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Abstract

Given a function f mapping n-variate inputs from a finite field F' into F', we con-
sider the task of reconstructing a list of all n-variate degree d polynomials which agree
with f on a tiny but non-negligible fraction, ¢, of the input space. We give a random-
ized algorithm for solving this task which accesses f as a black box and runs in time
polynomial in %, n and exponential in d, provided ¢ is Q(/d/|F|). For the special case
when d = 1, we solve this problem for all e def 5 ﬁ > (. In this case the running time
of our algorithm is bounded by a polynomial in % and n. Our algorithm generalizes a
previously known algorithm, due to Goldreich and Levin, that solves this task for the
case when F' = GF(2) (and d =1).

In the process we provide new bounds on the number of degree d polynomials that
may agree with any given function on 6§ > \/d/|F| fraction of the inputs. This result
is derived by generalizing a well-known bound from coding theory on the number of
codewords from an error-correcting code that can be “close” to an arbitrary word —
our generalization works for codes over arbitrary alphabets, while the previous result

held only for binary alphabets. This result may be of independent interest.

1 Introduction

We consider the following archetypal reconstruction problem:

Given: An oracle (black box) for an arbitrary function f : F™ — F, a class of functions C,
and a parameter 6.
Output: A list of all functions g € C that agree with f on at least § fraction of the inputs.
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The reconstruction problem can be interpreted in several ways within the framework of
computational learning theory. First, it falls into the paradigm of learning with persistent
noise. Here one assumes that the function f is derived from some function in the class C by
“adding” noise to it. Typical works in this direction either tolerate only small amounts of
noise [2, 41, 21, 39] (i.e., that the function is modified only at a small fraction of all possible
inputs) or assume that the noise is random [1, 26, 20, 25, 33, 13, 36| (i.e., that the decision of
whether or not to modify the function at any given input is made by a random process). In
contrast, we take the setting to an extreme, by considering a very large amount of (possibly
adversarially chosen) noise. In particular, we consider situations in which the noise disturbs
the outputs for almost all inputs.

A second interpretation of the reconstruction problem is within the paradigm of “agnostic
learning” introduced by Kearns et al. [23] (see also [29, 30, 24]). In the setting of agnostic
learning, the learner is to make no assumptions regarding the natural phenomena underlying
the input/output relationship of the function, and the goal of the learner is to come up
with a simple explanation which best fits the examples. Therefore the best explanation
may account for only part of the phenomena. In some situations, when the phenomena
appears very irregular, providing an explanation which fits only part of it is better than
nothing. Kearns et al. did not consider the use of queries (but rather examples drawn from
an arbitrary distribution) as they were skeptical that queries could be of any help. We show
that queries do seem to help (see below).

Yet another interpretation of the reconstruction problem, which generalizes the “agnostic
learning” approach, is the following. Suppose that the natural phenomena can be explained
by several simple explanations which together cover most of the input-output behavior but
not all of it. Namely, suppose that the function f agrees almost everywhere with one of a
small number of functions g; € C. In particular, assume that each g; agrees with f on at least
a ¢ fraction of the inputs but that for some (say 26) fraction of the inputs f does not agree
with any of the g;’s. This setting is very related to the setting investigated by Ar et al. [3],
except that their techniques require that the fraction of inputs left unexplained by any g;
be smaller than the fraction of inputs on which each g; agrees with f. We believe that our
relaxation makes the setting more appealing and closer in spirit to “agnostic learning”.

