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Abstract

Lower bounds are obtained on the degree and the number of mono-
mials of Boolean functions, considered as a polynomial over IFy, which
decide if a given r-bit integer is square-free. Similar lower bounds are
also obtained for polynomials over the reals which provide a threshold
representation of the above Boolean functions. These results provide
first non-trivial lower bounds on the complexity of a number theoretic
problem which is closely related to the integer factorization problem.

1 Introduction

In this paper we obtain lower bounds on the degree and the number of mono-
mials of Boolean functions, considered as a polynomial over IF,, which decide
if a given r-bit integer is square-free. Similar lower bounds are also obtained
for polynomials over the reals which provide a threshold representation of
the above Boolean functions. These results are somewhat similar to lower
bounds for the Boolean function deciding is a given integer z is a quadratic
residue modulo a prime p which are obtained in [5, 25]. However, instead of
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the very strong Weil bound, which is the main tool of [5, 25], in this paper
we use a sieve method and some classical results about distribution of prime
numbers. Accordingly, our results are weaker that those of [5, 25]. Nev-
ertheless they provide first non-trivial lower bounds on the complexity of a
number theoretic problem which is closely related to the integer factorization
problem.

We also show that some simple number theoretic observations allow us to
obtain quite strong lower bounds on several other complexity characteristics
of testing if a given integer is square-free.

We remark that testing if a given number is square-free is the only known
problem, related to the integer factorization problem, for which an uncondi-
tional deterministic polynomials time algorithm is known, see [14].

We recall that an integer x is called square-free if there is no prime p such
that p?|z. Otherwise z is called square-full. We define the function

], if z is square-free,
S(z) = { 0,  if z square-full.

For a given integer » > 1, we can identify z, 0 < x < 2" — 1, and its
bit representation xp ...z, (if necessary we add several leading zeros) and
consider S(z) as a Boolean function of r variables.

We study Boolean functions deciding if a given r-bit integer is square-free,
that is Boolean functions for which

B(zy,...,z,) = S(z), (1)
where x = x1 ...z, is the bit representation of z, 1 < x < 2" —1.

Each Boolean function B(Xj,...,X,) can be represented by a multilinear
polynomial over IFy of the form

B(Xl,...,X»,-) == Z Z Azlszzl Xlk’ (2)

k=0 1<i1<...<ip<r

where

A E]FQ, 1<y <...<y, <.

110
The minimal value of n in the representation (2) we call the degree of B and
write deg B. The number of non-zero coefficients A; we call the sparsity
of B and write spr B.

1.0

In this paper, we obtain lower bounds on the degree deg B and the sparsity
spr B of Boolean functions, satisfying (1).

We note that the degree of B in the basis {+, x}, which is has just been
defined, is the same as the degree in the more common basis {V,A, -},
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however it does not apply to the sparsity. Unfortunately it is not clear how
to adjust our method to obtaining lower bounds on the sparsity of B in the
basis {V, A, —}.

Similarly to the case of Boolean functions, for a polynomial f in r variables
over the reals we define the degree deg f as the largest sum ¢; 4+ ...+, and

the sparsity spr f as the number of coefficients A;, ;, in the representation

FX, X)) = > Ay XX Aiy i #0.

E1yeenyly
For a real w we define the sign-function as

siomw — 1, if w >0,
U= 0, ifw<0.

Here we also obtain lower bounds on the degree deg f and sparsity spr f of
polynomials f providing a threshold representation of S(x) for r-bit integers
x, that is a representation of the form

Signf(xla .- 'amT) = S(CL‘),

where x = x1 ...z, is the bit representation of z, 1 < x < 2" —1.

Furthermore, in the case of real polynomials, the Boolean values 0 and 1 can
be interpreted as two arbitrary real values oy and o, not necessarily oy = 0,
ap = 1. It is easy to see that the degree of the corresponding polynomials
does not depend on the particular choice of g, a; because they are equiva-
lent under a linear transformation of variables [13]. But it is shown in [13]
that the sparsity spr f, depends on the choice of o and ;. In fact, there
are examples of Boolean functions, demonstrating that for (o, ;) = (0,1)
and (g, 1) = (1, —1) the gap between the numbers of monomials of the cor-
responding polynomials for these two representations can be exponentially
large [13].

