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Abstract

We introduce a new approach to construct extractors — combinatorial objects akin to ex-
pander graphs that have several applications. Our approach is based on error correcting codes
and on the Nisan-Wigderson pseudorandom generator. An application of our approach yields a
construction that is simple to describe and analyze, does not utilize any of the standard tech-
niques used in related results, and improves or subsumes almost all the previous constructions.

1 Introduction

Informally defined, an extractor is a function that extracts randomness from a weakly random
distribution. Explicit constructions of extractors have several applications and are typically very
hard to achieve. In this paper we introduce a new approach to the explicit construction of extractors.
Our approach yields a construction that improves most of the known results, and that is optimal for
certain parameters. Furthermore, our construction is simple and uses techniques that were never
used in this field before — indeed, we do not utilize any of the usual techniques of this field either.
The main conceptual contribution of this paper is the use of the Nisan-Wigderson pseudorandom
generator in a framework where information-theoretic randomness is being considered.

Extractors and Dispersers. The formal definition of an extractor involves many parameters:
an (n,m, k, d, ε)-extractor is a function Ext : {0, 1}n × {0, 1}d → {0, 1}m that on input a string
u ∈ {0, 1}n sampled from a source having min-entropy k1 and a string y uniformly sampled from
{0, 1}d, returns a string Ext(u, y) ∈ {0, 1}m whose distribution (over the choices of u and y) is
ε-close (see Section 2 for a definition) to the uniform distribution over {0, 1}m. In section 2 we also
define (n,m, k, d, ε)-dispersers ; for the same choice of parameters, an extractor is also a disperser,
but not vice-versa. Indeed, constructions of dispersers are somewhat easier than constructions of
extractors with the same parameters.

Previous Results and Applications. Dispersers were first defined by Sipser [Sip88], while
extractors were first defined by Nisan and Zuckerman [NZ93]. Extractors and dispersers are useful

∗lucat@dimacs.rutgers.edu. DIMACS Center, Rutgers University, Piscataway, NJ & Columbia University, New
York, NY. Work done while at MIT.

1A random variable X over {0, 1}n has min-entropy k if for every u ∈ {0, 1}n it holds Pr[X = u] ≤ 2−k. An
illustrative example of a random variable having min-entropy k is the uniform distribution over a set S ⊆ {0, 1}n
such that |S| = 2k.
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in several applications where one wants to weaken the randomness requirements of a randomized
procedure. One of the main applications of explicit constructions of such objects is the simulation of
randomized algorithms using weak random sources. This research area originates from early work by
Vazirani and Vazirani [VV85], Santha and Vazirani [SV86], Vazirani [Vaz86, Vaz87], Chor and Gol-
dreich [CG88], and Cohen and Wigderson [CW89] who defined increasingly general models of weak
random sources. The recognition of min-entropy as the “right” parameter to measure the amount
of algorithmically usable randomness in a source is due to Zuckerman [Zuc90]. Extractors allow to
use weak random sources in order to simulate every BPP algorithms; dispersers allow for simulation
of RP algorithms. Several constructions of extractors and dispersers [NZ93, SZ94, SSZ98, TS96]
were motivated by this application. An optimal result has been achieved in this respect by Saks
et al. [SSZ98] for RP algorithms, by finding an explicit construction of (n, nγ , nγ

′
, O(log n), 1/2)-

dispersers for every 0 < γ < γ ′ < 1. Andreev et al. [ACRT97] showed how to use dispersers in
order to simulate BPP algorithms (their result is based on techniques from [ACR98]). The result
of [ACRT97], together with the dispersers of [SSZ98] implies an optimal simulation of BPP algo-
rithms. The existence of extractors strong enough to give directly an optimal simulation of any
BPP algorithm was still an open question (which we solve in this paper).