1.1 Owur Results

In this paper, we consider the special case of the reconstruction problem when the hypothesis
class is the set of n-variate polynomials of bounded total degree d. The most interesting
aspect of our results is that they relate to very small values of the parameter § (the fraction
of inputs on which the hypothesis has to fit the function f). Our main results are

e An algorithm that given d, F and 6 = Q(4/d/|F|), and provided oracle access to an
arbitrary function f : F™ — F, runs in time (n/6)° and outputs a list including all
degree d polynomials which agree with f on ¢ fraction of the inputs.

e An algorithm that given F' and ¢ > 0, and provided oracle access to an arbitrary

function f : I — F, runs in time poly(n/e) and outputs a list including all linear

functions (degree d = 1 polynomials) which agree with f on a 6 o ﬁ + € fraction of



the inputs.

e A new bound on the number of degree d polynomials that may agree with a given
function f : F* — F on a 6 > /d/|F| fraction of the inputs. This bound is derived
from a more general result about the number of codewords from an error-correcting
code that may be close to a given word.

A special case of interest is when the function f is obtained as a result of picking an arbitrary
degree d polynomial p and letting f agree with p on an arbitrary 6 = Q(,/%) fraction of

the inputs and be set at random otherwise.! In this case, with high probability, only one
polynomial (i.e., p) agrees with f on a ¢ fraction of the inputs (see Section 5). Thus, in this
case, the above algorithm will output only the polynomial p.

Remarks:

1. Any algorithm for the (explicit) reconstruction problem as stated above would need to
n+d
d

the number of such polynomials could grow as a function of % Thus it seems reasonable
that the running time of such a reconstruction procedure should grow as a polynomial
function of } and (Z)

output all the coefficients of such a polynomial, requiring time at least ( ) Moreover

2. For d < |F|, the value %‘

are exponentially (in n) many degree d polynomials which are at distance ~ % from

seems a natural threshold for our investigation since there

some functions (see Proposition 21).

3. Queries seem essential to our learning algorithm since for the case F' = GF(2) and
d =1 the problem reduces to the well-known problem of “learning parity with noise”
[20] which is commonly believed to be hard when one is only allowed uniformly and
independently chosen examples [20, 7, 22]. (Actually, learning parity with noise is
considered hard even for random noise, whereas here the noise is adversarial.)

4. In Section 6, we give evidence that the reconstruction problem may be hard, for 6
very close to d/|F|, even in the case where n = 2. A variant is shown to be hard even
for n = 1.

List decoding of error-correcting codes: For positive integers N, K, D and ¢, an
[N, K, D], error-correcting code is a collection of ¢* sequences of N-elements each from
{1,...,q}, called codewords, in which no two strings have a “Hamming distance” of less
than D (i.e., every pair of codewords disagree on at least D locations). Polynomial functions
lead to some of the simplest known constructions of error-correcting codes: A function from
F" to F may be viewed as an element of FI*I" — by writing down the function’s value
explicitly on all |F'|" inputs. Then the “distance property” of polynomials yields that the set
of sequences corresponding to bounded-degree polynomial functions form an error-correcting
code with non-trivial parameters (for details, see Proposition 16). These constructions have
been studied in the literature on coding theory. The case n = 1 leads to “Reed-Solomon

1This is different from “random noise” as the set of corrupted inputs is selected adversarially — only the
values at these inputs are random.



codes”, while the case of general n is studied under the name “Reed-Muller codes”. Our
reconstruction algorithm may be viewed as an algorithm that takes an arbitrary word from
FIFI" and finds a list of all codewords from the Reed-Muller code that agree with the given
word in é fraction of the coordinates (i.e., 1—6 fraction of the coordinates have been corrupted
by errors). This task is referred to in the literature as the “list-decoding” problem [11]. For
codes achieved from setting d such that d/|F| — 0, our list decoding algorithm recovers
from errors when the rate of errors approaches 1. We are not aware of any other case where
an approach other than brute force can be used to perform list decoding with the error-rate
approaching 1. Furthermore, our decoding algorithm works without examining the entire
codeword. Our algorithms seem to be non-trivial and have better running times than the
brute force algorithm for list-decoding.

1.2 Related Previous Work

Polynomial interpolation: When the noise rate is 0, our problem is simply that of
polynomial interpolation. In this case the problem is well analyzed and the reader is referred
to [46], for instance, for a history of the polynomial interpolation problem.

