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Abstract

In this paper we extend the area of applications of the Abstract
Harmonic Analysis to the field of Boolean function complexity. In
particular, we extend the class of functions to which a spectral tech-
nique developed in a series of works of the first author can be applied.
This extension allows us to prove that testing square-free numbers by
unbounded fan-in circuits of bounded depth requires a superpolyno-
mial size. This implies the same estimate for the integer factorization
problem.

1 Introduction

In recent years spectral techniques based on the Abstract Harmonic Analysis
on the hypercube have been shown to represent a very useful tool for obtain-
ing lower complexity bounds. Various links between Fourier coefficients of
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Boolean functions and their complexity characteristics have been studied in
a number of works, see [1, 2, 3, 4, 5, 6, 10, 16, 17, 19, 20]. In particular, these
spectral techniques have been successfully applied to the parity function and
to threshold functions.

However, a limitation of such approach to the study of Boolean function com-
plexity is that, besides the results for parity and threshold functions, spec-
tral methods have provided lower bounds for specially constructed Boolean
functions, which are not related to any particular number theoretic or com-
binatorial problem. In fact, there are very few known examples of functions
coming from natural combinatorial or number theoretic problems for which
the spectral techniques have produced non-trivial results. The only examples
we are aware of are the lower bounds on integer multiplication [6] and on the
complexity of computing the discrete logarithm [7, 21]. There are also some
very interesting results about determinants [11, 12].

In this paper we pursue two purposes:

o extend the area of applications of the spectral techniques to the study
of Boolean function complexity;

o obtain the first non-trivial lower bound on the circuit complexity of
testing square-free numbers.

To this aim, we first provide a generalization of the spectral technique de-
veloped in [1, 2] for getting lower bounds on the size complexity of Boolean
functions computed by constant-depth circuits.

We then apply the generalized technique to evaluate the complexity of the
Boolean function which decides whether a given (n + 1)-bit odd integer is
square-free, that is the function for which

], if 22 + 1 is square-free,
F@n,- s 20) = { 0, if 2z + 1 is square-full, (1)
where 2z +1 =x;...x,1 is the bit representation of 2z +1, 0 <z <2" -1
(if necessary we add several leading zeros).

More precisely, we provide an estimate the Fourier coefficients of (1) and
derive a complexity lower bound showing that this function does not belong
to the complexity class AC°.

In 7, 21], some lower bounds are obtained for the function deciding if a given
integer x is a quadratic residues modulo p. Here we show that some of the
techniques used in [7, 21] can be applied to the function (1). This approach
is based on the uniformity of distribution of square-free numbers with some



fixed binary digits. For the quadratic residuacity a similar property has been
established by using the very powerful Weil estimate. Here we use a sieve
method.

Notice that our estimate compliments the results of [22] on polynomial rep-
resentations of the Boolean function deciding whether a given integer x is
square-free. Moreover, it provides the first non-trivial lower bound on the
circuit complexity of a number theoretic problem which is closely related to
the integer factorization problem. We finally remark that testing square-free
numbers is the only known problem, related to the integer factorization prob-
lem, for which an unconditional deterministic polynomial time algorithm is
known, see [15].

2 Basic Definitions

First of all, we provide some of the notation we use.
Let %8, = {0,1}" denote the n dimensional Boolean cube.

We will use the notation |f| to denote the number of strings accepted by
the function f, that is [f| = [{w € B, | f(w) = 1}|. Moreover, p; de-
notes the probability that the function f takes the value 1 (over the uniform
distribution), that is p; = |f[/2".

Given a binary string w € %,,, we denote with |w| the number of ones in
w, which is sometimes called the cardinality of the string because of the
correspondence between sets of positive integers and strings over the alphabet

{0,1}.
We now review some basic definitions.

An unbounded fan-in Boolean circuit C with input variables z4, ..., z,,
consists of several levels of AND, OR and NOT gates. The gates at the
bottom level accept values from the input variables z,...,z,. FEach of
the other gates may accept output values from any number of gates of the
previous levels. The only top level gate contains the output C(zy,...,z,).
For a more detailed description, see [6, 17, 20].

The number of levels is called the depth of the circuit, the number of gates
is called the size.

The class of AC° circuits consists of circuits whose size is bounded by a
polynomial in n, and whose depth is bounded by a constant.