Construction of extractors also yield oblivious samplers, with applications to randomness-
efficient reduction of error in randomized algorithms and in interactive proof-systems, and to leader
election in anonymous networks (see [Zuc96b] for a construction whose parameters are optimal
for these applications). Construction of extractors (but dispersers would suffice) also yield con-
struction of expander graphs, superconcentrators, and sorting networks. See [WZ93] for results
establishing this connection. Constructions of extractors and dispersers yielding tight construc-
tions of expanders, superconcentrators and sorting networks are still not known, though progress
was made in [NZ93, SZ94, SSZ98, TS96, TS98]. Other applications have been found more recently
in complexity theory: Andreev, Clementi and Rolim [ACR97] use dispersers to prove that certain
circuit-complexity assumptions imply P=BPP (without dispersers they would need a stronger as-
sumption). Goldreich and Zuckerman [GZ97] show how to use constructions of extractors to give
a simple proof that MA is in ZPPNP. An open question that may be solved by better construction
of dispersers is to prove that Max Clique is not approximable within n1−ε unless P=NP (the cur-
rent randomized reduction [FGL+91, Zuc96a, FK94, BS94] from PCP to Max Clique and the PCP
construction of H̊astad [H̊as97] only imply the somewhat weaker consequence that ZPP=NP). It
is likely that more applications of extractors will be found in the future. Nisan remarks that ex-
tractors “exhibit some of the most ‘random-like’ properties of explicitly constructed combinatorial
structures” [Nis96].

The literature on explicit construction of extractors and dispersers is vast and technically chal-
lenging. An excellent and accessible introduction is given by a recent survey by Nisan [Nis96] (see
also [NTS98]). In Table 1 we summarize the best known constructions, for different combination
of the parameters, and we state the parameters of (a special case of) our construction.

Our Main Result. In this paper we introduce a new approach to constructing extractors. An
application of this approach yields a construction that works for any min-entropy k = nΩ(1), extracts
a slightly sub-linear fraction of the original randomness (i.e. the length of the output is m = k1−γ

for an arbitrarily small γ) and uses O(log n) bits of true randomness. Formally,

Theorem 1 (Main) For every m,n, ε, γ we can construct a (n,m,m1+γ , d, ε)-extractor where d =

O((log n/ε)2 1
γ e

1
γ 1

logm).

In particular, for fixed constants ε > 0 and 0 < γ < γ ′ < 1 we have for every n an explicit
(n, nγ , nγ

′
, O(log n), ε)-extractor.
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Reference Min entropy k Output length m Additional randomness Type

[Zuc96b] k = Ω(n) m = Ω(k) O(log n) Extractor

[TS96] any k k poly log n Extractor

[TS96] k = nΩ(1) m = kΩ(1) O(log n log · · · log n) Extractor

[SSZ98] k = nΩ(1) m = kΩ(1) O(log n) Disperser

[TS98] any k m = k1−o(1) O(log n) Disperser

This paper k = nΩ(1) m = kΩ(1) O(log n) Extractor

Table 1: A summary of previous results and our result.

Our construction improves on the construction of Saks, Srinivasan and Zhou [SSZ98] since
we construct an extractor rather than a disperser, and improves over the constructions of Ta-
Shma [TS96] since the additional randomness is logarithmic instead of slightly super-logarithmic.
The best previous construction of extractors using O(log n) additional randomness was the one
of Zuckerman [Zuc96b], that only works when the min-entropy is a constant fraction of the input
length, while in our construction every min-entropy of the form nγ is admissible. Our construction
shows an optimal way of using weak random sources to simulate every randomized procedure. In
contrast to the result of [ACRT97] we can use a weak random source to generate almost uniformly
distributed random bits independently of the purpose for which the random bits are to be used. This
is desirable if, for example, one wants to do probabilistic encryption (or whatever cryptographic
application that requires randomness) using a weak random source.

