X corresponds
to the (k+1)-dimensional hypercube of side n. Let m = n/[6(k + 1)28T1] and p = 72 -
k- 2. Suppose ‘R*1(1)| < t for any planar pseudo-rectangle R of order m that satisfies
R(X) < f(X). Then, any non-deterministic read-k branching program for f requires size

(‘f_l(l)‘ /t) 1/(2]91’).

18

The above proposition can be extended to handle branching programs that are syntactic
read-k on a subset of the variables. Suppose f(X,Y) is a Boolean function. We say that
R(X,Y) a planar pseudo-rectangle of order m on X if there exist disjoint sets A, B C X such
that

1. R(X,Y) can be expressed as R'(X\B,Y)A R"(X\A,Y), for some functions R’ and R".

2. For some d and index set J C [1,n] of size m, A={a;: j€ J}and B={b;: j € J}
such that for each j € J, a; and b; correspond to points in the 4§ d-plane.

We obtain:

Corollary 27. Proposition 26 holds for branching programs computing g(X,Y’) that are syn-
tactic read-k on X when we consider planar pseudo-rectangles R(X,Y) on X that satisfy
R(X,Y) < g(X,Y).

Proof (Sketch). Let P be a branching program computing f(X,Y). The proof is similar to
that of Proposition 26. A critical part of the proof of Proposition 26 involves keeping track of
variables read along the various paths. We have to only modify the proof so that along each
path in P, we keep track of the variables in X but ignore the variables in Y. The rest of the
proof can be duplicated; the only modification is that each function that arises as part of the
proof has an additional dependence on Y. O

Corollary 27 together with the following two claims imply Theorem 24.
Claim 28. |g;'(1)| > 2lXVYI-5(r+1)(k+1)

Let R(X,Y) = RI(X\B,Y)AR"(X\A,Y) be a planar pseudo-rectangle of order m = Q(n)
on X according to Corollary 27.

Claim 29. If R(X,Y) < gx(X,Y), then |[R™1(1)] < 2XUYI-m/(4k+1)%),

Proof of Claim 28. Let X 2 X' = Jye(o 4 Xq» Where X is a set of 5 variables {z, : v € Iy}
where Iy = {v € [1,n]**! : vy € [2,6] and vy = 1, for d' # d}. Let Y’ C Y be the variables
in the same positions in [1,n]¥T! as X’. Fix any assignment p to (X UY) — (X' UY"); we
show that it can always be completed to some assignment such that for each d, Hy(X,Y) =0
(mod 3), thus satisfying gx(X,Y). Because | X' UY’| = 5(r 4+ 1)(k + 1), the claim follows.

Fix the variables in Y so that for each d, the variables in X}, are active for d. This is
possible since the various I; are disjoint. Fix any d and write X} = {z1,... ,25}. Substitut-
ing the values according to p, Hq(X,Y) can be written as), u;z; + b, for some constants
U1,... ,u5, and b. It is not too hard to show that there is a setting of the z;’s such that
Y i uizi+b=0(mod 3). (See [Tha98] for details.) Repeating this for all d’s gives a satisfying
assignment for g5 (X,Y). O

Proof of Claim 29. By definition, there exists a d and an index set J C [1,n] of size m such
that A = {a; : j € J} and B = {b; : j € J}, and a; and b; correspond to points in the

19

§* d-plane for each j € J. Let Y be the set of 2mr Boolean variables in Y corresponding
to AU B. For any setting m of 0-1 values to Y, we say that a pair (aj,bj) for j € J is
good for m if both a; and b; are active for d under 7; let G be the set of pairs good for
7. Fix an arbitrary assignment p, consistent with 7, to the variables outside G,. Let I, be
the satisfying assignments of R(X,Y") consistent with p. Because R(X,Y) < gx(X,Y), every
assignment in I', satisfies Hy(X,Y) = 0(mod 3). Under this assignment, the polynomial
Hy(X,Y) reduces to (E(aj,bj)eG,r uja;bj) + ¢, where u; € {—1,1} for all j and ¢ € GF(3) are
constants. Applying Lemma 16 to the |G| x |G| matrix of full rank whose diagonal entries
are the u;’s, we obtain |T,| /221G=| < 27/Grl,

