Electronic Collogquium on Computational Complexity, Report No. 59 (1998)

The Descriptive Complexity Approach to LOGCFL

Clemens Lautemann? Pierre McKenzie!
Thomas Schwentick* Heribert Vollmer?

Abstract

Building upon the known generalized-quantifier-based first-order charac-
terization of LOGCFL, we lay the groundwork for a deeper investigation.
Specifically, we examine subclasses of LOGCFL arising from varying the arity
and nesting of groupoidal quantifiers. Our work extends the elaborate theory
relating monoidal quantifiers to NC* and its subclasses. In the absence of the
BIT predicate, we resolve the main issues: we show in particular that no single
outermost unary groupoidal quantifier with FO can capture all the context-free
languages, and we obtain the surprising result that a variant of Greibach’s
“hardest context-free language” is LOGCFL-complete under quantifier-free
BIT-free projections. We then prove that FO with unary groupoidal quantifiers
is strictly more expressive with the BIT predicate than without. Considering a
particular groupoidal quantifier, we prove that first-order logic with majority
of pairs is strictly more expressive than first-order with majority of individuals.
As a technical tool of independent interest, we define the notion of an aperiodic
nondeterministic finite automaton and prove that FO translations are precisely
the mappings computed by single-valued aperiodic nondeterministic finite
transducers.

Keywords: finite model theory, descriptive complexity, computational com-
plexity, automata and formal languages

1 Introduction

In Finite Automata, Formal Logic, and Circuit Complezity [Str94], Howard Straub-
ing surveys an elegant theory relating finite semigroup theory, first-order logic, and
computational complexity. The gist of this theory is that questions about the struc-
ture of the complexity class NC!, defined from logarithmic depth bounded fan-in
Boolean circuits, can be translated back and forth into questions about the express-
ibility of first-order logic augmented with new predicates and quantifiers. Such a
translation provides new insights, makes tools from one field available in the other,

*Institut fiir Informatik, Johannes-Gutenberg-Universitdt Mainz, 55099 Mainz, Germany.

tInformatique et recherche opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-
Ville, Montréal (Québec), H3C 3J7 Canada. Research performed while on leave at the Universitit
Tibingen. Supported by the (German) DFG, the (Canadian) NSERC and the (Québec) FCAR.

iTheoretische Informatik, Universitit Wiirzburg, Am Exerzierplatz 3, 97072 Wiirzburg, Ger-
many.

ISSN 1433-8092

suggests tractable refinements to the hard open questions in the separate fields, and
puts the obstacles to further progress in a clear perspective.

In this way, although, for example, the unresolved strict containment in NC!
of the class ACC?, defined from bounded-depth polynomial-size unbounded fan-in
circuits over {AND, OR, MOD}, remains a barrier since the work of Smolensky
[Smo87], significant progress was made in (1) understanding the power of the BIT
predicate and the related circuit uniformity issues [BIS90], (2) describing the regular
languages within subclasses of NC' [BCST92, PMT91], and (3) identifying the all-
important role of the interplay between arbitrary and regular numerical predicates
in the status of the ACC® versus NC! question [Str94, p. 169, Conjecture I1X.3.4].

Barrington, Immerman and Straubing [BIS90] introduced the notion of a
monoidal quantifier and noted that, for any non-solvable group G, the class NC!
can be described using first-order logic augmented with a monoidal quantifier for
G. Loosely speaking, such a quantifier provides a constrained “oracle call” to the
word problem for G (defined essentially as the problem of computing the product of
a sequence of elements of G).

Bédard, Lemieux and McKenzie [BLM93] later noted that there is a fixed finite
groupoid whose word problem is complete for the class LOGCFL of languages re-
ducible in logarithmic space to a context-free language [Coo71, Sud78]. A groupoid
G is a set with a binary operation satisfying no discernible property, and the word
problem for G is that of computing the set of all legally bracketed products of a
given sequence of elements of G. It is not hard to see that any context-free lan-
guage is the word problem of some groupoid, and that any groupoid word problem
is context-free (see [BLM93, Lemma 3.1]).

It followed that LOGCFL, a well-studied class which contains nondeterministic
logarithmic space [Sud78] and is presumably much larger than NC!, can be described
by first-order logic augmented with groupoidal quantifiers. These quantifiers can be
defined formally as Lindstrom quantifiers [Lin66] for context-free languages.

In this paper, we take up the groupoidal first-order characterization of LOGCFL,
and initiate an investigation of LOGCFL from the viewpoint of descriptive complex-
ity. The rationale for this study, which encompasses the study of NC!, is that tools
from logic might be of use in ultimately elucidating the structure of LOGCFL. We
do not claim new separations of the major subclasses of LOGCFL here. But we
make a first step, in effect settling necessary preliminary questions afforded by the
first-order framework.

Our precise results concern the relative expressiveness of first-order formulas with
ordering (written FO), interpreted over finite strings, and with: (1) nested versus
unnested groupoidal quantifiers, (2) unary versus non-unary groupoidal quantifiers,
(3) the presence versus the absence of the BIT predicate. Feature (3) was the
focus of an important part of the work by Barrington, Immerman and Straubing
[BIS90] on uniformity within NC!. Feature (2) was also considered, to a lesser
extent, by the same authors, who left open the question of whether the “majority-
of-pairs” quantifier could be simulated by a unary majority quantifier in the absence
of the BIT predicate [BIS90, p. 297]. Feature (1) is akin to comparing many-one
reducibility with Turing reducibility in traditional complexity theory.

Here we examine all combinations of features (1), (2) and (3). Our separation

2

results are summarized on Fig. 1 on p. 18. In the absence of the BIT predicate, we
are able to determine the following relationships:

e FO to which a single unary groupoidal quantifier is applied, written Q‘(‘;‘;pFO,
captures the CFLs, and is strictly less expressive than FO with nested unary
quantifiers, written FO(‘(lﬁp), which in its turn is strictly weaker than
LOGCFL. A consequence of this result, as we will see, is an answer to the
above mentioned open question from [BIS90]: We show that first-order with
the majority-of-pairs quantifier is strictly more expressive than first-order logic

with majority of individuals.

e No single groupoid G captures all the CFLs as QF'FO, i.e. as FO to which
the single unary groupoidal quantifier Q¢ is applied,

e FO to which a single non-unary groupoidal quantifier is applied, written
QcrpFO, captures LOGCFL; our proof implies, remarkably, that adding
a padding symbol to Greibach’s hardest context-free language [Gre73], see
also [ABB97], yields a language which is LOGCFL-complete under BIT-free
quantifier-free projections.

