Electronic Colloguium on Computational Complexity, Report No. 57 (1998)

Characterizing Small Depth and Small Space
Classes
by Operators of Higher Types

Manindra Agrawal*
Dept. of Computer Science
Indian Institute of Technology
Kanpur, India
manindra@iitk.ac.in

Eric Allender?
Department of Computer Science, Rutgers University
Piscataway, NJ 08855, USA

e-mail: allender@cs.rutgers.edu

Samir Datta*
Department of Computer Science, Rutgers University

Piscataway, NJ 08855, USA

e-mail: sdatta@paul.rutgers.edu

Heribert Vollmer
Lehrstuhl fur Theoretische Informatik, Universitat Wirzburg
Am Exerzierplatz 3, D-97072 Wiurzburg, Germany
e-mail: vollmer@informatik.uni-wuerzburg.de

Klaus W. Wagner
Lehrstuhl fur Theoretische Informatik, Universitat Wirzburg
Am Exerzierplatz 3, D-97072 Wurzburg, Germany
e-mail: wagner@informatik.uni-wuerzburg.de

*Part of this research was done while visiting the University of Ulm under an Alexander
von Humboldt Fellowship.

tSupported in part by NSF grant CCR-9734918.

tSupported in part by NSF grant CCR-9734918.

ISSN 1433-8092

Abstract

Motivated by the question of how to define an analog of interactive
proofs in the setting of logarithmic time- and space-bounded computa-
tion, we study complexity classes defined in terms of operators quan-
tifying over oracles. We obtain new characterizations of NC!, L, NL,
NP, and NSC (the nondeterministic version of SC). In some cases, we
prove that our simulations are optimal (for instance, in bounding the
number of queries to the oracle).

1 Introduction

Interactive proofs motivate complexity theorists to study new modes of com-
putation. These modes have been studied to great effect in the setting of
polynomial time (e.g. [Sha92, LFKN92, BFL90]) and small space-bounded
classes (e.g. [FL93, CL95]). Is it possible to study interactive proofs in the
context of even smaller complexity classes? Would such a study be useful
or interesting?

It has often proved very useful to study modes of computation on very
small complexity classes, although it has not always been clear at first,
just how these modes should be modeled. For instance, the definition of
alternating Turing machine given in [CKS81] does not allow an interesting
notion of sublinear time complexity, whereas augmenting this model with
random access to the input provides a useful model for studying circuit
complexity classes such as NC! and AC® [Ruz81, Sip83]. How can one
define a useful notion of interactive proof system for deterministic log time?

In attempting to answer this and related questions, we take as our start-
ing point the work of Baier and Wagner [BW98a|, where it was shown that
(single-prover and multi-prover) interactive proof systems can be modeled
by quantifying over oracles applied to P. This framework is defined quite
elegantly in terms of operators acting on complexity classes, generalizing the
framework initially presented by Schoéning [Sch89]. We present the formal
definitions below in Section 2.1.

After we present our definitions, we quickly review in Section 3 the main
results that were known previously, regarding characterizations of complex-
ity classes in terms of operators applied to P. The most important results
regarding interactive proofs are stated there, as well as some additional
characterizations due to Baier and Wagner.

Then, in Section 4, we present the notion of “scaling up” and “scaling
down” characterizations in this framework, and we present some instances

where “scaling down” does hold, as well as some instances where “scaling
down” does not hold, and we discuss some of the subtleties involved. We
are able to successfully give scaled-down versions of the known characteriza-
tions involving nondeterministic time-bounded complexity classes, and the
characterizations we give are essentially optimal. In this way, we obtain new
characterizations of NP and NL.

Next, in Section 5, we consider how to “scale down” the known char-
acterizations of space-bounded classes. In this way, we obtain new charac-
terizations of NC! and NSC. However, a number of open questions remain,
regarding whether it is possible to obtain true “scaled down” versions of
the characterization of PSPACE in terms of interactive proofs, as given in

[Sha92].

2 Definitions
2.1 Oracle Operators

Let us start by formally defining the operators we will use in this paper.
They are operators acting on oracles, and since later we are going to ap-
ply sequences of oracle quantifiers to some base class, we will need oracle
machines with more than one oracle tape.

Definition 2.1. A relativized class K of type o7 - - - 0}, is given by a recursive
enumeration Mg, M1, Ms,... of oracle machines with k oracle tapes each
where o; € {0,1,2} is the type of M;’s jth oracle (¢ > 0,1 < j < k). Here,
an oracle of type 2 is a usual oracle with no restriction. An oracle of type
1 is an oracle where after every query the oracle tape is not erased (hence
every query is an extension of the previous query). An oracle of type 0 is
simply a word. Access to this word is by using the oracle tape as an index
tape to address bits at specified positions. Now L(M;) consists of exactly
those tuples (¢, X1, ..., Xj) where M halts accepting on the “actual” input
z with oracles X1, ..., X; where X; is of type o;.

For sake of clarity we explicitly remark that resource bounds are mea-
sured in the length of the actual input. In the case of space bounds, all
oracle/index tapes are subject to the space restriction.