For a randomly and uniformly chosen 7, and any fixed pair (a;,b;), the probability that
(aj,b;) is good is 1/(k + 1)2. Therefore, by Chernoff’s bound, Pr[|G| < m/(3(k + 1)?)] <
e=2m/(O(k+1)*) | Gince p was picked uniformly given 7, we can finish the proof as follows:

|R_1(1)‘ /2|XUY| < 6—2m/(9(k—|—1)2) _|_2—m/(3(k+1)2) < 9—m/(4(k+1)%)

References

[Abr90] Karl R. Abrahamson. A time-space tradeoff for Boolean matrix multiplication.
In Proceedings 31st Annual Symposium on Foundations of Computer Science,
pages 412-419, St. Louis, MO, October 1990. IEEE.

[Abr91] Karl R. Abrahamson. Time—space tradeoffs for algebraic problems on general
sequential models. Journal of Computer and System Sciences, 43(2):269-289,
October 1991.

[AMSS] Noga Alon and Wolfgang Maass. Meanders and their applications in lower
bounds arguments. Journal of Computer and System Sciences, 37:118-129,
1988.

[BC82] Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on

a general sequential model of computation. SIAM Journal on Computing,
11(2):287-297, May 1982.

[BCL194] J.R. Burch, E.M. Clarke, D.E. Long, K.L.. MacMillan, and D.L. Dill. Sym-
bolic model checking for sequential circuit verification. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 13(4):401-424,
April 1994.

[Bea91] Paul W. Beame. A general time-space tradeoff for finding unique elements.
SIAM Journal on Computing, 20(2):270-277, 1991.

[BF92] Laszlo Babai and Peter Frankl. Linear Algebra Methods in Combinatorics
with Applications to Geometry and Computer Science (Preliminary Version
2). University of Chicago, 1992.

20

[BFMadH*87] Allan Borodin, Faith E. Fich, Friedhelm Meyer auf der Heide, Eli Upfal, and

[BNS92]

[BRS93]

[Bry86]

[For97]

[MNTY3]

[Pip79]

[Raz91]

[SS93]

[Tha98]

[Weg87]

Avi Wigderson. A time-space tradeoff for element distinctness. SIAM Journal
on Computing, 16(1):97-99, February 1987.

Lasz16 Babai, Noam Nisan, and Marié Szegedy. Multiparty protocols, pseudo-
random generators for logspace, and time-space trade-offs. Journal of Com-
puter and System Sciences, 45(2):204-232, October 1992.

Allan Borodin, A. A. Razborov, and Roman Smolensky. On lower bounds for
read-k times branching programs. Computational Complezity, 3:1-18, October
1993.

R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677-691, August 1986.

Lance Fortnow. Nondeterministic polynomial time versus nondeterministic
logarithmic space: Time-space tradeoffs for satisfiability. In Proceedings,
Twelfth Annual IEEE Conference on Computational Complezity, pages 52—
60, Ulm, Germany, 24-27 June 1997. IEEE Computer Society Press.

Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of uni-
versal hashing. Theoretical Computer Science, 107:121-133, 1993.

Nicholas J. Pippenger. On simultaneous resource bounds. In 20th Annual
Symposium on Foundations of Computer Science, pages 307-311, San Juan,
Puerto Rico, October 1979. IEEE.

A. A. Razborov. Lower bounds for deterministic and nondeterministic branch-
ing programs. In Lothar Budach, editor, Fundamentals of Computation The-
ory: 8th International Conference, FCT ’91, volume 529 of Lecture Notes in
Computer Science, pages 47-60, Gosen, Germany, September 1991. Springer-
Verlag.

Janos Simon and Mario Szegedy. A new lower bound theorem for read only
once branching programs and its applications. In Advances in Computational
Complezity (J. Cai, editor), volume 13 of DIMACS Series in Discrete Math-
ematics, pages 183-193. AMS, 1993.

J. S. Thathachar. On separating the read-k-times branching program hierar-
chy. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of
Computing, Dallas, TX, May 1998. To appear.

Ingo Wegener. The Complexity of Boolean Functions. B.G. Teubner,
Stuttgart, 1 edition, 1987.

21

[Yao88] A. C. Yao. Near-optimal time-space tradeoff for element distinctness. In 29th
Annual Symposium on Foundations of Computer Science, pages 91-97, White
Plains, NY, October 1988. IEEE.

22

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