When the BIT predicate is present, first-order with non-unary groupoidal quantifiers
of course still describes LOGCFL. In the setting of monoidal quantifiers [BIS90],
FO with BIT is known to capture uniform circuit classes, notably uniform ACCC,
which have not yet been separated from NC!. We face a similar situation here: the
BIT predicate allows capturing classes (for example FObit(Q‘éI;p), verifying TC? C
FOpjit (‘éﬁp) C LOGCFL), which only a major breakthrough would seem to allow
separating from each other. We are able to attest to the strength of the BIT predicate
in the setting of unary quantifiers, proving that:

* QGrpFO € QG FOuit, i-e. (trivially) some non-context-free languages are ex-

pressible using BIT and a single unary groupoidal quantifier,

e FO(QU,) & FOuit(Q4;,), i-e. (more interestingly) BIT adds expressivity even

when unary groupoidal quantifiers can be nested.

We also develop a technical tool of independent interest, in the form of an ape-
riodic (a.k.a. group-free, a.k.a. counter-free) nondeterministic finite automaton.
Aperiodicity has been studied intensively, most notably in connection with the star-
free regular languages [Sch65], but, to the best of our knowledge, always in a deter-
ministic context. Here we define a NFA A to be aperiodic if the DFA resulting from
applying the subset construction to A is aperiodic. The usefulness of this notion lies
in the fact, proved here, that first-order translations are precisely those mappings
which are computable by single-valued aperiodic nondeterministic finite transducers.

Section 2 in this paper describes our first-order framework and exhibits a link
between standard formal language operations and unary generalized quantifiers. Sec-
tion 3 introduces nondeterministic finite transducers and proves that they charac-
terize first-order translations. Section 4 forms the bulk of the paper and develops
the relationships between our logic-based LOGCFL subclasses. Section 5 concludes
with a number of suggestions how to extend the results obtained here.

2 Preliminaries
2.1 Complexity theory

REG and CFL refer to the regular and to the e-free context-free languages respec-
tively. The CFL results in this paper could be adapted to treat the empty string e
in standard ways. We will make scant reference to the inclusion chain

AC’ ¢ ACC® ¢ TC? € NC! C NL € LOGCFL = SAC! C P,

where we assume familiarity with NC!, NL, and P, and recall that

o ACP (resp. ACCP) (resp. TC?) is the set of languages recognized by sufficiently
uniform families of constant depth, polynomial size, unbounded fan-in circuits
over the basis {A,V, 1} (resp. over a basis consisting of {A, V} together with
a single Boolean MOD,, gate, defined to output 0 iff ¢ divides the sum of its
input bits) (resp. over the basis consisting solely of — and the MAJORITY
gate, defined to output 1 iff at least half of its input bits are set),

e LOGCFL is the set of languages logspace-reducible to a context-free language
[CooT1, Sud78]; alternatively, this class is SAC!, namely the set of languages
recognized by uniform families of log depth, polynomial size, Boolean circuits
in which A has bounded fan-in and the fan-in of V is unrestricted [Ven91].

2.2 The first-order framework

We consider first-order logic with linear order. We restrict our attention to string
signatures, i.e. signatures of the form (P, ,..., P,,), where all the predicates P,
are unary, and in every structure A, A = P, (j) iff the jth symbol in the input
is the letter a;. Such structures are thus words over the alphabet (a1, ...,as), and
first-order variables range over positions within such a word, i.e. from 1 to the word
length n. For technical reasons that will become apparent shortly, we assume here,
as in the rest of the paper, a linear order on each alphabet and we write alphabets
as sequences of symbols to indicate that order.

Our basic formulas are built from variables in the usual way, using the Boolean
connectives {A, V, =}, the relevant predicates P,, together with {=, <}, the constants
min and max, the quantifiers {3,V}, and parentheses. We will occasionally use
the binary predicate BIT(z,y), defined to be true iff the zth bit in the binary
representation of y is 1. We write BC(L) to denote the Boolean closure of the set £
of languages (i. e. closure under intersection, union, and complement) and BC*(£)
to denote the closure under union and intersection only.

Definition 2.1. Lindstrom quantifier. Consider a language L over an alphabet

Y = (a1,a9,... ,as). Let T be a k-tuple of variables (each of which ranges from
1 to the “input length” n, as we have seen). In the following, we assume the
lexical ordering on {1,2,... ,n}*, and we write X1, Xs,...,X,» for the sequence

of potential values taken on by Z. The groupoidal quantifier ;7 binding Z takes
a meaning if s — 1 formulas, each having as free variables the variables in T (and

4

possibly others), are available. Let ¢1(T), ¢2(T), - .., ¢s—1(T) be these s—1 formulas.
Then QrZ[¢1(Z), ¢2(Z), .. ,$s—1(T)] holds on a string w = wy - - wy, iff the word
of length n* whose ith letter, 1 < i < nk, is

a 1fw IZ (ZSl(XZ),
az if w = =1 (Xi) A 2(X5),

gy i w1 (Xi) A —go(Xi) A . A —be1(X0),

belongs to L. Thus the formulas [¢1(Z), ¢2(Z),. .. , $s—1(Z)] fix a function mapping
an input word/structure w of length n to a word of length n*. This function is called
the reduction or transformation defined by [¢1(Z), p2(T), ... ,ds—1(T)]. In case we
deal with the binary alphabet (s = 2) we omit the braces and write QrZ¢(z) for
short.

Definition 2.2. A groupoidal gquantifier is a Lindstrom quantifier Q7 where L is a
context-free language.

The Lindstrém quantifiers of Definition 2.1 are more precisely what has been
refered to as “Lindstrom quantifiers on string” [BV96]. The original more general
definition [Lin66] uses transformations to arbitrary structures, not necessarily of
string signature. However, in the context of this paper reductions to CFLs play a
role of utmost importance, and hence the above definition seems to be the most
natural.

The terminology “groupoidal quantifier” stems from the fact that any context-
free language is a word problem over some groupoid [BLM93, Lemma 3.1], and
vice-versa every word problem of a finite groupoid is context-free. Thus a Lind-
strom quantifier on strings defined by a context-free language is nothing else than
a Lindstrom quantifier (in the classical sense) defined by a structure that is a finite
groupoid multiplication table.

Barrington, Immerman, and Straubing, defining monoidal quantifiers in [BIS90],
in fact proceed along the same avenue: they first show how monoid word problems
can be seen as languages, and then define generalized quantifiers given by such
languages (see [BIS90, pp. 284f.)).

We refer the reader to standard texts for formal details on the semantics of
our logical framework. For instance, Definition 2.1 skims over the semantics of
a groupoidal quantifier in the case in which the underlying formulas contain free
variables other than those in . We find Straubing’s handling of these issues [Str94]
particularly convenient and we will occasionally refer to his treatment.