A restriction p is a mapping of the set of the subscripts of input variables
x1,---, %, to the set {0,1,x}, where



o p(i) =0 means that we substitute the value 0 for z;;
o p(i) =1 means that we substitute the value 1 for z;;

o p(i) = * means that z; remains a variable.

Given a function f depending on n binary variables, we will denote by f,
the function obtained from f by applying the restriction p; f, will be a
function of the variables x; for which p(z;) =%, 1 <i < n.

The subscripts ¢ and the corresponding variables z; are called fixed if p(i) =
0,1, and free if p(i) = *.

We recall that an integer z is called square-free if there is no prime p such
that p?|z. Otherwise x is called square-full.

Throughout the paper we denote by logx the binary logarithm of x.

3 Abstract Harmonic Analysis and Circuits

We give some background on abstract harmonic analysis on the hypercube.
We refer to [17, 20] for a more detailed exposition.

We consider the space F of all the two-valued functions on %,,. The domain
of F is a locally compact Abelian group and the elements of its range, that is
0 and 1, can be added and multiplied as complex numbers. The above prop-
erties allow one to analyze F by using tools from harmonic analysis. This
means that it is possible to construct an orthogonal basis set of Fourier trans-
form kernel functions for . The kernel functions of the Fourier transform are
defined in terms of a group homomorphism from %,, to the direct product of
n copies of the multiplicative subgroup {£1} on the unit circle of the complex
plane. The functions Q, () = (—1)¥1%1(=1)w2#2 (=1)¥r®» = (—1)¥"% are
known as Fourier transform kernel functions, and the set {Q,, | w € B,}
is an orthogonal basis for F.

We can now define the Abstract Fourier Transform of a Boolean function
f as the rational valued function f* which defines the coordinates of f with
respect to the basis {Qy(z) |w € B,}, that is

frw) =273 Qu@)fl@)=2" Y (-1)""*f(z).
Then .
fl@)= Y Qu(@)f(w)= > (=1)" *f*(w)

is the Fourier expansion of f.



It is interesting to note that the zero-order Fourier coefficient, that is the
coefficient related to the all zeros string, is equal to the probability that the
function takes the value 1, while the other Fourier coefficients measure the
correlation between the function and the parity of subsets of its input bits
(see [16] for more details).

As a consequence of the orthogonality of the functions @, , it is also possible
to derive a very useful identity, the Parseval identity:

62%3 (ff)*=2" ; fw)=f;, (2)

where f; denotes the zero-order Fourier coefficient.

We finally present an interesting application of harmonic analysis to circuit
complexity which is due to [16].

Lemmal. Let f be a Boolean function on n wvariables computable by a
Boolean circuit of depth d and size M, and let 9 be any integer. Then

1 1/d
S (frw)? < g M2
|w|>9
where the sum is taken over all strings w € B,, of cardinality lw|>19. O

4 A Technique to Prove Lower Bounds on the
Size /Depth of Circuits

In [1] and [2] a new technique has been developed with the aim of proving
lower bounds on the size-complexity of Boolean functions presenting a rather
strong combinatorial structure. This technique is based both on the abstract
harmonic analysis on the hypercube, and on the spectral characterization of
the size-depth trade-off of Boolean circuits which has been given in Lemma 1.

Let f: %, — {0,1} be a Boolean function depending on n variables and let
ps denote the probability, over the uniform distribution, that the function
takes the value 1, that is p; = [f|/2". Now, let k, 1 < k < n, be the
smallest integer such that f has the following property: for any subfunction
f» depending on k variables, p;, = py, where py, = |f,|/2*. In this case, we
say that the function f is of level k (see [2] for more details).

Then, if f is computable by a circuit of constant depth d and size M, it
is possible to derive a lower bound on the size M of such a circuit, which
depends both on the probability p; and on the level k:

_1\1/d
M > (pf - pi) 20.05(n k)41 )
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Notice that this result can be viewed as a generalization of the exponential
lower bound for the size of constant depth circuits computing the parity
function [6, 10]. Indeed, parity and its complement are the only two non-
constant Boolean functions of level 1 [1].

The above lower bound can be proved by combining Lemma 1 with some
results of [2].

The paper [2] also gives a complete characterization of functions of level k.
A Boolean function f : %, — {0,1} is of level £ if and only if f§ = p; and
f*(w) = 0 for any string w such that 0 < |w| <n —k.