Our construction is not yet the best possible, since we lose part of the randomness of the source
and because the additional randomness is logarithmic only as long k = nΩ(1). We believe that
some mix of our approach and of previous techniques will eventually give tight constructions. Our
approach is different from previous ones in this field: we do not use any of the standard techniques
(hash functions in combination with the leftover hash lemma, composition, etc.), whereas our
main tool is the Nisan-Wigderson pseudorandom generator [NW94], which we use for the first
time in a framework where information-theoretic randomness is being studied. It is known that a
Nisan-Wigderson generator constructed from a fixed hard function transforms a small seed of truly
random bits into a distribution of longer strings that is computationally indistinguishable from
the uniform distribution. In this paper we show that applying the Nisan-Wigderson construction
to a random function sampled from a distribution with certain properties, the outcome of the
generator will be statistically close to the uniform distribution. The random function can be
obtained by encoding with an error correcting code the outcome of a distribution having sufficiently
large min-entropy. Note that, in comparison with the standard analysis of the Nisan-Wigderson
pseudorandom generator [NW94], we show how to use a stronger assumption (that the function
used to construct the generator is random rather than fixed and hard) in order to obtain a stronger
consequence (that the output is statistically close, rather than computationally indistinguishable,
from the uniform distribution).

Later results. Shortly after the development of the results of this paper, Vadhan [Vad98] showed
how to reduce the number of additional random bits that are used in our construction when the
length of the output is required to be very close to the min-entropy of the source. In our con-
struction, if the input has min-entropy k and the output is required to be of length m, then the
additional randomness is O(m1/ log(k/m)(log n)2/ log(k/m)). In Vadhan’s construction the depen-
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dency is O((log n)2/ log(k/m)). Vadhan then shows how to recursively compose his construction
with itself (along the lines of [WZ93]) and he obtains in this way another construction where k = m
and the additional randomness is O(log3 n). Constructions of extractors with parameters k ≡ m
have applications to the explicit construction of expander graphs [WZ93]. In particular, Vadhan
[Vad98] presents constructions of expander graphs and of superconcentrators that improve previous
ones by Ta-Shma [TS96]. Vadhan’s improvements are obtained by reducing the seed length in the
Nisan-Wigderson generator that we use. In particular, while the Nisan-Wigderson generator is built
upon “combinatorial designs”, Vadhan shows that a combinatorial structure of weaker properties
(which he calls “weak designs”) suffices to make the generator work. This yields an improvement
since efficient constructions of weak designs exist whith parameters that are provably better than
what would be obtainable using combinatorial designs. Indeed, Vadhan shows a lower bound for
design constructions that implies the optimality of the designs used in this paper (and therefore
the necessity of using weak designs in order to improve our results). We reference the reader to
[Vad98] for further details.

This paper. This paper is in a very preliminary version. Send email to lucat@dimacs.rutgers.edu
if you are interested in receiving a more polished version as soon as it will be available.

2 Background

In this section we formally define some standard notions that will be used later.
For two random variables X1 and X2 over {0, 1}m, their statistical distance is defined as

max
T :{0,1}m→{0,1}

|Pr[T (X1) = 1]−Pr[T (X2) = 1]| (1)

and we say that two distributions are ε-close if their statistical distance is at most ε. The predicate
T occuring in Expression (1) will also be called a statistical test later. Rephrasing the definition
of extractor given in the introduction, we have that an (n,m, k, d, ε)-extractor is a function Ext :
{0, 1}n × {0, 1}d → {0, 1}m such that for every random variable X on {0, 1}n with min-entropy k
and for every predicate T : {0, 1}m → {0, 1} it holds

∣∣∣∣Pr
y

[T (Ext(X, y)) = 1]−Pr
v

[T (v) = 1]

∣∣∣∣ ≤ ε

where y and v are uniformly distributed in {0, 1}d and {0, 1}m, respectively.
An (n,m, k, d, ε)-extractor can also be seen as a bipartite multigraph G = (U, V,E) where

U = {0, 1}n, V = {0, 1}m, and there exists an edge (u, v) in E for every y such that Ext(u, y) = v
(so that the left-degree is 2d). G has the property (which is implied but not equivalent to the
property of Ext being an extractor) that for every subset S ⊆ U with |S| ≥ 2k and every T ⊆ V it
holds ∣∣∣∣

cut(S, T )