2.3 Unary quantifiers and homomorphisms

We will encounter unary groupoidal quantifiers repeatedly. Here we show how these
relate to standard formal language operations. Recall that a length-preserving homo-
morphism >* — A* is the unique free monoid morphism extending a map h: ¥ — A
for finite alphabets 3, A. In a different context, a result very similar to the next
theorem is known as Nivat’s Theorem [MS97, Theorem 3.8, p. 207].

5

Theorem 2.3. Let B be an arbitrary language, and let A be describable in QF'FO,
that is, by a first order sentence preceded by ome unary Lindstrom quantifier
(i. e. binding exactly one variable). Then there are length-preserving homomorphisms
g,h and a regular language D such that A = h(D N g (B)).

Proof. Let A be defined by the formula 9 € QF'FO, ¥ = Qpzd(z), B C I'* (assum-
ing I" = (0, 1) initially). Let A be the underlying alphabet determined by the string
signature. ¢ thus defines a mapping from words over A to binary words. Define D

to consist of all words [;ﬁ] e [Z:] such that ¢ maps uy -+ - ug to y1 - - - yg. Define the

homomorphisms % and g by h: [;] — a and g: [}] ~ b for all @ € A and b € T..
Then h(D Ng~!(B)) = A. But why is D regular? Intuitively, D is regular because
FO languages are regular. Arguing formally requires a bit of care because each y;
depends on the truth value of an FO formula in which the variable z is instantiated
with 4. A proof that a finite automaton is able to determine y; can be found in
Straubing [Str94, pp. 23-24]. To see that D itself is regular, note that an NFA N
can guess an incorrect y; (by guessing the position of the formal variable z in a
V-structure, borrowing notation from Straubing) and verify that y; is incorrect. In
this way N accepts the complement of D, so that D is regular’.

The above strategy to show the regularity of D adapts to the case of a non-
binary alphabet T, in which case N is a direct product of the NFAs accepting the
languages defined by the relevant tuple of FO formulas. The homomorphisms g and
h are unchanged. O

Remark 2.4. FO precisely captures the variety of star-free regular languages
[MP71], which allows us to even conclude that the D above is star-free.

2.4 Groupoid-based language classes

Here we define our first-order language classes precisely. Fix a finite groupoid G.
Each S C G defines a language W(S, G) composed of all words w, over the alphabet
G, which “multiply out” to an element of S when an appropriate legal bracketing
of w is chosen.

Definition 2.5. QgFO is the set of languages describable by applying a single
groupoidal quantifier @7, to an appropriate tuple of FO formulas, where L = W(S, G)
for some S C G.

QcrpFO is the union, over each finite groupoid G, of QgFO.

FO(Q¢) and FO(Qgarp) are defined analogously, but allowing groupoidal quantifiers
to be used as any other quantifier would (i. e. allowing arbitrary nesting).

QE'FO and FOpj(‘é‘;p), etc, are defined analogously, but possibly allowing the
BIT predicate (signaled by subscripting FO with bit) and/or restricting to unary
groupoidal quantifiers (signaled by the exponent “un”).

! An alternative proof that D is regular is immediate from Theorem 3.5.

3 An automaton characterization of FO-translations

As a technical tool, it will be convenient to have an automata-theoretic character-
ization of first-order translations, i.e. of reductions defined by FO-formulas with
one free variable. Since FO precisely describes the (regular) languages accepted by
aperiodic deterministic finite automata [MP71], one might expect aperiodic deter-
ministic finite transducers to capture FO-translations. This is not the case however
because, e.g. the FO-translation which maps every string w - - - w, to w;’ cannot be
computed by such a device.

We show in this section that the appropriate automaton model to use is that
of a single-valued aperiodic nondeterministic finite transducer, which we define and
associate with FO-translations in this section. But first, we discuss the notion of an
aperiodic NFA.

Definition 3.1. A deterministic or nondeterministic FA M is aperiodic (or group-
free) iff there is an n € N such that for all states s and all words w,

8(s,w™) = §(s,w"L).

Here 6 is the extension of M’s transition function from symbols to words. Observe
that if M is nondeterministic then §(¢,v) is a set of states, i.e. locally here we abuse
notation by not distinguishing between M’s extended transition function § and the
function 6* as defined in the context of a nondeterministic transducer below.

Remark 3.2. This definition of aperiodicity for a DFA is the usual one (see [Ste85]).
For a NFA, a statement obviously equivalent to Definition 3.1 would be that A is
aperiodic iff applying the subset construction to A yields an aperiodic DFA. Hence
[Sch65] a language L is star-free iff some aperiodic (deterministic or nondeterminis-
tic) finite automaton accepts L.

We now prepare the ground for the main result of this section, namely that single-
valued aperiodic nondeterministic finite transducers characterize FO-translations.

Definition 3.3. A finite transducer is given by a set Q) of states, an input alphabet
Y, an output alphabet T', an initial state qq, a transition relation 6 C Q X X x ' x Q
and a set F' C Q of final states. For a string w = wy - - - w, € X* we define the set
Om(w) of outputs of M on input w as follows. A string v € I'* of length n is in
Onr(w), if there is a sequence sg = qq, $1,- - - , Sp, Of states, such that s, € F and, for
every i, 1 <14 < n, we have (s;_1,w;,v;,s;) € 0.

We say that M is single-valued if, for every w € ¥*, |Oy(w)| = 1. If M is
single-valued it naturally defines a function fjs : ¥* — I'*.

For every string u € ¥* and every state s € Q we write 6*(s,u) for the set of
states s’ that are reachable from s on input u (i.e., there are sy,... s, = s’ and
1+ ++ V)| such that, for every i, 1 <4 < |u|, we have (s;—1,u;,vi, i) € 9).

As per Definition 3.1, M is aperiodic if there is an n € N such that for all states
q and all strings w, 0*(g,w") = §*(g,w").

We will need some basic properties of FO-logic on strings.

7

Let k£ be a fixed natural number and ¥ an alphabet. For every string u we write
®k for the set of FO-sentences of quantifier-depth & that hold in u. Let S* denote
the set {®F | u € X*}. It is well-known that S* is finite, for every fixed k and %.

Lemma 3.4. Let u,u',v,v' be strings such that ®% = @, and & = ®F,. Then
ok =@k .
Proof. As ®8 = ®F, and ®* = ®% we know that the duplicator has a winning
strategy in the k-round Ehrenfeucht game on u and ' and in the game on v and v'.
These strategies can be easily combined to get a strategy on uv and u'v’. From the

. k _ k
existence of this winning strategy we can, in turn, conclude that ®;, = ®7, ,. [

Theorem 3.5. A function f: X* — I'* is defined by an FO translation if and only
if it is defined by a single-valued aperiodic finite transducer.