Self-Correction: In the case when the noise rate is positive but small, one approach used
to solving the reconstruction problem is to use self-correctors, introduced independently in
[8] and [28]. Self-correctors convert programs that are known to be correct on a fraction ¢ of
inputs into programs that are correct on each input. Self-correctors for values of ¢ that are
larger than 3/4 have been constructed for several functions [5, 8, 9, 28, 34]. Self-correctors
correcting ﬁ fraction of error for f that are degree d polynomial functions over a finite
field F, |F| > d + 2, were found by [5, 28]. For d/|F| — 0, the fraction of errors that a
self-corrector could correct was improved to almost 1/4 by [14] and then to almost 1/2 by
[15] (using a solution for the univariate case given by [43]). These self-correctors correct a
given program using only the information that the program is supposed to be computing a
low-degree polynomial. Thus, when the error is larger than 3 (or, alternatively 6§ < 1/2),
such self-correction is no longer possible since there could be more than one polynomial that
agrees with the given program on an ¢ < 1/2 fraction of the inputs.

Linear Polynomials: A special case of the (explicit) reconstruction problem for d = 1
and F' = GF(2) was studied by Goldreich and Levin [17]. They solved the reconstruction
problem in this case for every 6 > 7. (Notice that the self-corrector of [15] mentioned above
does not apply to this case, since here d/|F| = 1/2 and does not tend to 0.) Goldreich and
Levin [17] use the solution to the reconstruction problem to prove the security of a certain
“hardcore predicate” relative to any “one-way function”. Their ideas were also subsequently
used by Kushilevitz and Mansour [25] to devise an algorithm for learning Boolean decision
trees.

Reconstruction of polynomials under structured error models: Ar et al. [3] have
considered the problem of reconstructing a list of polynomials which together explain the
input-output relation of a given black-box. However, they have required that the fraction
of inputs left uncovered by any of the polynomials be smaller than the fraction of inputs
covered by any single polynomial.



1.3 Subsequent work

At the time this work was done (and first published [18]) no algorithm (other than brute force)
was known for reconstructing a list of degree d polynomials agreeing with an arbitray function
on a vanishing fraction of inputs, for any d > 2. Our algorithm solves this problem with
exponential dependence on d, but with polynomial dependence on n, the number of variables.
Subsequently some new reconstruction algorithms for polynomials have been developed. In
particular, Sudan [40], and Guruswami and Sudan [19] have provided new algorithms for
reconstructing univariate polynomials from large amounts of noise. Their running time
depends only polynomially in d and works for § = Q(y/d/|F|). Notice that the agreement
required in this case is larger than the level at which our NP-hardness result holds. The
results of [40] also provide some reconstruction algorithms for multivariate polynomials, but
not for as low an error as given here. Also in his case, the running time grows exponentially
with n. Wasserman [42] gives an algorithm for reconstructing polynomials from noisy data
that works without making queries. The running time here also grows exponentially in n
and polynomially in d.

As noted earlier (see Remark 1 in Section 1.1), the running time of any explicit recon-
struction algorithm has to have an exponential dependence on either d or n. However this
need not be true for implicit reconstruction algorithms, i.e., algorithms which produce as
output a sequence of oracle machines, such that for every multivariate polynomial that has
agreement ¢ with the function f, one of these oracle machines, given access to f, computes
that polynomial. Recently, Arora and Sudan [4] gave an algorithm for this implicit recon-
struction problem. The running time of their algorithm is bounded by a polynomial in n, d
and works correctly provided § > (d°M)/|F|**Y) (i.e., their algorithm needs a much higher
agreement, but works in time polynomial in all parameters). It is easy to see that such a
result implies an algorithm for the explicit reconstruction problem with running time that

is polynomial in (";d) and %.