Now we define the following operators [BW98a]:

Definition 2.2. Let K be a relativized class of type o1 ---or0. Then we
define the following classes of type o7 - - - o:

For 0 = 0 and A: N — N, we have L € 3*.K iff there is a B € K such
that

(z,X1,...,Xy) € L <= (3y,ly| = h(|2]))(z, X3,..., Xk, y) € B,
and L € V" K iff there is a B € K such that
(a:,Xl,. . 7Xk) €L <= (vyalyl = h(|w|))(:c,X1, . '7Xkay) € B.

We use the superscript log to denote the union of all classes obtained by
choosing A € O(logn), p to denote the union of all classes obtained by
choosing h € n°() and exp to denote the union of all classes obtained by
choosing h € n).

Foro=1or o =2, L € 37 -K iff there is a B € K such that

(w,Xl,...,Xk)EL <~ (EIY)(:E,Xl,...,Xk,Y)EB,
and L € ¥V - K iff there is a B € K such that
(w,Xl,...,Xk)EL <~ (VY)($,X1,...,Xk,Y)EB.

Book, Vollmer, and Wagner in [BVW96] examined the bounded-error
probabilistic operator of type 2. We repeat their definition together with
the definitions of the corresponding type 0 operator (see e.g. [Sch89]). We
also consider a one-sided error operator in the case of type 0.

Definition 2.3. Let K be a relativized class of type oy - - - 0,2. Then BP2K
is a class of type o1 -- -0y, and L € BP2K iff there exists a set B € K such

that 5

7\ [(:BaXla' . 7Xk) €L o (maXla' . '7Xk7A) € B] > g
The measure p: 291} — [0, 1]is the product measure based on p: 201} —
[0,1], where po({0}) = po({1}) = ;. Here we identify as usual languages
over {0,1} as infinitely long sequences from {0,1}“.

Definition 2.4. Let h: N — N. Let K be a relativized class of type
o1 - -0;0. Then we say that

1. L € BP"K iff there exists a B € K such that

Pr0b|y|:h(|m|) [(m,Xl, .. ,Xk) €L« (:E,Xl, .. .,Xk,y) € B] >

Wl N

2. L e ﬁhK iff there is a B € K such that

(:B,Xl, .. ,Xk) €L — prob|y|=h(|m|) [(:E,Xl, .. .,Xk,y) € B] =1
(a:,Xl, .. .,Xk) Q/ L — pr0b|y|=h(|m|) [(:c,Xl, .. .,Xk,y) € B] < %

In the following we will apply sequences of operators to base classes such
that the resulting class is of type € (without any oracle). That is, in the
terminology of Definition 2.1 we have k = 0 and we deal with a usual class
of languages of simple words, not of tuples consisting of words and sets. The
type of the base class will always be implicitly given from the context. If
we write e.g. Q7' --- Q7" -P, then P is a class of languages of k + 1 tuples
(z,X1,..., X)) where for 1 < j < k, X is of type o; if 0; € {1,2} and X;
is of type 0 if o; € {exp, p,log}.

2.2 Restricting the number of queries

Let us now consider restrictions to the number of oracle queries or the num-
ber of spot checks on a random access input tape.

Definition 2.5. Let k£ > 0, let 0q,09,...,0r € {1,2,exp,p,log}, and let
71,72,...,7%: N — N. Let

L€ QT [r]Q33[ra] - - - Q¥ [r] - K

iff L € Q7'Q%* -+ -Q7F - K viaa K machine M which on input (z, X, ..., X})
makes at most 7;(|z|) queries to the i-th oracle or random access input tape
(for 1 <7 < k). We omit [r;] if it does not constitute a real restriction (for
example if it is greater than the runtime of the underlying machine).

3 Known Results

The following relation between type 2 oracle operators and word operators is
known: If K is a class defined by nondeterministic polynomial time machines
(technically, K is leaf language definable, i.e, K = Leaf® (B) for some set B
[HLS*93, JMT96]), then Q2-K = Q°*P. K (where Q can be any one of the
above operators) [BVW96].

We remark that a connection between the BP? operator and ALMOST-
classes has been established in [BVWO96], see also [VWO97a]. There it was
shown that for a great number of classes K, the identities

BP?2.K = BP**P. K = ALMOST-X

hold.

However the main reason for studying the above formalism stems from
the fact that many results in the area of interactive protocols and proba-
bilistically checkable proofs can be formulated conveniently in terms of the
operators defined in Section 2.

Fortnow, Rompel, and Sipser in 1988 characterized the power of multi-
prover interactive proofs by an existential operator ranging over oracles.
Baier and Wagner in 1996 obtained the corresponding result for single-prover
interactive proofs.

Theorem 3.1. 1. NEXPTIME = MIP = 3. BP?.P = 32.R" . P [FRS9/].
2. PSPACE =TP = 3' .BP?.P = 3'.R"” . P [BWY8q/.

Because the first equality in both statements is not relativizable, this
yields non-relativizable operator characterizations of NEXPTIME and PSPACE.
In contrast to this, the following characterizations (obtained in [BW98al, see
also [VWO7b]) are relativizable.