Proof. To simplify notation we assume that I' = (0,1). The proof of the general
case is a straightforward generalization.

(only if) Let f: 3* — I'* be defined by formula ¢(z) of quantifier-depth & (hence,
for every w € ¥* and every i < |w/|, the i-th bit of f(w) is 1 iff w |= ¢(7)). We define a
single-valued aperiodic finite transducer M with input alphabet 33, output alphabet
T, set S¥ x S¥U{qo} of states, initial state go and accepting states {(®, ®¥) | ® € S¥}.
Informally, a state (1, ®2) of M represents a situation, in which M “knows” that
®; contains exactly those formulas (of quantifier depth k) that hold in the prefix of
the input string that was already read, and it “guesses” that ®o contains exactly
those formulas that hold in the remaining part of the string.

The transition relation § of M is defined as follows. For every @, ®,, @}, ®, € S*,
every o € Y and every 7 € I we let

((@1,@2),0’,7’,(Ilacbl2)) € 5a

if there exist strings u,v € X* such that &, = &k, &) = ok _ &y = & |
and 7 =1 <= uov = ¢(Ju| + 1).
Analogously, for every @, ®, € S*, every o € ¥ and every 7 € T' we define

o), = ok

(QOa 0, T, (‘1)11, q)/2)) € 6’

if there exists a string v € X* such that & = &%, ®, = @k and 7 = 1 <= v |= ¢(1).

We first check that M is single-valued. Let w = wy - - - wy, and f(w) = vy - - - vy,.
We set sqg = qp and, for every ¢ > 0, s; = (@ﬁjl,,,wi, (PQHI___M). By using Lemma, 3.4,
it is easy to verify that s, € F and, for every ¢ > 0, we have (s;_1,w;,v;,8;) € 4.
Hence f(w) € Op(w).

We have to show now that no string u = uj - - - uy, # f(w) is in Opr(w). Assume
otherwise and let s{, = qo, s}, ... , s, be a sequence of states that outputs u. Let, for
every i > 0, s; =: (U;,0;). First, it is easy to observe that, for every i > 0, ¥; =
(I'ﬁu---wi' As u is different from v there must be a j such that ©; # <I'1’§)j+1___wn (Note
that from the definition of § it follows that (s,o,1,s’) € § implies (s,0,0,s") & §).
We conclude that for every ¢ > j, ©; # @ﬁ,i 1w, : Assume, otherwise that ¢ > j is

k

minimal, such that ©; = @3, .., . By definition of § and as (s;_,w;, 7,s;) € it

8

follows immediately that ©; 1 = éﬁiwi 1w B contradiction. Hence, in particular,

O, # ®F ie., s gF. It follows that M is single-valued and fi; = f. It remains
to show that M is aperiodic. First of all, it is well-known, and can be shown by
an Ehrenfeucht game argument [EF95] that, for n = 2% and every w € X* it holds
Ok, =0F L.

Let now ®1, ®,, &}, ®, € S* and let u,v € * with &; = ®* and @, = &*. From
Lemma 3.4 and the definition of § we can conclude that (®],®!) € 6*((®1, ®2),)
if and only if ®; = ®* and ®| = ®,,. Hence, again with Lemma 3.4, we get for
every w the following.

(@), ®) € 0*((®1, Bo),w") = &y =, and &) =dF .

&= 0=, and & =F ..,
= (D), Dh) € 5 (1, D), w™)

This implies that M is aperiodic.
(if) Let f be computed by a single-valued aperiodic finite transducer M =
(@Q,%,T,qo,6, F). Tt is easy to check that, for every s, s’ C @, the language

L(s,s") ={u| s € §(s,u)}

is accepted by an aperiodic finite automaton. Consequently, every L(s,s’) is char-
acterized by a FO formula ¢**". Let ¢(z) be the formula

V 92 (z) A Po(z) NS (2).

s,8!,8' o

s"€FN(s,0,1,8")€D
Here, for every s and s/, (p‘zs’ (z) is the formula that is obtained by relativizing 0%

to all positions that are smaller than z and wisl (z) is the formula that is obtained
by relativizing <p5’s' to all positions that are greater than z (see for example [Str94,

pp. 81f]).
Hence, for every position z, ¢(z) becomes true in a string w if and only if there

are states s, s', s” such that
e M can reach s from the initial state by reading the string left to z,

e M can reach s’ from s by reading the symbol at position z and output a 1,
and

e M can reach the final state s” from s’ by reading the string to right to z.

As M is single-valued, ¢(z) defines fps(w), for every w. O

4 First-order with groupoidal quantifiers
4.1 The largest attainable class: LOGCFL

Theorem 4.1. There is a fixed groupoid G such that
QcFOvit = FOpit(Qarp) = LOGCFL.

9

Proof. QgFOiy C FOpit(Qarp) holds by definition for any groupoid G. To see that
FOuit(Qarp) € LOGCFL, note that [BIS90, Theorem 8.1] implies the existence of
a logspace-uniform AC’-reduction, from any language in FOuit(Qarp), to a set of
groupoid word problems. The unbounded fan-in AND gates in the AC? reduction
can be replaced by log depth bounded fan-in sub-circuits. Then the groupoid word
problem oracle gates, of which no more than a constant number can appear on any
path from circuit inputs to circuit output, can be expanded into SAC! sub-circuits,
since groupoid word problems are context-free languages. There results a logspace-
uniform SAC! circuit, proving membership in LOGCFL.

LOGCFL C QgFOyt is seen by appealing to the fixed G whose word problem
is LOGCFL-complete under DLOGTIME reducibility [BLM93]. Since DLOGTIME
was shown expressible in FOy;; by [BIS90], the inclusion follows. O

4.2 Capturing LOGCFL without BIT

Theorem 4.2. There is a fized groupoid G such that LOGCFL C QgFO.

Proof. We first show how to express plus and times and their negations as
FO™(Qarp) formulas (i.e. formulas which have outside of the groupoidal quanti-
fier only a first-order quantifier prefix and in particular no negation).

Let us look at the predicate “a-b = c.” Define L =q¢¢ {w € (0,1, #)* | lw|o =
|w|y } and

$(a,b,¢) =qet Qr(2,y,2)[(2 = min) A (z < a) A (y <b), (z =y =max) A (z < c)].

Given a word w of length n and assignments for a,b,c, the transformation [z =
minAz < aAy < bz=y=maxAz < ¢ yields a string of length n® over the
alphabet (0,1,#) which contains a - b many 0s, ¢ many 1s, and n® — ab — ¢ many
#s. Thus this image is in L if and only ifa-b = c.

Observe that L is deterministic context-free, therefore its complement is context-
free and we conclude that we can also express a - b # ¢ by a FOT(QarpFO) formula
(in fact even by a QarpFO formula).