2d|S| −
|T |
2n

∣∣∣∣ ≤ ε

where we denote by cut(S, T ) the number of edges having one endpoint in S and the other in T .
A (n,m, k, d, ε)-disperser is a bipartite multigraph G = (U, V,E) with the same size and degree
as before having the property that for every subset S ⊆ U with |S| ≥ 2k and every T ⊆ V with
|T | > ε2m there is at least one edge connecting S and T (i.e. cut(S, T ) ≥ 1).
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3 Overview of our construction

Nisan and Wigderson introduce in [NW94] a generic construction that given a hard Boolean func-
tions f : {0, 1}l → {0, 1} yields a pseudorandom generator NWf : {0, 1}d → {0, 1}m that stretches
a random seed y of length d = O(l) into a longer string NWf (y) that is computationally in-
distinguishable from the uniform distribution. Our first idea would be to define an extractor
Ext(u, y) = NWu(y), where we are identifying the string u ∈ {0, 1}n that the extractor receives in
input with a Boolean function u : {0, 1}log n → {0, 1} in the natural way. This idea is motivated
by the fact that the Nisan-Wigderson construction, though formulated in a computational setting,
also works in an information-theoretic setting: if T : {0, 1}m → {0, 1} is a statistical test2 that
distinguishes the output of NWf (·) from the uniform distribution, then Nisan and Wigderson show
how to define a function g that has a short description given T (indeed, they have to show that g is
easily computable given T , but we need not care about that in our setting) and that approximates
f , i.e. agrees with f in noticeably more than half of the domain. Our plan is to prove that if u
is sampled from a distribution with enough min-entropy, then, for every fixed statistical test T ,
there will only be a very small probability that a u is sampled such that NWu(·) fails test T . In
order to prove such a claim, we would argue that every string u for which the generator NWu(·)
fails test T has small description, and so there are a few such strings u, and the probability that
one of them is sampled is small. This construction, however, is not strong enough to prove our
Main Theorem. Informally speaking, the difficulty is that, even though there are not too many
boolean functions having small descriptions, there are a lot of functions that are approximated by
functions having small descriptions, therefore we need to assume a very large min-entropy in order
to prove that the construction works for almost all the sampled strings u. One way to improve the
construction, and to prove a slightly worse version of the Main Theorem, would be to use a pseu-
dorandom generator construction by Impagliazzo and Wigderson [IW97]. The generator IW·(·)
of Impagliazzo and Wigderson has the property that if f is a boolean function and T is a test
that distinguishes IWf (·) from the uniform distribution, then f has a small description given T .
Given (an appropriate quantitative version of) the previous property of the Impagliazzo-Wigderson
generator, it would be easy to see that an extractor defined as Ext(u, y) = IWu(y) proves the Main
Theorem . However, the previously stated property of the Impagliazzo-Wigderson generator was
never observed, let alone proved, before, and even though such a property is “implicitly proved”
in [IW97], an explicit proof (whether done by this author, or left to the reader) would be long and
complicated. In this paper we rather follow a simpler route and we use error correcting codes. Our
final way of define Ext(u, y) will be to encode u into a string ū using an error correcting code, to
view ū as a boolean function ū : {0, 1}O(log n) → {0, 1}, and then let Ext(u, y) = NWū(y). Suppose
now that T is a statistical test that is failed by NWū(·); then there exists some string u′ that is
close to ū and that has a short description, and now, since ū comes from an error correcting code,
the string u′ (almost) completely determines ū. In turn, ū uniquely determines u, and so we can
conclude that u itself has a short description. If u is sampled from a distribution with sufficiently
large min-entropy, it is now easy to prove that there is a very low probability that a string with a
short description be sampled, and so T is almost never failed. We stress that our construction and
its analysis are presented in this paper in a completely self-contained way, and that they can be
understood without previous knowledge of works on pseudorandom generators.