Theorem 3.2. 1. NEXPTIME = 32.V?.P = 32[3] -VP - P.
2. PSPACE = 3! -v?.P = 3'[2] - VP - P.

In [BW98b] it has been proved that this presentation of PSPACE and
NEXPTIME cannot be improved with respect to the number of queries.

The main question of this paper is if characterizations of small space
classes or small depth circuit classes similar to those above can be given.
Before we turn to this point, we first address the class NP.

4 Scaling down and up: NEXPTIME vs. NP

A known inclusion relating NP with another class can usually easily be scaled
up to obtain a similar result for NEXPTIME. This is done by translational
methods (exponential padding). However, here we are interested in going

the other direction: “scaling down”. We have a result for NEXPTIME such

as

NEXPTIME =3%.v?.P = 3%[3].V?.P (1)
=32.BPP-P=32.R".P (2)

Can we obtain similar results for NP? What would a “similar result”
be in this context? One’s intuition is to try to reduce logarithmically all of
the resource bounds and operator ranges that are involved, and to obtain
an equality with the property, that the original result can obtained from the
“scaled down” result via padding (“scaling up”).

However it is clear that this will not work in each case. (We give a
concrete example below, showing how some attempts at “scaling down” are
doomed to failure.) If there is a genuine “scaled-down” version of a result,
then it cannot be derived mechanically. Rather, it requires a separate proof.

In this section we want to exemplify what we mean by comparing some
previously-known characterizations of NP and NEXPTIME. Let us start
with an easy example and show how to scale down equation (1).

Theorem 4.1, NP = 32.v°8.P = 32[3] .¥°s . DLOGTIME.

Proof sketch. For the inclusion 3%-V°8.P C NP, note that, although a
polynomial-time machine M can write queries having a polynomial num-
ber of bits (and thus ranging over an exponentially-large address space),
for each given oracle and for each given logarithmically-long string z, the
polynomial-time machine queries at most a polynomial number of oracle
positions. Thus, in order to determine if z is in a language in 3%.V°8. P,
it suffices to guess a polynomial number of answers in some oracle A, and
then execute a poly-time machine M#(z, z) for all of the polynomially-many
choices for z.

For the inclusion NP C 3%[3]-V°8.DLOGTIME, the proof relies on
the fact that 3-SAT is NP-complete under DLOGTIME-uniform projections
[Imm87]. To accept a 3-SAT formula, the existential quantifier guesses an
assignment. The universal quantifier guesses a clause. The DLOGTIME
computation checks that the clause is satisfied by the assignment. Since we
have 3 literals per clause, we meet the restriction that every DLOGTIME-
computation looks at at most 3 bits in the assignment. g

Sitting inside of Theorem 4.1 is a perfect scaled-down version of equa-
tion (1). That is, start with the equality

NEXPTIME = 3*.¥?.P = 3%[3]-V?-P.

When we logarithmically reduce all of the bounding functions, NEXPTIME
becomes NP, VP becomes Y!°, and P becomes POLYLOGTIME, to yield
the equality

NP = 3%.v°¢. POLYLOGTIME = 3?[3]-V!°¢ . DLOGTIME.

It is natural to wonder if the constant “3” in Theorem 4.1 can be reduced.
As the next theorem shows, this is equivalent to the NL = NP question.

Theorem 4.2. NL = 3?[2] -V . DLOGTIME.

Proof. The proof of NL C 32[2] -¥!°8 . DLOGTIME relies on the NL-completeness
of 2-SAT under DLOGTIME reductions [Jon75, Imm88, Sze87]. The proof
is exactly analogous to that showing 3-SAT ¢ 3%[3] V!¢ . DLOGTIME.

For the other direction, let the values on the oracle tape be z; (where
1 <4 < p(n) for some polynomial p) and let the universally-quantified value
be y (Jy| = logn). Then depending on the input z and on y, the machine
first looks at one bit on the oracle tape z;, and depending on whether it is
0 or 1 looks at either z;, or at z;, and then accepts or rejects depending on
the value of this second bit. All this is done within time O(logn). Thus the
acceptance criterion can be written as (z;, — I2) A (Z;; — l3), where each
l; €{z;,%;} (j = 2,3), which is a 2-SAT formula with 2 clauses. Taking a
conjunction over all possible y’s we get a 2-SAT formula of polynomial length
that is satisfiable iff the machine accepts. Satisfiability of this formula can
be checked in NL, completing the proof. O

The obvious next step is to ask how to scale down the NEXPTIME =
32.BPP = 3%.coRP result. Observe that it was just this question which was
part of the motivation for the PCP-characterization of NP [AS98, ALM192],
see also [BFLS91, FGL91, Bab93]. The PCP result can be formulated in
terms of our operators as follows:

Theorem 4.3 [AS98, ALM192].
NP = 32.BP"s.P = 32[0(1)] -R"** - P.

Formally scaling down the NEXPTIME characterization given in equa-
tion (2) would yield something like

?7 L9 mlog
NP =3°-R °-DLOGTIME

or

NP < 32.R“¢. POLYLOGTIME.

However, neither of these equalities hold, as the following proposition demon-
strates.

Proposition 4.4. 1* ¢ 3. R°® . POLYLOGTIME.