In a similar way we can express a+b = c and a + b # ¢ by FO1(Qgrp) formulas.
All context-free languages involved in the definition of these predicates can be com-
bined into one language Lg, which is context-free and co-context-free. Now integer
addition and multiplication are enough to simulate the BIT predicate. Indeed it can
be shown that exponentiation can be defined from addition and multiplication (see
e.g. [HP93, p. 301] and [Smo91, p. 192]), and from this it is not so hard to define the
BIT predicate, as pointed out by [Lin94] (cf., [Imm98]). We conclude that there is a
FO™(Qgrp) formula for the bit predicate. The only groupoid quantifiers needed in
this definition are 1, quantifiers, and they are applied to quantifier-free formulas.

From Theorem 4.1 we know that LOGCFL = QgpFOyi;. Thus every set in
A € LOGCFL can be defined by a formula

QLE[Ql,---,@s], (1)
where each ®; is a FOp;; formula.

10

We will show how every such formula can be transformed into Q;/FO—formula,
for some fixed context—free language L.

Using the argument above we can replace each ®; in (1) by a formula without
bit, but using the 1, quantifier. This formula can then be transformed into the
form

dz,:VZodzs - - - \/ /\ ¢i1,i27 (2)
i1 19
where each of the ¢;, ;, is either a positive atomic formula or a formula of the form
Qr,X, Where x is quantifier-free.

Now we combine stepwise the inner quantifiers Qr, (1 < j < m) in formula
(2) with the first-order connectives \/, A and the first-order quantifiers 3, V. We
give the construction for the case of an existential quantifier. Consider the formula
EIwQLly[fl, e ,fk_l], where L; C A* is context-free and co-context-free. Suppose
A = (a1,...,a;), # ¢ A. Let ¥ = (y1,...,4)- This formula is equivalent to

QLz(xazayla"'ayl) [5076113"'55119_1] where
Ly={wé€ (a1,...,a, #)" ‘ w=w# T wept - #rwp#T, wi € Ly for some i },

&o is the formula z > 1 and each &, 1 < i < k — 1, is the formula z = 1 A §;.
The transformation f defined by [£o,€],...,&,_;] maps a word w of length n to
a word f(w) of length n!*2. f(w) consists of n blocks ui,...,u, of length n't!
each: f(w) = uy---up. Here uy, corresponds to the assignment z = m. Each u,
consists of n blocks of length n!, one block for each value of z. These blocks are all
in #* for z > 1, and consist of a word over A for z = 1. This word is exactly the
word to which w is mapped under the transformation [£;,...,&k—1], when z = m.
Hence we see that f(w) € Lo if there is some value m such that w,, € Li#*. This
proves the correctness of the above construction. Certainly Lo is context-free, and
since the complement of L is context-free, we see that the complement of Ly is also
context-free (the construction of appropriate PDAs is obvious).

The combinations of a (Qr; with a universal quantifier, or with a first-order
connective, are dealt with analogously.

We thus replaced the sub-formulas ®; in formula (1) above and obtained a for-
mula of the form

QLT[¥4,..., T, (3)

where each ¥; is of the form Qr,;v;, ¥; is quantifier-free, and L; is context-free and
co-context-free. Let L C Aj, where Ay = (ai1,...,as), #.8 & Ao. Let B =ger
(a1,...,as,#,9). We now define a substitution h by

h(a1) = $L,#B*
h(ag) = $Li#* Lo# B*

h(a;) = SLi#" -+ - 4" Li 1 # " Li#B"

h(as) = SLi#* Lo#t* - # Ly 1 #*
11

and let L' =4¢¢ h(L). Our formula replacing (1) then is

Quz[¥y,.... v], (4)

where we have to construct the formulas ¥} such that the following holds: Given a
word w, suppose the transformation given by [¥y,...,¥;_;] produces for a certain
assignment of the variables T the letter a € A; more specifically: suppose that
1; produces w; (for 1 < i < s —1). Then [¥),...,¥!] has to produce a word
Swi #*woH* - - - #£*w, 1#*. Certainly this can be done with quantifier-free formulas.

Thus we have shown that LOGCFL C Qgrp,FO. Now define H to be Greibach’s
hardest context-free language. Any cfl L reduces to H via a homomorphism (see
[ABB97, p. 137]. This homomorphism is e-free but not length-preserving. Applying
a non-unary groupoidal quantifier to simple FO-formulas can realize this homomor-
phism, provided that a new padding or neutral symbol be introduced, to act as a
filler in any word. Thus we see that any @ FO formula can be transformed into an
equivalent ()qq(7)FO formula. O

A corollary to this proof is the following remarkable result:

Corollary 4.3. Greibach’s hardest context-free language with a neutral symbol is
complete for LOGCFL under quantifier-free projections without BIT.

A noteworthy strengthening of Theorem 4.1 thus follows from Theorem 4.2:
Corollary 4.4. QarpFO = FO(Qarp) = LOGCFL.

4.3 TUnary groupoidal quantifiers

In the previous subsection, we have shown that the situation with non-unary
groupoidal quantifiers is clearcut, since a single such quantifier, even without the
BIT predicate, captures all of LOGCFL. Here we examine the case of unary quan-
tifiers. In this case, the presence or absence of the BIT predicate is once again
relevant.

4.3.1 Unary groupoidal quantifiers without BIT
Theorem 4.5. Q‘ér;pFO = CFL.

Proof. The direction from right to left follows from [BLM93]: Every context-free
language reduces via a length-preserving homomorphism to a groupoid word prob-
lem. We can even look at the letters in a given word as groupoid elements. This
reduction can be expressed in FO.

The direction from left to right is proved by appealing to Theorem 2.3 and
observing that the context-free languages have the required closure properties. [

It follows immediately that nesting unary groupoidal quantifiers (in fact, merely
taking the Boolean closure of Q‘é{;pFO) adds expressiveness:

12

Corollary 4.6.

i, FO = CFL

o BC*(Qw: FO) = BC*(CFL)

C
C BC(Q FO) = BC(CFL)
C FO(QE:)-

Proof. All inclusions from left to right are clear. The first separation follows from
the fact that CFLs are not closed under intersection. The second separation follows
from considering the non-context-free language Y, consisting of all words of the form
ww, the complement of which is context-free. O

The inclusion CFL C Q‘(‘ﬂpFO in Theorem 4.5 could have be proved alternatively
by observing that the logic IMFO capturing CFL (see [LST94]) is closed under FO

translations. We note in the same vein:
Theorem 4.7. Qg,pMSO = CFL.