1.4 Rest of this paper

The rest of the paper is organized as follows. In Section 2 we motivate our algorithm and in
particular present the case of reconstruction of linear polynomials. The algorithm is described
formally in Section 3, along with an analysis of its correctness and running time assuming
an upper bound on the number of polynomials which can agree with a given function at ¢
fraction of the inputs. In Section 4 we provide two such upper bounds. These bounds do not
use any special (i.e., algebraic) property of polynomials, but apply in general to collections of
functions that have large distance between them. In Section 5 we consider a random model
for the noise in the function. Specifically, the output of the black box either agrees with a
fixed polynomial or is random. In such a case we provide a stronger upper bound (i.e., 1) on
the number of polynomials that may agree with the black box. In Section 6 we give evidence
that the reconstruction problem may be hard for small values of the agreement parameter ¢
even in the case when n = 1.

Notations: In what follows, we use GF(q) to denote the finite field on ¢ elements. We as-
sume arithmetic in this field (addition, subtraction, multiplication, division and comparison



with zero) may be performed for unit cost. For a finite set A, we use the notation a €g A
to denote that a is a random variable chosen uniformly at random from A. For a positive
integer n, we use [n] to denote the set {1,...,n}.

2 Motivation to the algorithm

We start by presenting the algorithm for the linear case, and next present some of the ideas
underlying the generalization to higher degrees.

2.1 Reconstructing linear polynomials

We are given oracle access to a function f : GF(¢)" — GF(¢) and need to find a polynomial
(or actually all polynomials) of degree d which agrees with f on an ¢ = % -+ € fraction of the
inputs, where € > 0.

Our starting point is the linear case (i.e., d = 1); namely, we are looking for a polynomial
of the form p(z1,...,z,) = Y74 ¢;z;. In this case our algorithm is a generalization of an
algorithm due to Goldreich and Levin [17]?. (The original algorithm is regained by setting
q = 2.) To proceed, we need the following definition: The i-prefiz of a linear polynomial
p(z1, ..., T,) is the polynomial which results by summing up all of the monomials in which
only the first ¢ variables appear. That is, the i-prefix of the polynomial 3°7_, ¢;z; is 2321 Ci%j.
The algorithm proceeds in n rounds, so that in the i round we find a list of candidates for
the i-prefixes of p.

The list of i-prefixes is generated by extending the list of (i — 1)-prefixes. A simple (and
inefficient) way to perform this extension is to first extend each (i — 1)-prefix in all ¢ possible
ways, and then to screen the resulting list of ¢-prefixes. A good screening is the essence of
the algorithm. It should guarantee that the i-prefix of the correct solution p does pass and
that not too many other prefixes pass (as otherwise the algorithm consumes too much time).

The screening is done by subjecting each candidate prefix, (ci,...,¢;), to the following
test. Pick m = poly(n/e) sequences uniformly from GF(q)"~*. For each such sequence
(Six1, .-, 8n) and for every o € GF(q), estimate the quantity

P(o) = Pr,, . recar(e {f(f, 5) = Z ciTi+ o (1)
7j=1

(where 7,5 denotes the vector (r1,...,7;, Sit1,---,5,)).- The value o can be thought of as a
guess for 37, . ¢;s;. All these probabilities can be approximated simultaneously by using a
sample of poly(n/e) sequences (71, ..., 7;) (regardless of ¢). The actual algorithm is presented
in Figure 1. We say that a candidate (cy, ..., ¢;) passes the test if for at least one sequence of
(Sit1, ---» Sn) there exists a o so that the estimate for P(o) is greater than %-{—g. An application
of Markov’s inequality yields that for the correct candidate, an €/2 fraction of the suffixes
(Six1,--.,8n) are such that for this suffix, P(o) is at least % + 5; thus the correct candidate

2We refer to the original algorithm as in [17], not to a simpler algorithm which appears in later versions
(cf., [27, 16]).