Proof. Assume otherwise. Let M be the POLYLOGTIME machine such
that, on input 17, there exists an oracle A such that for most y, M(z,y, A) =
1, and such that for any string 2 that contains any zeros, for any oracle A4,
for most strings y, M(z,y, A) = 0.

Let n be large enough, and consider some “good” oracle A that causes
M(z,y,A) to accept for most y.

Given a number ¢ such that 1 < ¢ < n, let us say that 7 is queried by y
if the computation of M (z,y, A) reads bit ¢ of the input.

An easy counting argument shows that there is some ¢ such that fewer
than one-third of the strings y query 7. (To see this, note that there are at
most n* possible strings y, for some k. Each such y queries at most log” n of
the #’s. Thus, on average, each i is queried by at most n*~1/log’ n < n¥/3
strings y.)

Thus, M does not have the desired behavior on input 1:~1017%*. g

Remark 4.5. It is not hard to show that 32 -Elog -DLOGTIME does con-
tain NTIME(logn).

Thus, it seems at first as if no good options remain to us, in our attempt
to scale down equation (2). Theorem 4.3 is not adequate, since in scaling up
this result, the polynomial time bound becomes an exponential time bound.
Instead, we are in need of a stronger PCP-like characterization of NP. As
we shall see, this is possible.

Fortunately, one can reduce the time bound in Theorem 4.3 to poly-
logarithmic time if the input is encoded in an error-correcting code, see
e.g. [BFLS91], [Bab93, Theorem 2] or [HPS95, Section 4.8]. The encoding
is a polynomial time procedure, but one can hope that such an encoding is
no more time consuming if an additional padding has to be encoded.

To make this precise we define polynomial time strong many-one re-
ducibility between sets as follows: Let A € {0,1}*#*. (Later, # will be our
padding symbol.) Then A <7’ B iff there exists a function f with the fol-
lowing properties: First, f is polynomially length bounded. Second, given
(z,m) (m in binary) we can compute every bit of f(z#™) in polynomial
time. Finally, f reduces A to B, ie. z#™ € A < f(z#™) € B.

We will use this notion of strong many-one reducibility to define an
equivalence relation on complexity classes. Let us write K1 ~ K, if every
set in Ky is reducible to a set in Ky by strong many-one reductions, and
vice-versa. (In most cases of interest to us, we will have K2 C Ky or vice-
versa.)

As was pointed out to us by S. Safra, the proof of the PCP-theorem
[ALM192] even yields the following stronger characterization of NP:

Theorem 4.6 [ALM*92]. NP ~ 3%[0(1)] -R"*® - POLYLOGTIME.

From this statement one can easily conclude (by translation) the MIP
theorem NEXPTIME = 32.R”-P (equation (2)). The reason for this is
the following: Applying standard translational (padding) techniques, given
a language L in NEXPTIME, the padded version of L, which is in NP, will

reduce to a language in 32 "R'®.POLYLOGTIME under strong many-one
reductions. The reduction can actually be performed in time polynomial in
the length of the prefix (without padding symbols) which is polylogarithmic
in the input length. Translating this up shows NEXPTIME C 3%-R"-P.
In fact since we can restrict the number of queries to a constant in Theo-
rem 4.6 the same applies for NEXPTIME, giving the following improvement
of equation (2):

Corollary 4.7 [Gol97]. NEXPTIME = 3%[0(1)]-R” - P.

5 Scaling down and up: PSPACE vs. ?

As done for NEXPTIME in the previous section we want to examine in
this section scaled-down versions of the PSPACE characterizations from
Theorem 3.1 and 3.2:

PSPACE = 3'[2] . v?.P = 31 .yP. P (3)
PSPACE = 3'.BPP.P = 3'.R".P (4)

As in the previous section we have to reduce all resource bounds and
operator ranges logarithmically. But what is the scaled-down counterpart
K of PSPACE? When we scale up K we should arrive at PSPACE, i.e. for
every language A, A € PSPACE iff there is some k € N such that 4 € K,

where A =gef {a:#zlxlk_m' ‘ zec A } It is obvious that every class K such
that NC! € KX € POLYLOGSPACE fulfills this condition and hence is a
scaled-down counterpart of PSPACE. In fact, we can prove several scaled
down versions of equation (3).

Let us start by trying to replace (as in the previous section) the class P by
POLYLOGTIME, i.e. the class under consideration is 3*[O(1)] - ¥!°8 - POLYLOGTIME.
It turns out that this coincides with a nondeterministic analogue of Steve’s
class SC(=get DTIME-SPACE(n®(M 10g®(V) n)). That is, it coincides with
the class NSC =g4er NTIME-SPACE(nO(l),logo(l) n).

10

Theorem 5.1.

NSC = 3'3]-V°s.POLYLOGTIME
= 3'.Vs. POLYLOGTIME
3. vles. 8.

The proof follows immediately from the following two lemmas.

Lemma 5.2. For every s such that logn < s(n) < n°1), we have
3t .v°8 . DTIME-SPACE(n°(Y | 5) C NTIME-SPACE(n®®)).