Threshold representations of Boolean functions via real polynomials have
been studied in a number of works [1, 2, 9, 13, 19, 24]. These papers con-
tain many general estimates together with lower bounds for some particular
Boolean functions. However these Boolean functions are usually a specially
constructed examples which are not related to any particular number theo-
retic or combinatorial problem.

In [5, 25], some lower bounds are obtained for the Boolean function deciding
the quadratic residuacity of x. Here we show that some of the used in [5, 25]
techniques can be applied to the function S(z). This approach is based on
the uniformity of distribution of long patters or 0,1 in the values of S(z).



For the quadratic residuacity a similar property has been established by using
the very powerful Weil estimate. Here we use a sieve method.

Throughout the paper we denote by logz the binary logarithm of x and by
Inz the natural logarithm of z.

2 Auxiliary Results

Let P denote the set of primes.

We use the following well known asymptotic formulas (see [21] for example)

In|[[p]| ~az T — 00. (3)
=
and .
~ L 4
@~ sow, @)

for the number of primes p < . The following estimate can be found in [15],
Section 10.11.

Lemma 1. For any integers M and N with 0 < M < N/2 the bound

M
Z N < 9H(M/N)N
=l K o

K=0
holds, where
H(y) = —7ylogy = (1 —7y)log(1—7), 0<vy<1,

s the binary entropy function.
Now we prove the following quite technical statement.

Lemma2. Let m > 1 be an integer and let us define k from the inequalities
2k > m?2 > 2k 1,

Let m < p1 < ... < pp bethe first m primes which are greater than m. Then
for any m-dimensional binary vector (o1,...,0,) there erists an integer y
such that

0<y<exp(@mlnm+O(m))

and
S 2%y + p) = oy, 1=1,...,m.



Proof. Put
Q=][p and M=2FQ.

p<m
PpEP

From (3) we see that @ = exp (O(m)). Thus it is enough to show that there
exists an integer u such that

0<u<exp@mlnm-+O(m))

and
S(Mu+p) =05, i=1,...,m. (5)
We remark that ged(p;, M) =1,i=1,...,m.

Let Z be the set of subscripts ¢ for which o; = 0 and let J be the set of
subscripts j for which o; = 1. Put

q=]]r

€T

From the Chinese Remainder Theorem we conclude that there exists an in-
teger a, 0 < a < q—1, such that

Ma = —p; (mod p3), 1€

Therefore
M(gz+a)+p; =0 (mod p?), 1 €T,

for any integer z. Now we show that one can select not too large z for which
S(M(gz +a)+p;j)=1, j€J.

For Z > 1, we denote by L;(Z) the number of square-full numbers of the
form M(qz +a) +p; with 1 < 2 < Z, j € J. To prove the lemma it is

sufficient to show that
> L(2) < Z. (6)
JjET

First of all we remark that, for 2 € Z and j € J,
M(gz+a)+p; Z0 (mod py).
Indeed, otherwise we have p?|(p; — p;) which is impossible.
For any prime p € P with ged(p,q) = 1 the congruence
M(gz+a)+p; =0 (mod p?), 1<z2<7Z,

has at most Z/p* + 1 solutions. Obviously, it does not have solutions for
P> > Mq(Z+1)+ M. Put V = (3MqZ)"/2.



The smallest prime divisor of any number M (gz+a)+p; exceeds m. There-

fore,
Z Z 1%
L@< 3 <p2+1> O(mlnm+an>

m<p<V
ged(p,q)=1

Putting Z = m?>Mq we obtain the inequality (6), provided that m is large
enough. Therefore, there exists y satisfying the condition (5) and such that
u<q(Z+1)<2m>Mg>.

Now, from the asymptotic formula (4) we conclude that p,, = O(mlInm).
Therefore, we have ¢ < exp (2mInm + O(m)). Finally, from (3) we see that
M < exp (O(m)) and the result follows. 0

The result of Lemma 2 can be improved by means of some more sophisticated
sieve methods, see [11] for example. However this does not improve our main
results.

3 Main Results

First of all we consider deciding the property of being square-free via Boolean
functions.