Test-prefix(f, e, n, (c1,...,¢))
Repeat poly(n/e) times:
Pick S$;y1,---,8, €r GF(q).
Let ¢t % poly(n/e).
for k=1 to t do
Pick ry,...,7; €g GF(q)
¥ f(7,5) = S0, ;.
endfor
If 30 s.t. 0% =0 for at least %—i—g fraction of the k’s
then output accept and halt.
endRepeat.
If all iterations were completed without accepting, then reject.

Figure 1: Implementing the screeing process

passes the test with overwhelming probability. On the other hand, for any polynomial to
pass the test with non-negligible probability, it must have agreement at least % + 7 with f,
and it is possible to bound the number of polynomials that have so much agreement with
any function f. (Sections 4 contains some such bounds.)

The above yields a poly(ng/e)-time algorithm. In order to get rid of the ¢ factor in
running-time, we need to modify the process by which candidates are formed. Instead of
extending each (i —1)-prefix, (¢, ..., ¢;_1), in all ¢ possible ways, we do the following: We pick
uniformly 5 % (sis1,...,82) € GF(9)" %, 7 ¥ (r1,...,7i_1) € GF(g)'" ! and 7', 7" € GF(q).
Note that if p is a solution to the reconstruction problem for f then for at least an €/2
fraction of the sequences (7,3), the polynomial p satisfies p(7,r,3) = f(7,r,3) for at least an
€/2 fraction of the possible 7’s. We may assume that 1/q < €/4 (since otherwise ¢ < 4/¢ and
we can afford to perform the simpler procedure above). Denote by y the unknown value of
the sum Y°7_, ., ¢;5; (where these c;’s are the coefficient of the polynomial close to f) and by
r the coefficient we are looking for (i.e., the i*® coefficient ¢;). Then, with probability Q(€?)

over the choices of r1,...,7; 1, Si41,--.,8, and 7' 7", the following two equations hold:
1—1
! /
r'r+y = (11,0 rict, T Sitts oy S0) — D CT;
j=1
1—1
" n
"4y = f(r1, e Tic1, T Sit1y ooy Sn) — chrj
=1

where 7’ # r”o. (Le., with probability at least 3, the suffix 5 is good, and conditioned on this
event 7’ is good with probability at least 72, and the same applies to r” while conditioning

on 7" # r'.) Thus solving for x we get the desired extension. We emphasize that we do
not know whether the equalities hold or not, but rather solve assuming they hold and add
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the solution to the list of candidates. In order to guarantee that the correct prefix always
appears in our candidate list, we repeat the above extension poly(n/e) times for each (i —1)-
prefix. Extraneous prefixes can be removed from the candidate list via the screening process
mentioned above. Using Theorem 18 of Section 4, we have:

Theorem 1 Given oracle access to a function f and parameters €, k, our algorithm runs

mn poly(k'T")—time and outputs, with probability at least 1 — 27%, a list containing all linear

polynomaals which agree with f on at least a 6 = % + € fraction of the inputs. Furthermore,
. . . . . 1 € .

t'he list does not contain polynomials which agree with f on less than a T fraction of the

mnputs.

2.2 Generalizing to higher degree

Dealing with polynomials of degree d > 1 is more involved. Our plan is (again) to first
“isolate” the terms/monomials of in the first ¢ variables and find (candidates for) their coeffi-
cients. The isolation can be performed by concentrating on small subcubes of the domain. In
particular, if p(z1,...,z,) is a degree d polynomial on n variables then p(zy,...,z;0,...,0)
is a degree < d polynomial on ¢ variables which has the same coefficients as p on all monomials
involving variables in {1,...,4}. Thus, p(z1,...,2;,0,...,0) is the i-prefiz of p.