Proof. The proof is similar to the proof of IP C PSPACE. We simulate
a computation of the form 3! -V1°6 . DTIME-SPACE(n°("), s) by making a
depth first search in the query tree. Note that, since the length of a query
must respect the space bound, a query consists of O(s) bits. Furthermore,
since the oracle’s access is of type 1, there are at most O(s) queries made
on any execution path. Thus a query-answer sequence can be stored in
O(s) space. In order to search the query tree, we first guess a query-answer
sequence and check that it is the leftmost one in the tree of all possible such
sequences. (That is, it is the sequence generated if all of the oracle queries are
answered negatively.) Then we check that if this is a sequence that actually
occurs on one path of the V18 - DTIME-SPACE(n®(), 5) computation, then
this computation path is accepting. That is, we cycle through all possible
strings y of length logn, and verify that either M(z,y) does not ask the
queries in that sequence, or (it does ask that sequence, and it accepts).
Next, we consider the lexicographically next queries-answer-sequence,
check again that if it actually occurs it leads to an accepting computation.
In this way we search the whole query tree. All in all we guess an oracle, but
since access to this oracle is type 1, we only have to store one path in the tree
in order to be able to be consistent with previous answers (we do not have to
store the whole oracle up to the maximal query length). Thus the simulation
is space bounded by s(n) and since s is bounded by a polynomial and we
have only polynomially many V1°8 . DTIME-SPACE(nO(l), s) computations,
the overall time is also polynomial. O

Lemma 5.3. Let logn < s(n) < n be such that s(n) is computable (in
binary) in time log® n. Then

NTIME-SPACE(n®®), s) C 31[3] - ¥1°8 . DTIME(s - log).

11

Proof. The proof consists of three main ingredients: First we show that
NTIME-SPACE(n®(), s) can without loss of generality be assumed to be
oblivious in a certain weak form. Using this we can then describe the be-
havior of such machines by certain 3-CNF formulae. Third, we show how
to evaluate this formula in 3![3] - V¢ DTIME(s - log). The main point here
is that we have to force type 1 behavior while evaluating the formula.

Let A € NTIME-SPACE(n®(1),s) be recognized by machine M. We
can assume that M is oblivious in the following sense: The input head
movements only depend on the length of the input and not the actual input
itself, and the function mapping (in binary) (n,t) into e(n, t), the position of
the input head after ¢ time steps of M on an input of length n, is computable
in quadratic time. This can be achieved as follows:

Starting with an arbitrary NTIME-SPACE(n®("), s) machine N for A, M
starts a simulation as follows: Given an input z of length n, first the binary
representation of n is computed in an oblivious way (in time O(nlogn)).
Then s(n) is computed in binary (in time O((logn)?)) and then s(n) tape
cells are marked (in time O(nlogn)). In this second phase the input head
does not move.

Now M simulates N in an oblivious way: The worktape head makes one
complete right scan over the marked region of s(n) cells, then a complete
left scan followed again by a complete right scan, and so on. The input
head rests during such right-left-scan phases and moves one step when the
worktape head returns to the left end of the marked region. In this way
the input head performs complete scans across the input. This behavior
allows M to keep track of the input head position by a binary counter on a
track of the worktape. One step of N can be simulated during a complete
right-left-scan of the input head, i.e. in O(n - s(n)) steps of M.

Next, we describe the behavior of M by a certain formula. Consider
an input z, |¢| = n. Let the runtime of M be bounded by n* for k € N.
Let z(!) be the I-th symbol in z. Let a(¢,?) denote the contents of M’s
worktape at position ¢ in step ¢, where we assume that M’s state is attached
to that tape symbol that is scanned by the worktape head; i.e. every a(t,7)
is either an alphabet symbol or a pair consisting of an alphabet symbol and
a state of M. Let H be a predicate such that H(a,b,c,d,e) iff according
to M’s transition table, if the tape contents in a given time step in three
neighboring cells is b, ¢, and d, and the input head scans a symbol e, then
in the next time step the ¢ will be replaced by an a. Similarly, let H;(a) iff
a is the blank symbol, let Hy(a) iff a is an arbitrary symbol to which the
accepting state is attached, and finally Hs(a) iff a is a marker symbol for

12

the right and left end of the used part of the tape. Now,

n* s(n)

2€ A= \a/@l A H(a(t,i),a(t —1,i— 1),
T at—1,4),a(t—1,i+ 1),

. z(e(n,t)))
A A 3 (a(0,) 1 Ha(a(n,)

nk

A A (Hs (a(,0)) A Hy(alt, s(m) + 1))
Next, we encode the values a(t,%) by Boolean vectors b(¢,%,1)---b(¢,2,m)
for suitable m (depending on the size of M’s alphabet). The above formulae
H, Hi, H,, and Hj3 can then be transformed into 3-CNF's of constant size,
say with 7 clauses. Define 0° = 1! = 1 and 0' = 1° = 0. Then there are
functions h and a such that