2For a generator G : {0, 1}l → {0, 1}m and a statistical test T : {0, 1}m → {0, 1} we will say that T distinguishes
G(·) from the uniform distribution (or that G fails test T ) if |Pr

y
[T (G(y)) = 1] − Pr

r
[T (r) = 1]| ≥ ε, where y is

uniform in {0, 1}l, r is uniform in {0, 1}m, and ε is some fixed constant that depends on context.
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4 Main Result

4.1 Preliminaries

In this section we state some known technical results that will be used in the analysis of our
extractor. For an integer n we denote by [n] the set {1, . . . , n}. We denote by u1 · u2 the string
obtaining by concatenating the strings u1 and u2.

Lemma 2 (Error Correcting Codes) For every n and δ there is an efficient encoding EC :
{0, 1}n → {0, 1}n̄ where n̄ = poly(n, 1/δ) such that every ball of Hamming radius (1/2 − δ)n̄ in
{0, 1}n̄ contains at most poly(1/δ) codewords. Furthermore n̄ can be assumed to be a power of 2.

Stronger parameters are achievable. In particular the length of the encoding can be n̄ = npoly(1/δ).
However, the stronger bounds would not improve our constructions.

Lemma 3 (Design [NW94]) For every m, γ > 0 and l there exists an efficiently constructible
family of sets S = S1, . . . , Sm such that

• Si ⊆ [d], where d = O(l2 1
γ e

1
γ / logm)

• |Si| = l

• |Si ∩ Sj | ≤ γ logm.

The family S will be called an (m, l, γ)-design.

Lemma 3 was proved in [NW94] for the special case of γ = 1. The general case follows using the
same proof, but a little care is required while doing a certain probabilistic argument (one has to
choose the right Chernoff bound).

The following notation will be useful in the next definition: if S ⊆ [d], with S = {s1, . . . , sl}
(where s1 < s2 < · · · < sl) and y ∈ {0, 1}d, then we denote by y|S ∈ {0, 1}l the string ys1 ·ys2 · · · ysl .

Definition 4 (Nisan-Wigderson Generator [NW94]) For a function f : {0, 1}l → {0, 1} and
an (m, l, γ)-design S = (S1, . . . , Sm), the Nisan-Wigderson generator NWf,S : {0, 1}d → {0, 1}m is
defined as

NWf,S(y) = f(y|S1
) · · · f(y|Sm)

For two functions f, g : {0, 1}l → {0, 1} and a number 0 ≤ ρ ≤ 1 we say that g approximates f
within a factor ρ if f and g agree on at least a fraction ρ of their domain, i.e. Pr

x
[f(x) = g(x)] ≥ ρ.

Lemma 5 (Analysis of the NW Generator [NW94]) Let S be an (m, l, γ)-design, f : {0, 1}l →
{0, 1} be a Boolean function and T : {0, 1}m → {0, 1} be such that

| Pr
y∈{0,1}d

[T (NWf,S(y)) = 1]− Pr
r∈{0,1}m

[T (r) = 1]| ≥ ε .

Then there exists a function gu,T : {0, 1}l → {0, 1}m computable by a circuit of size m1+γ such that
either T (gu,T (·)) or its complement approximates f(·) within 1/2− ε/m.

The proof is identical to the proof of Lemma 2.4 in [NW94]. For the ease of the reader we sketch
a proof in the appendix.
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4.2 Construction

The construction has parameters n, m ≤ n, γ and ε.
Let EC : {0, 1}n → {0, 1}n̄ be as in Lemma 2, with δ = ε/m, so that n̄ = poly(n, 1/ε), and

define l = log n̄ = O(log n/ε). For an element u ∈ {0, 1}n, view EC(u) as a boolean function
ū{0, 1}l → {0, 1}.

Let S = S1, . . . , Sm be as in Lemma 3, such that Si ⊆ [d], |Si| = l, |Si ∩ Sj | ≤ γ logm, and

d = O(l2 1
γ e

1
γ 1

logm ).

Then we define Ext : {0, 1}n × {0, 1}d → {0, 1}m as

Ext(u, y) = NWū,S(y) = ū(y|S1
) · · · ū(y|Sm) .