We show how to extend a list of candidates for the (i — 1)-prefixes polynomials agreeing
with f into a list of candidates for the i-prefixes. Suppose we get the (i — 1)-prefix p which
we want to extend. We select d + 1 distinct elements (V) ..., 7(4*1) € GF(q) (r¥) = j is a
reasonable choice). Now consider the functions

def

f(j)(l'l, ceey .7,'2'_1) = f(.Tl, ceey Li—1, ’I"(j), 0, ceey 0) - p(l‘l, ceey .7,'2'_1). (2)

Suppose that f equals some degree d polynomial and that p is indeed the (i — 1)-prefix of this
polynomial. Then f() is a polynomial of degree d—1 (since all the degree d monomials in the
i — 1 variables have been canceled by p). Furthermore, given f), ..., f(*1 we can find (by
interpolation) the extension of p to a i-prefix. The last assertion deserves some elaboration.
Consider the i-prefix of f, denoted p’ = p'(x1, ..., Zi—1, ;). In each fY) the monomials of p’
which agree on the exponents of zi,...,z;_; are collapsed together (since z; is instantiated
and so monomials containing different powers of z; are added together). However, using the
d + 1 collapsed values, we can retrieve the coeflicients of the different monomials (in p').
(Actually, we obtain a degree d polynomial in variables 1, ..., z; which matches each f()
when instantiating z; = ), but only the degree d monomials in this polynomial correspond
to p’ — as they are not affected by the instantiation of ;,1, ..., z,,.) To complete the high level
description of the procedure we need to get the polynomial representing the f)’s. Since in
reality we have only have access to a (possibly highly noisy) oracle for the f\)’s, we use the
main procedure for finding a list of candidates for these polynomials. We point out that the
recursive call is to a problem of degree d — 1, which is lower than the degree we are currently
handling.

One difficulty encountered is the following: Suppose that there is some polynomial p*
that agrees with f on at least a § fraction of inputs in GF(¢)", but p* does not agree with
[ at all on the inputs in GF(q)*0"~*. Then solving the subproblem gives us no information
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about p*. Our solution is to perform a random linear transformation of the coordinate
system as follows: Pick a random nonsingular matrix R and define new variables ¥, ..., ¥,
as (y1,...,Yn) = ¥ = RZT (each y; is a random linear combination of the z;’s and vice versa).
This transformation can be used to define a new interpolation problem in terms of the y;’s,
where (1) the total degree of the problem is preserved (2) the points are mapped pairwise
independently so that there are “good” points in all subspaces of the new problem and (3)
one can easily transform the coordinate system back to the z;’s, so that it is possible to
construct a new black box consistent with f that takes 7 as an input.

Comment: The above solution to the above difficulty is different than the one in the original
version of this paper [18]. The solution there was to pick many different suffixes (instead
of 0"~*) and then apply Markov’s inequality. Picking many different suffixes creates other
problems, that needed to be dealt with carefully; and this resulted in a more complicated
algorithm in the original version.

3 Algorithm for degree d > 1 polynomials

The main algorithm Find-all-poly will use several subroutines: Compute-coefficients, Test-
valid, Constants, Brute-force, and Extend. The main algorithm is recursive, in n and d, with
the base case d = 0 being handled by the subroutine Constants and the other bases cases,
n < 4 being handled by the subroutine Brute-force. Most of the work is done in Find-all-poly
and Extend, which are mutually recursive.

The algorithms have a number of parameters in their input. We describe the commonly
occuring parameters first: ¢ is the size of the field we will be working with (and, unlike other
parameters, this never changes in the recursive calls). f will be a function on many variables
from GF(q) to GF(q) given as an oracle. n will denote the number of variables of f. d
will denote the degree of the polynomial we are hoping to reconstruct and 4, the agreement
parameter, is threshold such that every degree d polynomial with agreement at least 6 with
f will be reconstructed by the algorithm. Many of the algorithms are probabilistic and make
two-sided error. 9 will be the error parameter controlling the probability with which a valid
solution may be omitted from the output. ¢ will be the error parameter controlling the error
with which an invalid solution is included in the output list. Picking a random element of
GF(q) is assumed to take unit time, as are field operations and calls to the oracle f.