nk 3(”) 7 3 .
ceam VAR AV sbessore

Here, b’ is a binary string encoding both the Boolean vectors b(¢,7,1) - - -b(¢, ¢, m)
plus the (constantly many) new variables that have to be introduced when
transforming the formulas into 3-CNF (see [GJT79, p. 48].) New variables
introduced in clauses refering to particular choices of ¢,7 will never be
used in clauses responsible for other values of £,7. We refer to these vari-
ables as the (¢,%)-variables. Observe that b'(h(¢,4,7,1)) is one of the val-
ues b(t,z,p),b(t — 1,2 — 1, p),b(t — 1,4, 1),b(t — 1,24+ 1,p) for 1 < p < m
and a(t,1,7,1) € {0,1}, or a (t,%)-variable. Observe that by the assump-
tion of the theorem and by obliviousness, z(e(n,t)) is computable in time
log?n < s(n) - logn; hence, since the transition function is fixed, h and a
are computable with the same resources, hence the above formula can be
evaluated in 3%[3] - VI°8DTIME(s - log)

The only problem that remains to be fixed now is that during the eval-
uation of the formula, the access to b’ is not of type 1. To achieve this we
encode b’ in a special form. We subsume b(¢,%,1) - - -b(t, ¢, m) and the values
of the (t,%)-variables in b'(¢,7) and abbreviate b'(¢,0)---b'(¢,s(n) + 1) by
b'(t). The length of every b'(t) is L, a value linear in s(n). Observe that
for every t > 0 and for every ¢ and j, the bits b'(h(¢,%,7,1)), ¥'(h(t, 1, 7, 2)),
and b'(h(t,1,7,3)) can be found in '(¢t — 1) and b’(¢). Thus what we have
to accomplish is that we are able to ask for (¢t — 1) and ¥'(¢) (for ¢ > 1) in

13

a type 1 manner. Let 2” be the smallest power of 2 greater than n*. The
string b’ contains b/(t) for ¢ < n*; for completeness define /(t) =4t 0...000
for n* < t < 2. Construct an oracle B as follows: Given ¢, 1 < t < 27,
we want to encode b'(¢) into B by putting one string into the oracle for
every bit in b(¢) that is 1. First, let the length v binary representation of
t be uy - -up_1ur10%. Let b'(t) = bib,---b7. Then for every 1 < ¢ < L, set
0Lu; 0Lus0L - - - 0Lw,0t € B iff b, = 1. Then we can recover b'(t) by asking
the oracle for all 0%u; 0%u50% - - - 0%u, 0%, 1 < i < L. Moreover, it can be seen
that if we want to recover any b'(t — 1) and b'(¢) we only have to query B
in a type 1 manner. The length of the oracle queries is now bounded by

O(logn - s(n)). 0

Defining SC* =4, DTIME-SPACE(n°("),logk n) and NSCF =4 NTIME-SPACE(n®W), logk n)

we thus have:

Corollary 5.4. NSC* C 3'[3] - V8 . DTIME(log"t! n) C 3 . Vlo8.§Ck+! C
NSCk+1,

Since NSC is a scaled-down counterpart of PSPACE, the result NSC =
3[3] - V8 . POLYLOGTIME (Theorem 5.1) is a perfect scaled-down ana-
logue of PSPACE = 3'[2]-VP-P (equation (3)), except that we need one
oracle query more in our NSC characterization. It is now natural to ask
what happens if in the above we replace POLYLOGTIME by DLOGTIME.

This leads us to a second scaled-down analogue of equation (3) as follows:

Theorem 5.5.

NC!' = 3'[2]-V*s.DLOGTIME
= 3'.v°s. DLOGTIME

Proof. The inclusion NC! C 3*[2] -8 . DLOGTIME is essentially Barring-
ton’s Theorem [Bar89]. Barrington shows that for every A € NC! there is
a function f: {0,1}* x {0,1}* — As computable in logarithmic time (A5 is
the group of all even permutations on 5 positions) and a polynomial p such
that for all ,

te A — f(a:,O)of(a:,l)o---of(a:,p(|a:|)):1,

where o denotes multiplication in As. Now the sequence of intermediate
results of the evaluation of this term can be encoded as an oracle. For
all 2 = 0,1,...,p(|z|) it has to be checked whether f(z,?) transforms the

14

previous intermediate result into the next one. This is a V'°8 . DLOGTIME
predicate with two oracle queries. Without further care however, the two
necessary queries for every i are not of type 1, but one can overcome this
difficulty by choosing an appropriate encoding of the queries and making
use of the tree rearranging techniques employed in Lemma 5.3.

For the inclusion 3'-V°8. DLOGTIME C NC! we prove a somewhat
more general result in the following lemma. O

Lemma 5.6. Let C be either L or DLOGTIME. Then each language A in
31 .V°8.C is accepted by a family of NC! circuits with oracle gates for a
language from C.

Proof. Let A be in 3'-V1°8.C, as witnessed by some machine M. That is,
for a string @ of length n, ¢ is in A if and only if 3'B such that, for all
strings z of length logn, MB(z, z) accepts.

Recall that the oracle queries that are asked must be short enough to fit
on M’s tape (which is subject to the logarithmic space bound). Since M is
a deterministic machine, for any given computation of M2(z, z), there is a
string 7 of length log n such that the set of queries that are asked by machine
M during the computation are a subset of {j : j is a prefix of i}. Thus the
condition “MPB(z,z) accepts” can be rewritten as follows: for all strings
of length logn, either some query asked by MB(iB, z) is not a prefix of ¢, or
all queries asked by MB(z, z) are prefices of i, and MB(z, z) accepts.