4.3 Analysis

Lemma 6 For every fixed predicate T : {0, 1}m → {0, 1}, there are at most 2m
1+γ+o(1)

strings
u ∈ {0, 1}n such that

∣∣∣∣∣ Pr
y∈{0,1}d

[T (Ext(u, y)) = 1]− Pr
r∈{0,1}m

[T (r) = 1]

∣∣∣∣∣ ≥ ε (2)

Proof: It follows from the definition of Ext and from Lemma 5 that if u is such that (2) holds,
then there exists a function gu,T : {0, 1}l → {0, 1}m computable by a circuit of size m1+γ and a bit
b ∈ {0, 1} such that the function b⊕ T (gu,T (·)) approximates ū(·) within 1/2− ε/m = 1/2− δ.

Now, we claim that there are at most poly(m/ε)2m
1+γ+o(1)

strings u for which there exists a
function g of circuit complexity m1+γ and a bit b such that ū(·) and b⊕ T (g(·)) are within relative

distance 1/2 − δ. Indeed, there are at most 2m
1+γ+o(1)

circuits of size m1+γ , and therefore there

are at most 2m
1+γ+o(1)

functions of the form b ⊕ T (g(·)), where g has circuit complexity m1+γ .
Furthermore, each such function can be within relative distance 1/2−ε/m from at most poly(m/ε)
functions ū(·) coming from the error correcting code of Lemma 2.

We conclude that poly(m/ε)2m
1+γ+o(1)

is an upper bound on the number of strings u for which
Expression (2) can occur.

�

Theorem 7 Ext as described above is a (n,m,m1+γ+o(1), d, ε + o(1))-extractor.

Proof: Fix a predicate T : {0, 1}m → {0, 1}. From Lemma 6 we have that the probability that
sampling a u from a source of min-entropy k we can have

|Pr
y

[T (Ext(u, y)) = 1]−Pr
r

[T (r) = 1]| ≥ ε

is at most 2m
1+γ+o(1) ·2−k which can be made o(1) by choosing k = m1+γ+o(1). A Markov argument

shows that
|Pr
u,y

[T (Ext(u, y)) = 1]−Pr
r

[T (r) = 1]| ≤ ε+ o(1)
�
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5 Final Remarks

The idea of applying results on pseudorandomness to the context of information-theoretic random-
ness was inspired by previous work of Andreev et al. [ACRT97]. The use of error-correcting codes
was inspired by an unpublished new proof of the results of [IW97] due to Madhu Sudan.

Both the error correcting codes of Lemma 2 and the design of Lemma 3 can be constructed in
logarithmic space. The construction of designs in logarithmic space requires a logarithmic amount
of randomness, and only succeeds with high probability (see [IW97] and also [AR98, Section 5] for
details), but both these limitations are not a problem in our construction, since the randomness can
be taken from the seed, and a small error probability only contributes to a slight increase of the final
statistical difference from the uniform distribution. Therefore, our extractors can be constructed
in logarithmic space, unlike the dispersers of [SSZ98, TS98] and the extractors of [TS96].

The analysis of Section 4.3 is not as tight as it could be. Specifically, in order to prove an upper
bound on the number of strings u for which Ext(u, ·) fails a test T , we first compute an upper
bound on the size of circuits “encoding” u, and then we upper bound the number of functions that
are computed by circuits of a given size. It would be tighter to state Lemma 5 in a different way,
by saying that gu,T belongs to a small family of functions, and giving a bound on the size of the
family. Such a bound can be stronger than the bound implied by the circuit size. This improvement
is not particularly important in our construction, but becomes essential in the construction of
Vadhan [Vad98]. See [Vad98] for this alternative counting argument.
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A Appendix

A.1 A Sketch of the Proof of Lemma 3

The following version of the Chernoff bound will be used.

Lemma 8 Let X1, . . . , Xn be 0/1 mutually independent random variables such that E[
∑
iXi] = µ.