Proof. In [LST94] it is in fact proved that CFL = IMMSO. This logic is closed
under monadic second-order (MSO) transformations. Hence CFL C QarpMSO C
dMMSO C CFL. O

Can we refine Theorem 4.5 and find a universal finite groupoid G which cap-
tures all the context-free languages as QF'FO? Intuition from the world of monoids
[BIS90, p. 303] suggests that the answer is no. Proving that this is indeed the case
is the content of Theorem 4.9 below. We first make a definition and state a lemma.

Let Dy be the context-free one-sided Dyck language over 2t symbols, i.e. D; con-
sists of the well-bracketed words over an alphabet of ¢ distinct types of parentheses.
Recall that a PDA is a nondeterministic automaton which reads its input from left
to right and has access to a pushdown store with a fixed pushdown alphabet. We
say that a PDA A is k-pushdown-limited, for k a positive integer, iff

e the pushdown alphabet of A has size k, and

e A pushes no more than k symbols on its stack between any two successive
input head motions.

Lemma 4.8. No k-pushdown-limited PDA accepts Dy when t > (k + 1)F + 1.

Proof. Suppose to the contrary that a k-pushdown-limited PDA A accepts Dy, where
t = (k+1)*41. A has a certain fixed number, s, of states. Consider A’s computation
as it scans a length-n prefix of its input. Since A is k-pushdown-limited, no more
than (k+1)*" different stack contents, hence no more than s-(k+1)*" configurations,
are encountered. But A must be able to distinguish between each pair of length-n
prefixes consisting of left parentheses alone, because for any two such prefixes vy
and vg, there is a Dyck word vyw such that vow is not a Dyck word. Now, it is easy
to see that ", the number of length-n words over an alphabet of ¢ left parentheses,
exceeds s - (k + 1)*" when n is large. Hence A cannot accept D;. O

Theorem 4.9. Any finite groupoid G verifies Q'FO C CFL.

13

Proof. Suppose to the contrary that G is a finite groupoid such that Q&' FO = CFL.
Then there is a FO-translation from each context-free language to a word problem
for G. This means that a finite set of PDAs (one for each word problem W(-, G)) can
take care of answering each “oracle question” resulting from such a FO-translation.
By Theorem 3.5, each FO-translation is computed by a single-valued NFA. Although
the NFAs differ for different context-free languages (and this holds in particular when
language alphabets differ), the NFAs do not bolster the “pushdown-limits” of the
PDAs which answer all oracle questions. Hence if k is a fixed integer such that all
word problems W(-,G) for G are accepted by a k-pushdown-limited PDA, then for
any positive integer ¢, D is accepted by a k-limited-pushdown PDA. This contradicts
Lemma 4.8 when t = (k + 1)* + 1. a

In the next subsection we will see that the BIT-predicate provably adds ex-
pressive power to the logic Qg ,FO. Since it is known that BIT can be expressed
either by plus and times [Lin94] (cf., [lmm98]) or by the majority of pairs quantifier
[BIS90], the following two simple observations about the power of Q‘éﬁpFO are of
particular interest.

Theorem 4.10. The majority quantifier is definable in Q‘é’}pFO.

Proof. Majority is a context-free language. O

Theorem 4.11. Addition is definable in Q‘g}pFO.

Proof. Let 1,7,k be positions in the input word. We want to express that i +
j = k. We do this by using a quantifier for the context-free language L =gqet
{Oi_lal*boi_lcl* | 1€ N}. Given a word w € L, if symbol a is at position ¢ and b
is at position j, then ¢ must be at position 7 + j. O

4.3.2 Unary groupoidal quantifiers with BIT

What are Q] ,FOpi; and FOpit(‘(‘;‘;p)? It would seem plausible that Q& FOuit C
FOpit (‘él}rp) C LOGCFL, but we are unable to prove Q¢;,FOpit & LOGCFL, much
less FObit(Qgp) C LOGCFL. The next lemma indicates that proving the latter

would prove TCY # LOGCFL, settling a major open question in complexity theory.
Lemma 4.12. TC’ C FOui(Q&:,)-

Proof. TC? is captured by first-order logic with bit and majority quantifiers
[BIS90]. O

Hence the BIT predicate is expressive and will be difficult to defeat. The next
lemma, is not surprising, but it documents the provable expressiveness of BIT. Recall
that CFL = Q¢ ,FO (Theorem 4.5).

Lemma 4.13. CFL g Ql(l}ripFObit.

Proof. The language of all words whose length is a power of two is in FOy; hence
in the difference of the two classes. d

14

The remainder of this subsection is devoted to documenting a more complicated
setting in which the BIT predicate provably adds expressiveness. We want to show
that FO(Q:,) C FOuit(QGrp)- 1 e- that even when unary groupoidal quantifiers can
be nested arbitrarily, the BIT predicate adds strength.

For this, we define, for strings u,w of equal length the operations u, u A w and
4 V w which denote the bitwise complementation of u, the bitwise AND of v and w
and the bitwise OR of u and w. We say that a string w is (I,m)-bounded if it is in
u} - - - uf, for some strings u; with |u;| < m, for every i.

We are going to make use of the following Lemma.

Lemma 4.14. Let u be an (I, m)-bounded 0-1-string and w an (I',m')-bounded 0-1-
string, for some l,m,l',m' > 1, and |u| = |w|. Then the following hold.

(a) u is (I,m)-bounded.

(b) uNw and uV w are (5(I +1'),mm')-bounded.

Proof. (a) is trivial. We show (b) only for u A w, the argument for v V w being
completely analogous.

We show the statement by induction on [+1’. The induction starts with the case
I=0=1. ‘

In this case, u = 4! and w = w{, for some i,j,u1,w;, with |u;| < m and
|wi| <m/.

Let u; ¢ w; denote the string u|1w1| A w‘f“' of length |u1||wi| < mm'. Further let
d and r be chosen such that |u| = d|u;||wi| + 7. Then u Aw = (u; o w1)% for some
v with |v| = 7. Hence u A w is (2, mm/)-bounded. o .

Now let [+1' > 2. W.lo.g. we can assume that v = uj'u?u’ and w = wiw'
where |u1|, [ug| < m, |wi| <m/, v is (I —2,m)-bounded, w' is (I" — 1,m')-bounded
and |w]| > |ul!].

Let 0 < < m' be such that |[u%| 4+ r is a multiple of |w;|. Let u§™ be the word
uy rotated r positions to the left. It should be clear that, from position |uf'| 4 r in
u A v onwards, the word (u$™" o w;) is repeated, as long as the ug" portion of u and
the w{ portion of w keep “overlapping”. We distinguish two cases.

Case 1: |w!| < |[ufl| + |u?|, ie. the “overlap” with u;? runs out within w?.