For an oracle B and a string ¢, let B_(zs denote the sequence of length
|i| + 1 consisting of the answers to all queries of the form “is j in B?” where
j is a prefix of 7 (including the empty prefix). Let [M,w,z,i,m] denote
the Boolean value of the condition “either some query asked by M?B (z,2)
is not a prefix of 4, or all queries asked by MB(z, z) are prefices of 7, and
MB(z, 2) accepts”. (Note that this condition depends only on the bits that
are present in B(%).)

Restating, note that z is in A if and only if

I BYE V18 M, 2, z, i, B(i)]
which is equivalent to
31 BY88 [M, 2, 2, i, B(3)).
Let us pick the value of B(€) nondeterministically. Thus

3 BYlgiy8 [M, 2, 2, i, B(i)]

15

is equivalent to “there exists a value b € {0, 1} for B(¢) such that 3! B'Y°8i1¢2[M, z, 2,1, bm]”
(where [M,z,z,i,bm] means the same thing as [M,z,z,i,m], except
the value b is used in place of the first bit of E’@ when answering the oracle
queries asked by M.

Next note that, if the first bit of 7 is 0, then the value of [M, z, z, 1, bﬁ
is completely 1ndependent of the value of B(1), and similarly if the first bit
of 7 is 1, then the value of [M,z,z,i,bm] is completely independent of
the value of B(0). Thus we can pick the answers to these queries to B
independently. That is, the expression

31 BY8 8 [M, z, 2, i, B(i)]
is equivalent to
3b € {0,1} Ve € {0,1} T’ € {0,1}3B'Vi € {0, 115" 1Wo8 [M 2, z, 4, bb'B(i)]

This process can be extended for logn steps, where we first existentially
guess a value for B(j) (for some prefix j of our current 7) and then univer-
sally check that the guess is good for both extensions j0 and j1 of j. This
gives a (DLOGTIME-uniform) formula for this expression, where the atomic
predicates of the formula are of the form [M, z, z, a] for some logarithmic-
length string a. The condition [M,z, z,a] can be answered by an oracle
gate for a language in C. This completes the proof. g

Theorem 5.1 showed that applied to SC the quantifier sequences 3 - 7!°8
and 3'[O(1)]-V!°® add exactly the power of nondeterminism. For the case
of logarithmic space computations however the situation is different:

Theorem 5.7.

=
l

F0(1)] V8 - L
E|1 'VIOg L

Proof. The inclusions from left to right are obvious. The other direction
follows from Lemma 5.6 above. 0

Comparing Theorems 5.1 and 5.7, the reader may be tempted to con-
clude that if L = SC, then L = NSC, reasoning as follows: L = 3! . Vo8 . I, =
3! .vl°8.SC = NSC. In fact, no such implication is known to hold. The flaw
in the one-line “proof” lies in the fact that the hypothesized equality L = SC
(concerning two unrelativized classes) does not imply that the “relativized

16

classes of type 10” L and SC are equal. (See Definition 2.1 regarding rel-
ativized classes of type ¢102.) In fact, a simple diagonalization argument
shows that these relativized classes are not equal.

Finally we want to discuss the question about a scaled-down version of
equation (4). From the discussion at the beginning of this section, it is clear
that to show NC! C 3' - BP*2. DLOGTIME C 3' - BP*¢POLYLOGTIME C
POLYLOGSPACE is sufficient to obtain (4) by translation. However the
power of the operator sequence 3'-BP® is not clear to us. Concern-
ing upper bounds, 3'-BP!°¢.SC C NSC can be shown as in the proof
of Lemma 5.2. In fact one can even observe that the simulation given
there constitutes a symmetric algorithm, showing that 3! - BP°8 . I, C SymL.
Concerning lower bounds, inclusions as NC* C 3! - BP°2. POLYLOGTIME
are not very likely for the same reasons as explained in Section 4 (see
the discussion preceding Proposition 4.4). However one might hope for
NC! <b® 31.BP8. POLYLOGTIME, but this is open. Let us therefore
conclude with the question if one of the classes 3' - BPl°8.SC, 3' . BP°8 . L,
3' - BP*8 . POLYLOGTIME, or 3' - BP!°¢ . DLOGTIME coincides with a well-
known class.

Acknowledgment. We thank S. Safra for pointing out that the proof of
the PCP-theorem from [ALM192] yields Theorem 4.6.

References

[ALM*92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
Proof verification and the intractability of approximation prob-
lems. In Proceedings 33rd Symposium on the Foundations of
Computer Science, pages 14-23. IEEE Computer Society Press,
1992.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of
proofs: A new characterization of NP. Journal of the ACM,
45(1):70-122, January 1998.

[Bab93] L. Babai. Transparent (holographic) proofs. In Proceedings 10th
Symposium on Theoretical Aspects of Computer Science, vol-
ume 665 of Lecture Notes in Computer Science, pages 525-534.
Springer Verlag, 1993.