We now show how the above technique can be generalized in order to be
applied also to functions which present such combinatorial structure only in
an “approximate sense”.

A Boolean function f : {0.1}" — {0,1} is called §-approximately of level
k if

pr, —psl <6
for any subfunction f, depending on at least £ variables.

In the following theorem we derive a spectral characterization of functions
d-approximately of level k.

Theorem 2. Let f: %8, — {0,1} be 0-approzimately of level k. Then,

|fr(w)] <0

for any string w such that 0 < |w| <n—k.

Proof. Let u = (p1, 2, -- ., itn) be a Boolean string such that 0 < |u| =
n—{¢<n—k. Moreover, let Z = {i | y; =1}.

For any string u € {0,1}"7¢, let fo... denote the subfunction defined by the
restriction p,, that assigns to the variables z; such that i € Z, the (n — ¢)
values taken from the string u, and leaves free the other ¢ variables. Then,
we have

1 T 1 ,
P = g 2 CUFw) = o 2 (F1)2er f(w)
= 5 ¥ VT f =g T Dl

For any u € 9,4, the subfunction f,, , depends on ¢ > k variables and,
since f is d-approximately of level k, we have

| Fouel = 2'pg| < 256,
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Thus, we get

. 1
Wl = 5 2P X DM+ 3 DM (fpl = 2)
ucB,_¢ UEB, ¢
1
= o X D g -0 S5 X6
UEDB,_y uE%’I’L 4
and the result immediately follows. O

We are now able to state and prove a theorem which provides a lower bound
on the size required by a depth d circuit to compute functions which are
d-approximately of level k.

Theorem 3. Let f : %8, — {0,1} be a function §-approzimately of level k.
If f is computable by a circuit of constant depth d and size M, then

_E)1/d _
M > 20.05(n k)t/e41 (pf o p?_ . 522(71, k)logn) )

Proof. An application of Lemma 1 yields the following inequality:
M > 20.05191/d+1 Z (f*(w))Q )
|w| >
Let us choose ¥ =n — k. Then, by using the Parseval identity (2) we obtain

X (fFw) = X (Fw)-0) - X (ffw)’

lw|>n—k weEBnp I<|lw|<n—k

= pr—pi— > (FWw)’,

1<w|<n—k
where, as before, f; denotes the zero-order Fourier coefficient.

We are now left with the evaluation of the sum of the squares of the Fourier
coefficients of order less or equal to our threshold n — k. From Theorem 2 it
follows that

n—k n—k n
Z (f*(w))Z < 52 Z ( > < (52 2(n—k)logn’
1</w|<n—k j=1 \J

where we have applied the inequality

¢
=1 \J
Therefore, we obtain

S () 2 py - g - 2R

|lw|>n—k

and the result follows. O



Note that such a lower bound turns out to be meaningful provided that

52 2(nfk) logn __ 0(pf) )

5 Circuit Complexity of Testing Square-Free
Numbers

First of all we need a result about the uniformity of distribution of odd
square-free numbers with some fixed binary digits.

Let p be a restriction on the set {1,...,n}. We denote by N,(n) the set
of integers z, 0 < z < 2™ — 1 such that z; = p(i) for all fixed subscripts
i€{l,...,n}, where z;...z,1 is the binary expansion of 2z + 1. We also
denote by S,(n) the number of z € N,(n) for which 2z + 1 is square free.

Lemmad4. For any restriction p with r < n1/2/3 — 1 fized positions,

8
Sp(n) — ﬁ onT L O(anrfn/i&(r—l—l)).

Proof. Let T,(n,m) be the number of z € N,(n) with m?|2z+ 1. From the
inclusion-exclusion principle it follows that

Sn)= ¥ umT,(nm),

1<m<2(n+1)/2

m=1 (mod 2)
where p(m) is the Mobius function. We recall that p(1) =1, u(m) = 0 if
m is square-full and p(m) = (—1)*™ otherwise, where v(m) is the number
of prime divisors of m > 2.

Let ¢ be the length of the largest substring of free positions. It is obvious
that the elements of N,(n) can be separated into 2" "¢ groups such that in
each group the numbers are of the form 2°z +a, 0 < z < 2! — 1, for some
integers s and a.

For an odd integer m > 1, each such group contains 2!/m? + O(1) numbers
which are congruent to zero modulo m?. Taking into account that ¢ >
n/(k + 1), we then obtain

T,(n,m) = 20 /m? + O(2" 7 /D).