- i 12 /
u Uq | Uy U
w= w] | w

There are 15,14, us, uq with |us|, |us| < m, such that

u = Uq Uy U3 UL Uy U

w = w{ w'

Tt is not hard to see that we can write (u’' ugzu;),) Aw! as

(w1 o w1)F o1y (us o wy)*2vs,

for some vy of length r, some ki,ky, and some vy, v3 of length at most mm/. As
uqugu' is (I, m)-bounded and w' is (I' — 1, m')-bounded it follows by induction that

15

uguu' Aw' is (5(1 4 ' — 1), mm’)-bounded. Altogether, u A w is (5(1 + I'), mm/')-
bounded, as required. . .
Case 2: |w!| > |ull| + |u?|, i-e. uy? runs out first.

u= ult | ul? | u!

w = w{ | w

Hence, there are j', 7" and wq, w3 with |ws|, jws| < m’ such that

u = uzll UZZQ o

_] j”
w = wy W2 W3 Wy | w

o ,
Now, uitui? A (w] wy) can be written as

(u1 ¢ wl)klvlm(u‘{T o wl)k2U3>

where |vo| = 7 and |v1], |vs| < mm/, hence this string is (5, mm’)-bounded. Again, by
induction, it follows that the remaining part of u Aw is (5(41" — 1), mm')-bounded,
which implies the statement of the lemma. O

Let X be a fixed alphabet, and let o denote the corresponding signature. Let
¢ be a FO(+)-o-formula with free variables z and § = y1,... ,y,. For every string
w € B*, we write ¢ (w) for the 0-1 string v = v1,... vy, with v; = 1iff (w,7,7) = ¢.

Lemma 4.15. Let ¥ = {0} and o9 = {Py}. Let ¢ be a FO(+)-0¢-formula with free
parameters x and Yy = y1,... ,yx. Then there are I and m such that for every n and
Y1, .- Yk it holds that t%(0") is (I, m)-bounded.

Proof. Let ¢' be the FO(+)-0-formula which results from ¢ by replacing every sub-
formula Py(t) by true, introducing a new free variable, n, and restricting all quanti-
fiers relative to n. I.e., sub-formulas 326 are replaced by 3z(z < n) A 6 and V20 is
replaced by Vz(z < n) — 6. Then we get

(0",2,7) F ¢ < (N,n,z,7) F ¢,

where N denotes the natural numbers. Using Presburger Quantifier Elimination
(see [BJ8Y, pp. 220f] or [Smo87, pp. 320ff]) we can transform ¢ into an equivalent
quantifier-free formula 1) which may additionally use the constants 0 and 1 and
binary predicates - = - (mod ¢), for some constants c¢. The atomic formulas of v are
of one of the following forms.

e ar +bn+aiy +---aryr = c,

o ar +bn+aiy; +---apyr < c,

e ar+bn+ajyr + - aryr > c,

e ar +bn+ayr + - agyx = ¢ (mod d),
for some constants a, b, ¢, d, a;. For every fixed n, y1, ... , Yy, the first formula defines,
via the above equivalence, a (3,1)-bounded string in 0*1*0*, the second and third
formula define a (2,1)-bounded string in 1*0* and 0*1* respectively, and the last
formula defines a (2, d)-bounded string in 0%(10471)*. As 4 is fixed, by inductively
applying Lemma 4.14 we get constants [and m, such that, for every n,7, t5(0") is
(I, m)-bounded. O

16

Theorem 4.16. FOuit(Q¢;,) s not contained in FO(Q4;,)-

Proof. We consider the language { o’ | n € N}, which is even expressible in FOp;;
and show that it is not in FO(Qg;,)-

In order to do so, we show that, for every unary language L in FO(Q{;,), the
set {7 | 0° € L} is semi-linear (i.e. the finite union of some arithmetic progressions).

It is enough to show that, over a one-letter alphabet, every formula of the kind
Q@ pryp with CFL B and first-order ¢ (with addition) can be replaced by a first-order
formula with addition.

Hence, let 1) = Qpxyp, for some first-order ¢ (with addition) and CFL B.

Let, besides x, ¥ = y1, ... ,yx be the free variables of . B

By Lemma 4.15, there exist [and m such that, for every n and ¥, t5(0") is
(I,m)-bounded. Let ui,...,u, be an enumeration of all 0-1 strings of length at
most m. Let L' denote the (regular) language, defined by (uj-- u;)l. It follows
that ¢%(0") is in I, hence it can be written as u! - - ubPul2t - u2? ...u (where,
for each j = 1,...,l, all but one of the j i;1,... ,i;p are 0). For a word w € L' we
write I(w) for the set of tuples (i11, ... ,i;) with uf}! ---u;;”
following that Ip := |J,,cpnr I(w) is a semi-linear set.

Let ' = a1,... ,aip,... ,a;p be a new (lp-letter) alphabet and let h be the
homomorphism defined by h(a;;) = u;. Let 7 denote the Parikh mapping for strings

* *
aiy - - ap,- Then we have

= w. We show in the

Ig =1(h""(BNL)Na},---ai),

which is semi-linear by Parikh’s theorem [Har78, Sect. 6.9].
Hence, v is equivalent to a FO(+) formula. By induction, we get that every
FO(+)(QGrp): hence also every FO(Qg;,) formula, over a one-letter alphabet is

equivalent to a FO(+) formula. Hence {O” | n € N} is not in FO(Grp)- O

It is interesting to see that the proof makes use of quantifier elimination twice,
first to get the bounded strings, and second to show that {O”2 | n € N} is not in
FO(+).

As a particular case we can now solve an open question of [BIS90], addressing
the power of different arity for majority quantifiers.

Corollary 4.17. Majority of pairs can not be expressed in first-order logic with
unary majority quantifiers.

Proof. In Theorem 4.10 it was observed that the unary majority quantifier can be
simulated in FO(Q{;,). On the other hand in [BIS90] it is shown that majority of
pairs is sufﬁment to simulate the BIT predicate. But as FObIt(Qg}p) is not contained
in FO(Q¥) the BIT predicate and hence the majority of pairs is not definable in
FO(Grp) hence it can not be simulated by unary majority quantifiers. O

In the same way, this time relying on Theorem 4.11, we obtain:

Corollary 4.18. Multiplication is not definable in FO(Qg],)-

17

5 Conclusion

Fig. 1 depicts the first-order groupoidal-quantifier-based classes studied in this pa-
per. Together with the new characterization of FO-translations by means of aperi-
odic finite transducers, the relationships shown on Fig. 1 summarize our contribu-
tion.

LOGCFL = FOuit(Qarp) = QarpFO

QGrpF()blt Grp
ACO CFL = Q& FO
QEFO

Figure 1: The new landscape. Here G stands for any fixed groupoid, and a thick
line indicates strict inclusion.