Then, for every α > 1 it holds

Pr[
∑

i

Xi ≥ αµ] ≤ e−((lnα)+ 1
α
−1)αµ

This bound is proved in the standard way, and a proof can be found for example in [LV97]. We
can now sketch the proof of Lemma 3 as it was carried on in [NW94].
Proof:[Of Lemma 3] Sequentially choose m subsets of [d] such that any of the chosen subsets
intersects the previously chosen ones in less than γ logm points. A probabilistic argument using
tha above Chernoff bound shows that the algorithm is always able to choose a new subset as long as
the total number of sets in no more than m (in the probabilistic argument we will choose a multi-set
of elements, so as to be able to use the Chernoff bound, and then we will discard duplicates.)

�
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A.2 A Sketch of the Proof of Lemma 5

The following result will be used.

Lemma 9 (Distinguishability versus Predictability [Yao82]) Let T : {0, 1}m → {0, 1}, g :
{0, 1}m−1 → {0, 1}, f : {0, 1}l → {0, 1} and ε > 0; if

| Pr
x∈{0,1}l

[T (g(x), f(x)) = 1]− Pr
x∈{0,1}l,r∈{0,1}

[T (g(x), r) = 1]| ≥ ε

then there exists two bits b0, b1 ∈ {0, 1} such that the function b0 ⊕ T (g(x), b1) agrees with f(x) on
at least a fraction 1/2 + ε of the inputs.

We now prove Lemma 5.
Proof: [Of Lemma 5] The main idea is that if T distinguishes NWf,S(·) from the uniform dis-
tribution, then we can find a bit of the output where this distinction is noticeable, and then we
will apply Lemma 9. In order to find the “right bit”, we will use the so-called hybrid argument.
We define m + 1 distributions D0, . . . , Dm; Di is defined as follows as follows: sample a string
v = NWf.S(y) for a random y, and then sample a string r ∈ {0, 1}m according to the uniform
distribution, then concatenate the first i bits of v with the last m− i bits of r. By definition, D0

is distributed as NWf.S(y) and Dm is the uniform distribution over {0, 1}m. Using the hypothesis
of the Lemma and the triangle inequality we have

ε ≤ |Pr
y

[T (NWf.S(y)) = 1]−Pr
r

[T (r)]|
= |Pr[T (D0) = 1]−Pr[T (Dm) = 1]|

= |
m−1∑

i=0

(Pr[T (Di) = 1]−Pr[T (Di+1) = 1])|

≤
m−1∑

i=0

|Pr[T (Di) = 1]−Pr[T (Di+1) = 1]|

In particular, there exists an index i such that

|Pr[T (Di) = 1]−Pr[T (Di+1) = 1]| ≥ ε/m (3)

and there exists a bit b ∈ {0, 1} such that

Pr[b⊕ T (Di) = 1]−Pr[b⊕ T (Di+1) = 1] ≥ ε/m (4)

Now, recall that
Di = f(y|S1

) · · · f(y|Si−1
)riri+1 · rm

and
Di+1 = f(y|S1

) · · · f(y|Si−1
)f(y|Si)ri+1 · rm

and we can use an averaging argument to claim that we can fix r1, . . . , rm to some values ci · · · cm,
as well as all the all the bits of y except those in Si, and still have an expression like (4). In
particular, we have the relation

Pr[b⊕T (g1(x) · · · gi−1(x)cici+1 · · · cm) = 1]−Pr[b⊕T (g1(x) · · · gi−1(x)f(x)ci+1 · · · cm) = 1] ≥ ε/m
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where gj(x) is f(ySj ) where y is the string whose bits in Si are fixed according to x, and whose
other bits had been set non-uniformly. Since, by the property of the sets S1, . . . , Sm, every set Sj
contains at most γ logm elements of Si, it follows that gj(x) depends on at most γ logm bits of its
input and therefore is computable by a circuit of size nγ . We can now apply Lemma 9 and we have
that b0 ⊕ b⊕ T (g1(x) · · · gi−1(x)b1ci+1 · · · cm) agrees with f on a fraction 1/2 + ε/m of the inputs.
The m-tuple (g1(x) · · · gi−1(x)b1ci+1 · · · cm) is computable by a circuit of size at most m1+γ .

�
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