Put K = 22%/3(+1)  Applying the above asymptotic formula for m < K and
the trivial bound
T,(n,m) <2"/m*+1

8



for m > K, we obtain

n—r

= ¥ um (G o) ol ¥

1<m<K K<m<2(n+1)/2
m=1 (mod 2) m=1" (mod 2)

on
m?2

We also have

pu(m) n(m) _
1<Z<K m?2 - Z 7 T O(K 1)‘
m=1 (mod 2)

From Theorem 237 of [14] we derive

m=1 (mod 2)

5 p(m) iu(m) 3 p(m)

m2

m=1 (mod 2) m=1 m=0 (mod 2)
3 & pu(m) 3 4, 8
= - = — 2 = —.
4 mzzl m? 4 <) 72
Therefore,
8 n—r n—r—n/(r n
Sp(n) = 52"+ O(K 2 /rD) L 9n K
Finally, since for » < n'/2/3 — 1 the first term in the ‘O’-symbol dominates,
the result follows. O

At this point we are able to derive our main result, namely a lower bound
on the size complexity of testing square-free numbers.

Theorem 5. Assume that the Boolean function f given by (1) is computed
by an unbounded fan-in Boolean circuit C of depth d and of size M. Then,
for sufficiently large n,

d loglog M > 0.5logn + O(loglogn).

Proof. Put k = n — [nl/ 2log™2 nJ — 1. It follows from Lemma 4 that, for

sufficiently large n, f is d-approximately of level k£ with p; = 8/7? and
§ = exp(—Cn'/?1og®n), where C > 0 is some absolute constant. Applying
Theorem 3 we derive the desired statement. O

In particular, if the depth d is a constant, then the size turns out to be
superpolynomial M > exp(cn”), for some constants ¢ > 0 and v > 0. In
particular, this means that testing square-free numbers, and thus integer
factorization, cannot be done by a circuit of the class AC°.

Apparently the result of Lemma 4 can be improved by means of some more
sophisticated sieve methods (see for instance [13]). However this would not
improve our main result.



6 Concluding Remarks

It would be very interesting to obtain analogous results for other Boolean
functions related to number theoretic problems, for example for Boolean
functions deciding primality or the parity of the number of prime divisors of
the input z. Unfortunately, sieve techniques even more advanced than those
used in Lemma 4 are still not powerful enough to produce such results, even
under the assumption of the Extended Riemann Hypothesis.

We also remark that that some elementary number theoretic considerations
have been used in [22] to obtain a very tight lower bound on the sensitivity
of the function which decides whether its input x is a square-free integer.

Recall that the sensitivity, o(f), of a Boolean function f : %, — {0,1}
(which is also known as the critical complezity) is defined as the largest
integer s < n such that there is a binary vector z € %, for which f(z) #
f(z®) for s values of i, 1 < i < n, where 29 is the vector obtained from z
by flipping its ith coordinate,

—;E%XZV 2?)].

In other words, o(f) is the maximum, over all binary vectors x € %,, of
the number of vectors y € 9B, on the unit Hamming sphere around x with
f(y) # f(z). In [22] it has been shown that for the function

(z) = 1, if = is square-free,
IWT)=N 0, if o is square-full,

the bound o(g) > [n/60] holds.

This parameter is of interest because it can be used to obtain lower bounds
for the CREW PRAM complexity of a Boolean function f (see [8, 9, 18, 23]),
that is the complexity on a parallel random access machine with an unlimited
number of all-powerful processors, such that simultaneous reads of a single
memory cell by several processors are permitted, but simultaneous writes are
not. In particular, from the above bound on o(g) one immediately concludes
that the CREW PRAM complexity of ¢ is at least 0.5logn+ O(1), see [18].

It is also known that the average sensitivity

owl(f) =2 Y Y |f(x) - 1@

TEBp 1=1

can be expressed via the Fourier coefficients of f, see [1, 4, 5]. Applying our
results, one can derive the estimate o, (f) > cnl/? log_Qn for the function

10



f given by (1), where ¢ > 0 is an absolute constant. It would be interesting
to obtain a linear lower bound on the average sensitivity of f and g.

There are also close relations between the Fourier coefficients and the formula
size of a Boolean function, see [4], and we hope that our methods will apply
to this complexity characteristic as well.
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