The symbol z will typically stand for a vector in GF(q), while the notation x; will refer
to the ith coordinate of x. When picking a sequence of vectors, we will use superscripts
to denote the vectors in the sequence. Thus, xgj ) will denote the ith coordinate a the jth
element of the sequence of vectors =,z ... For two polynomials p; and p,, we write
p1 = po if p; and p, are identical polynomials. We now generalize the notion of the prefix
of a polynomial in two ways. We extend it to arbitrary functions, and then extend it to
arbitrary suffixes (and not just 0°.

Definition 2 For 1 < i < n and ay,...,a4,_; € F, the (a1,...,an_;)-prefix of a function
f: F* — F, denoted fa,,. a,_;, 1S the i-variate function fla,. . .., : F* — F, given by
Fflatyan_i (@1, s @) = f(@1,..., 24,01, . .., an_;). The i-prefix of f is the function f|gn—i.



Remark: When specialized to a polynomial p, the i-prefix of p yields a polynomial on the
variables x4, . . ., x; whose coefficients are exactly the coefficients of p on monomials involving
only z1,...,x;.

We will use the notation NV, 44 to denote the maximum (over all possible f) of the number
of polynomials of degree d in n variables that have agreement ¢ with f. In this section we will
first determine our running time as a function of N, 45 and then use bounds on N, 45 derived
in Section 4 to derive the absolute running times. We include the intermediate bounds since
it is possible that the bounds of Section 4 may be improved, and this would improve our
running time as well. We only highlight some properties that we need to use about this
quantity. By definition N, 44 is monotone non-decreasing in d and n and monotone non-
increasing in 6. This will be used in the analysis.

3.1 The subroutines

We first axiomatize the behavior of each of the subroutines. Then we present an implemen-
tion of the subroutine and then analyze it with respect to the axiomatization.

(P1) Constants(f, 6, n,q,), with probability at least 1 — 1, returns every degree 0 (i.e.,
constant) polynomial p such that f and p agree on § fraction of the points. *

Constants works as follows: Set k£ = O((55) log i) and pick 2, ..., 2®*) independently
and uniformly at random from GF(q)". Output the list of all constants a (or equivalently
the polynomial p, = a) such that |{i € [k]|f(z®)) = a}| > 35k.

An easy application of Chernoff bounds indicates that the setting k = O(g log ;) suffices
to ensure that the error probability is at most ¢). Thus the running time of Constants is
bounded by the time to pick zV, ..., 2" € GF(q)" which is O(&nlog %)

Proposition 3 Constants(f,6,n,q,) satisfies (P1). Its running time is O(35nlog i)

Another simple procedure is the testing of agreement between a given polynomial and a
black box.

(P2) Test-valid(f,p,6,n,d,q,1,$) returns true, with probability at least 1 — ¢, if p is an n-
variate degree d polynomial with agreement 6 with f. It returns false with probability
at least 1 — ¢ if the agreement between f and p is less than g. (It may return anything
if the agreement is between 2 and 6.)

Test-valid works as follows: Set k = O(55 log m) and pick (M, ..., 2(®) independently
and uniformly at random from GF(q)". If f(z) = p(z™) for at least 2§ fraction of the
values of 7 € [k] then output true else false.

Again an application of Chernoff bounds yields the correctness of Test-valid. The running
time of Test-valid is bounded by the time to pick the & points from GF(q)" and the time to
evaluate p on them which is O(5; (log i) (";’d) -dn).

3Notice that we do not make any claims about the probability with which constants that do not have
significant agreement with ¢ may be reported. In fact we do not need such a condition for our analysis.
If required, such a condition may be explicitly enforced by “testing” every constant that is returned for
sufficient agreement.
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Brute-force(f, 6,n,d, q, ¢, P)

Set [ = ("Id
k= O(1og (42)")
L~ ).

Repeat k times
Pick (V... 20 € GF(q)".
Multivariate interpolation step:
Find p: GF(q)" — GF(q) of degree d s.t. Vi€ [l], p(z®) = f(z®).
If Test-valid(f,p,6,n,d,q, %, ¢) then L «— LU{p}.