Theorem 3. Assume that a Boolean function B(X,...,X,) is such that for
any z, 1<z <2"—1,

B(z1,...,z,) = S(x),

where x = x1 ...x, 1s the bit representation of x. Then, for sufficiently large
T, the bounds

deg B >0.141nr and spr B >

~ 5lnr
hold.
Proof. Assuming that p is large enough, we put
=[5
5Inr |’
Let p1,...,pm and k be defined as in Lemma 2.
Let 7 be the number of monomials p;(w), j=1,...,7,in w = (wy,..., w)

such that for every k-dimensional vector

w = (wy,...,w) € {0,1}*
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we have a representation of the form
B(l/la e 7}/:/‘—/67 ’LU) = Zuj(w)f](}/la ey }/T'—k:)
j=1

with some polynomials f;(Y1,...,Y,_x) € Fo[Y1, ..., Y]
Obviously,

degB k_
T < ( ) and 7 < spr B. (7)

As in the proof of Lemma 2, we note that p; < ... < p,, < m? < 2¥. For
every ¢ = 1,...,m, we add several leading zeros to the binary representation
of p; to obtain binary strings s; of length k.

If 7 < m then there exist m coefficients ¢; € IFy, ¢ = 1,...,m, not all equal
to zero and such that

m
Zci,uj(si)z(), i:j,...,T.
i=1

Therefore we have the identity:

ZCiB(XI: ce ,XT,k, Si) = 0.
1=1

Let us fix some ¢y with ¢;, # 0.

One easily verifies that
2% = exp (5mInm + O(m)) .

Hence, from Lemma 2 we derive that there exists 7, 0 < y < 2"* such that
fori=1,....m

1’ le:Za
B(yh---,yrflwsi) :{ 0 ifi?éiz

where y = y;...y,  is the bit representation of y (with several leading
zeros, if necessary, to make it of length r» — k). Thus

m

ZCZ'B(Xl, cee ,XT,]C,SZ') =1.

i=1
From the obtained contradiction we see that
r>m > 26172,

Taking into account that H(0.1) < 1/2 and 0.1/1n2 > 0.14, from the in-
equalities (7) we obtain the desired result. O



Now we consider deciding if a given r-bit integer is square-free via real poly-
nomials.

Theorem 4. Let ag, a1 be two distinct real numbers and r > 1 be an inte-
gers. Suppose that a polynomial

f(Xy,...,X,) € R[Xy, ..., X,]
s such that for any ©, 1 <x <2" -1,
sign f(x1,...,z,) = S(z),

where x = x1 ...x, 1s the bit representation of x. Then, for sufficiently large
T, the bounds

deg f > 0.14In7r and spr f >
Slnr

hold.

Proof. We proceed as in the proof of Theorem 3. Assuming that p is large
enough we put

b

m = .
5lnr

Let p1,...,pm and k be defined as in Lemma 2.

Let 7 be the number of monomials p(w), j=1,...,7,in w = (wy,..., w)
such that for every k-dimensional vector

w = (wy,...,wg) € {ao,al}k

we have a representation of the form
f, Y w Zuy )i (Yi, - Yoyg)

with some polynomials f;(Y1,...,Y,—x) € R[Y1,..., Y, _4].
Obviously
T<

(degf +k

deg f > and 7 <sprf. (8)

As in the proof of Lemma 2, we note that p; < ... < p,, < m? < 2¥. For
every 1 = 1,...,m, we add several leading zeros to the binary representation
of p; to obtain a binary string of length k. In this string we replace 0 by «q
and 1 by a; and denote by s; € {ag, @1 }* this new vector.



If 7 < m then there exist m real coefficients ¢;, i = 1,..., m, not all equal
to zero and such that

m
ZCZ',LLZ'(SZ'):O, izl,...,T.
=1

Therefore we have the identity:

m

Zcif(Xl, ce 7Xr—k:73i) =0.

i=1
One easily verifies that

2" F = exp (5mInm + O(m)).
Hence, from Lemma 2 we derive that there exists y, 0 <y < 2" % such that

cif (o, sy _,,si) >0

for every ¢; # 0, where y = y;...y,—x is the bit representation of y (with
several leading zeros, if necessary, to make it of length r — k). Thus

m

Zcif(Xl, . ,Xr,k,Si) > 0.

i=1
From the obtained contradiction we see that
r>m > 26172,

Taking into account that 1.1H(0.1/1.1) < 1/2, and 0.1/1n2 > 0.14, from
the inequalities (8) and Lemma 1 we obtain the desired result. 0

4 Remarks

It is not hard to see that the constants in our estimates can be improved.