17

[Bar89]

[BFL9O0]

[BFLS91]

[BVW96]

[BW98a)

[BW9Sh)]

[CKS81]

[CL95]

[FGLt91]

[FL93]

D. A. Mix Barrington. Bounded-width polynomial size branching
programs recognize exactly those languages in NC!. Journal of
Computer and System Sciences, 38:150-164, 1989.

L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponen-
tial time has two-prover interactive protocols. In Proceedings 31st
Symposium on Foundations of Computer Science, pages 16—25.
IEEE Computer Society Press, 1990.

L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Check-
ing computations in polylogarithmic time. In Proceedings 23rd
Symposium on Theory of Computing, pages 21-32. ACM Press,
1991.

R. V. Book, H. Vollmer, and K. W. Wagner. On type-2 proba-
bilistic quantifiers. In Proceedings 23rd International Colloquium
on Automata, Languages and Programming, volume 1099 of Lec-

ture Notes in Computer Science, pages 369-380. Springer Verlag,
1996.

H. Baier and K. W. Wagner. The analytic polynomial-time hi-
erarchy. Mathematical Logic Quaterly, 1998. To appear.

H. Baier and K. W. Wagner. Bounding queries in the analytical
polynomial-time hierarchy. Theoretical Computer Science, 1998.
To appear.

A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation.
Journal of the ACM, 28:114-133, 1981.

Anne Condon and Richard Ladner. Interactive proof systems
with polynomially bounded strategies. Journal of Computer and
System Sciences, 50(3):506-518, June 1995.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy.
Approximating clique is almost NP-complete. In Proceedings

32nd Symposium on Foundations of Computer Science, pages
2-12. IEEE Computer Society Press, 1991.

Lance Fortnow and Carsten Lund. Interactive proof systems
and alternating time-space complexity. Theoretical Computer
Science, 113(1):55-73, 24 May 1993.

18

[FRS94]

[GI79]

[Gol97]

[HLS*93]

[HPS95]

[Imm387]

[Imm388|

[IMT96]

[Jon75]

[LFKN92]

[Ruz81]

Lance Fortnow, John Rompel, and Michael Sipser. On the power
of multi-prover interactive protocols. Theoretical Computer Sci-
ence, 134(2):545-557, 21 November 1994.

M. R. Garey and D. S. Johnson. Computers and Intractability, A
Guide to the Theory of NP-Completeness. Freeman, New York,
1979.

0. Goldreich. A taxonomy of proof systems. In L. A. Hemaspaan-
dra and A. L. Selman, editors, Complezity Theory Retrospective
II, pages 109-134. Springer Verlag, 1997.

U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and
K. W. Wagner. On the power of polynomial time bit-reductions.
In Proceedings 8th Structure in Complexity Theory, pages 200-
207, 1993.

S. Hougardy, H.-J. Promel, and A. Steger. Probabilistically
checkable proofs and their consequences for approximation al-
gorithms. In W. Deubner, H.-J. Promel, and B. Voigt, editors,
Trends in Discrete Mathematics, volume 9 of Topics in Discrete
Mathematics, pages 175-223. North Holland, 1995.

N.Immerman. Languages that capture complexity classes. SIAM
Journal on Computing, 16:760-778, 1987.

N. Immerman. Nondeterministic space is closed under comple-
mentation. SIAM Journal on Computing, 17:935-938, 1988.

B. Jenner, P. McKenzie, and D. Thérien. Logspace and logtime
leaf languages. Information & Computation, 129:21-33, 1996.

N. D. Jones. Space-bounded reducibility among combinatorial
problems. Journal of Computer and System Sciences, 15:68-85,
1975.

Carsten Lund, Lance Fortnow, Howard Karloff, and Noam
Nisan. Algebraic methods for interactive proof systems. Journal

of the ACM, 39(4):859-868, October 1992.

W. L. Ruzzo. On uniform circuit complexity. Journal of Com-
puter and Systems Sciences, 21:365-383, 1981.

19

[Sch89]

[Sha92]

[Sip83]

[Sze87]

[VW9Ta]

[VWOTb]

U. Schoning. Probabilistic complexity classes and lowness. Jour-
nal of Computer and System Sciences, 39:84-100, 1989.

A. Shamir. TP = PSPACE. Journal of the ACM, 39:869-877,
1992.

M. Sipser. Borel sets and circuit complexity. In Proceedings
of the 15th Symposium on Theory of Computing, pages 61-69.
ACM Press, 1983.

R. Szelepcsényi. The method of forcing for nondeterministic
automata. Bulletin of the Furopean Association for Theoretical
Computer Science, 33:96-100, 1987.

H. Vollmer and K. W. Wagner. Measure one results in computa-
tional complexity theory. In D.-Z. Du and K.-I. Ko, editors, Ad-
vances in Algorithms, Languages, and Complezity. Kluwer Aca-
demic Publishers, 1997.

H. Vollmer and K. W. Wagner. On operators of higher types.
In Proceedings 12th Conference on Computational Complezity,
pages 174-184. IEEE Computer Society Press, 1997.

20

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