A number of open questions are apparent from Figure 1. Clearly, it would be nice
to separate the FOy;;-based classes, in particular FObit(Qg;p) from FOut (Qarp), but
this is a daunting task. A sensible approach then is to begin with G,rpFOblt How
does this compare with TC? for example? Can we at least separate QGrPFObit from
LOGCFL? We know that Q& FOuix € FO(QG;,); 2 witness for this is the set

{0"2 ‘ n € N}, cf. the proof of Theorem 4.16.

Other natural questions prompted by our separation results concern extensions
and refinements to Figure 1. For example, in the world with BIT, which spe-
cific groupoids G are powerful enough to express LOGCFL, and which are not?
In the world without BIT, given the aperiodic transducer characterization of FO-
translations, can we prove REG \ (REG N QE'FO) # 0 as easily as Lemma 4.8
implies CFL \ Q&'FO # 0?7 More importantly, can we hope for an algebraic theory
of groupoids to explain the detailed structure of CFL, much in the way that an
elaborate theory of monoids is used in the extensive first-order parameterization of
REG?

But perhaps the most fundamental (and hopefully tractable) question arising
from our work is not apparent from Figure 1. It concerns the Boolean closure of
the context-free languages. We have trivially used BC(CFL) (in fact BCT(CFL)

18

sufficed) to witness the separation between Qg FO and FO(Q{;,). But what is
BC(CFL) exactly, and what techniques are available to prove that a language is not
in BC(CFL)? It is easy to prove that any non-regular language over a unary alphabet
does not belong to BC(CFL), and a natural infinite hierarchy within BC*(CFL) is
known [LW73], but the full question seems to have fallen into the cracks. We have
several good candidates for membership in FO(Qg;,) \ BC(CFL), but so far have
been unable to prove these two classes different.

Finally, ever since the regular languages in AC? and in ACC® were characterized
(the latter modulo a natural conjecture [BCST92]), one might have wondered about
a similar characterization for the context-free languages in these classes, and in
NC!. A unified treatment of LOGCFL subclasses under the banner of first-order
logic might constitute a useful step towards being able to answer these questions.
Since circuit-based complexity classes are closed under Boolean operations however,
a better understanding of the interaction between the complement operation and
groupoidal quantifiers is required. This once again seems to highlight the importance
of understanding BC(CFL).

Acknowledgments. We thank Dave Barrington, Gerhard Buntrock, Volker
Diekert, Klaus-Jorn Lange, Ken Regan, Heinz Schmitz, Denis Thérien, Wolfgang
Thomas, Klaus Wagner, and Detlef Wotschke for useful discussions at one stage or
another in the course of this work.

References

[ABB97] J.-M. Autebert, J. Berstel, and L. Boasson. Context-free languages and
pushdown automata. In R. Rozenberg and A. Salomaa, editors, Hand-
book of Formal Languages, volume I, chapter 3. Springer Verlag, Berlin
Heidelberg, 1997.

[BCST92] D. A. Mix Barrington, K. Compton, H. Straubing, and D. Thérien. Regu-
lar languages in NC. Journal of Computer and System Sciences, 44:478—
499, 1992.

[BIS90] D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity
within NC'. Journal of Computer and System Sciences, 41:274-306, 1990.

[BJ89] G. S. Boolos and R. C. Jeffrey. Computability and Logic. Cambridge
University Press, 1989.

[BLM93] F. Bédard, F. Lemieux, and P. McKenzie. Extensions to Barrington’s
M-program model. Theoretical Computer Science, 107:31-61, 1993.

[BV96] H.-J. Burtschick and H. Vollmer. Lindstrém quantifiers and leaf language
definability. Technical Report 96-005, Electronic Colloquium on Compu-
tational Complexity, 1996. To appear in the International Journal of
Foundations of Computer Science.

[CooT1l] S. A. Cook. Characterizations of pushdown machines in terms of time-
bounded computers. Journal of the ACM, 18:4-18, 1971.

[EF95] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer Verlag,

19

[GreT3]
[Har78]

[HP93)

[Imm98]
[Lin66)]
[Lin94]

[LST94]

[LW73]
[MP71]

[MS97]

[PMT91]
[Sch65]
[Smo87]
[Smo91]
[Ste85]
[Str94]
[Sud78]

[Ven91]

Berlin Heidelberg, 1995.

S. Greibach. The hardest context-free language. SIAM Journal on Com-
puting, 2:304-310, 1973.

M. A. Harrison. Introduction for Formal Language Theory. Addison-
Wesley, Reading, MA, 1978.

P. Hijek and P. Pudldk. Metamathematics of First-Order Arithmetic.
Perspectives in Mathematical Logic. Springer Verlag, Berlin Heidelberg,
1993.

N. Immerman. Descriptive and Computational Complerity. Springer
Verlag, New York, 1998.

P. Lindstrém. First order predicate logic with generalized quantifiers.
Theoria, 32:186-195, 1966.

S. Lindell. manuscript, 1994. e-mail communication by Kenneth W.
Regan.

C. Lautemann, T. Schwentick, and D. Thérien. Logics for context-free
languages. In L. Pacholski and J. Tiuryn, editors, 8th Computer Science
Logic, Selected Papers, volume 933 of Lecture Notes in Computer Science,
pages 205-216. Springer Verlag, 1994.

L. Liu and P. Weiner. An infinite hierarchy of intersections of context-free
languages. Mathematical Systems Theory, 7:185-192, 1973.

R. McNaughton and S. Papert. Counter-Free Automata. MIT Press,
1971.

A. Mateescu and A. Salomaa. Aspects of classical language theory. In
R. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages,
volume I, chapter 4. Springer Verlag, Berlin Heidelberg, 1997.

P. Péladeau P. McKenzie and D. Thérien. NC!: The automata-theoretic
viewpoint. Computational Complezity, 1:330-359, 1991.

M. P. Schiitzenberger. On finite monoids having only trivial subgroups.
Information & Control, 8:190-194, 1965.

R. Smolensky. Algebraic methods in the theory of lower bounds for

Boolean circuit complexity. In Proceedings 19th Symposium on Theory
of Computing, pages 77-82. ACM Press, 1987.

C. Smorynski. Logical Number Theory I. Springer Verlag, 1991.

J. Stern. Complexity of some problems from the theory of automata.
Information & Computation, 66:163-176, 1985.

H. Straubing. Finite Automata, Formal Logic, and Circuit Complezity.
Birkhauser, Boston, 1994.

I. H. Sudborough. On the tape complexity of deterministic context-free
languages. Journal of the ACM, 25:405-414, 1978.

H. Venkateswaran. Properties that characterize LOGCFL. Journal of
Computer and System Sciences, 43:380-404, 1991.

20

ECCC

ISSN 1433-8092

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