On the other hand, we do not know how to obtain more substantial improve-
ments of our lower bounds. In particular, they are exponentially weaker that
those of [5, 25] which are obtained for functions deciding quadratic resid-
uacity.

Also, it would be very interesting to obtain analogues of the results of this
papers for other Boolean functions related to various number theoretic prob-
lems. For example, for Boolean functions deciding primality or the parity of
the number of prime divisors of . Unfortunately, even more advanced than
used in Lemma 2 sieve techniques are still not powerful enough to produce
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such results, even under the assumption of the Extended Riemann Hypoth-
esis.

Finally, we remark that that some elementary number theoretic considera-
tions can be used to obtain a very tight lower bound on the sensitivity of

S(x).

We recall that the sensitivity, o(B), which is also known as the critical
complexity, of a Boolean function B(Ui,...,U,) is defined as the largest
integer s < r such that there is a binary vector z = (z1,...,z,) € {0,1}" for
which B(z) # B(z®) for s values of i, 1 < i < r, where z(® is the vector
obtained from x by flipping its 7th coordlnate,

o(B) = max Z‘B ))‘

2e{0,1}"
In other words, o(B) is the maximum, over all binary vectors

z = (z1,...,2,) € {0,1}",
of the number of points y € {0,1}" on the unit Hamming sphere around x
with B(y) # B(z).

This parameter is of interest because it can be used to obtain lower bounds
for the CREW PRAM complexity of B, see [6, 7, 8, 20, 26]. That is. the
complexity on a parallel random access machine with an unlimited number
of all-powerful processors such that simultaneous reads of a single memory
cell by several processors are permitted, but simultaneous writes are not.

Now, let us select an r-bit square-free integer x with x =1 (mod 9) and

= —1 (mod 25), for example one can select a prime number x = p. We
note that 260 =1 (mod 225). Therefore, flipping the ith bit of z with i of
the form ¢ = 605 + 1 we obtain either

r—2"t=2-2% =0 (mod?9)
or ' '
r+2"'=24+2% =0 (mod 25).

Therefore the sensitivity of a Boolean function B satisfying the conditions
of Theorem 3 is at least o(B) > |r/60]|. Obviously, o(B) <.

Similar considerations can be used to derive the lower bound |r/4]| on the
sensitivity of primality testing, see [25].

Several more lower bounds on some other inportant complexity characteris-
tics can be obtained from quite simple considerations.
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Let us define the additive complezity C. (f) of a polynomial f over reals as
the smallest number of ‘+’ and ‘—’ signs necessary to write down a polyno-
mial [4, 10, 12, 22, 23]. Obviously, for any univariate polynomial f

Ce(f) <spr(f) —1<degf

but neither spr (f) nor deg f can be estimated in terms of C (f). However,
if a non-zero polynomial f(X) € R[X] has at lease N real zeros then

Cs(f) > (é logN)l/2

The notion of additive complexity is related to the straight-line complexity
of f,see [4,10, 12, 22, 23]

Now, let f(x) € R(z) be such that
sign f(z) = S(z), 0<z<2"—1.

It is easy to show that there is a constant ¢ > 0 such that there are at least
c2" square-free numbers of the form 4z + 1 and, thus, f(4z)f(4dz+1) <0
for them. Therefore f(z) has at least ¢2" zeros. This immediately provide
the same bound on the degree of f and the lower bound

Cy (f) > 0.2r2 4 0(1).

Following [17], for a function
f:R—{0,1}

we define the M;(r)-invariant as the smallest integer M such that for any
A < M there are two r-bit integers 0 < x1 < x5 < 2" — 1, both divisible by
A, and such that f(xz1) # f(x2); see also [3, 16, 17, 18] for applications to
complexity theory.

It is easy to show that for any integer \ there exists u < p? such that \u+1
is square-full, where p is the smallest prime number with ged(\,p) = 1.
Thus p = O (log(A + 1)). It has been shown in [11] that, for any € > 0 there
exists a square-free number of the form Av 4+ 1 with v = O(A\*/**¢), where
the implied constant depends only on ¢.

Therefore, if f(z) = S(x +1) for 0 < z < 2" — 1 then for any ¢ > 0 the
bound
Mf > 0(8)297‘/13—8

holds where C(¢) > 0 depends only on .
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