Figure 2: Brute-force

Proposition 4 Test-valid(f,p,6,n,d, q,v) satisfies (P2). Its running time is bounded by
ntd) O
O 10 1) (1)),

(P3) Brute-force(f, 6, n,d, q,1, ¢) returns a list that includes, with probability 1 — 1, every
degree d polynomial p such that f and p agree on ¢ fraction of the points.

Notice that the goal of Brute-force is what one would expect to be the goal of Find-all-poly.
Its weakness will be its running time, which is doubly exponential in n and exponential in
d. However, we only invoke it for n < 4. In this case its running time is of the order of 5.
The description of Brute-force is given in Figure 2.

Lemma 5 Brute-force(f,6,n,d, q,, ¢) satisfies (P3). Its runs in time O(kl?’(log%)(log i))
where | = (";rd) and k = O((log i)(é - 3)’1)-

Proof: The running time of Brute-force is immediate from its description and the fact that
a naive interpolation algorithm for a (multivariate) polynomial with N coefficients runs in
time O(N3). To prove that with probability at least 1 — 1, it outputs every polynomial p
with ¢ agreement f, let us fix p and argue that in any one of the k iterations, p is likely to

be added to the output list with probability ( = ﬁ The lemma follows from the fact

that the number of iterations is a sufficiently large multiple of %

To prove that p is likely to be the candidate in each iteration with probability ¢, we
show that with probability 2¢ it is the polynomial interpolated in the iteration. The lemma
follows from the fact that Test-valid will return true with probability at least %

To show that p is the polynomial returned in the interpolation step, we look at the task
of finding p as the task of solving a linear system. Let p denote the [ dimensional vector
corresponding to the coefficients of p. Let M be the [ X | dimensional matrix whose rows
correspond to the points 1), ... z( and whose columns correspond to the monomials in
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p. Specifically, the entry M, ;, where j corresponds to the monomial x‘fl ...z is given
by (2)% .. (@)%, Finally let f be the vector (f(zM),..., f(z®)). For p to be the
polynomial returned in this step, we must have that M is of full rank and p(z®) = f(2®)
for every i. Let M® denote the i x | matrix with the first 4 rows of M.

Fix 20, ..., 201 such that p(z)) = f(2\)) for every j € [i — 1]. We argue that the
choice of (¥ is such that p(z(¥) = f(z®) AND the rank of M is greater than that of
M1 with probability at least § — g. The lemma follows immediately. It is easy to see that
f(z®) = p(z™) with probability at least §. To complete the proof it suffices to establish
that the probability, over a random choice of (¥, that M® has the same rank as MGV
is at most g. Consider two polynomials p; and p; such that py(z()) = po(x()) for every
j € [i — 1]. Then for the rank of M® to be the same as the rank of M(~" it must be that
p1(z®) = pa(z®) (else the solutions to the ith system are not the same as the solutions
to the ¢ — 1th system). But for distinct polynomials p; and p, the event p;(z®) = py (@)
happens with probability at most 3 for randomly chosen z(*. This concludes the proof of

the lemma. |
As an extension of univariate interpolations, we have:
(P4) Compute-coefficients(p™), ... pltD) M+ n d g, ) takes as input d+1 poly-
nomials p) in n — 1 variables of degree d —1 and d+ 1 values r) e GF(q) and returns

a degree d polynomial p : GF(q)" — GF(q) such that p|,.;) = p'¥ for every j € [d+1],
if such a polynomial p exists (else may return anything).

Compute-coefficients works as a simple interpolation algorithm: Specifically it finds d + 1

univariate polynomials hi, ..., hgy1 such that hy(r)) equals 1 if 4 = j and 0 otherwise and
then returns the polynomial p(z1,..., %) = 2001 hyj(zn) - p9 (21, ..., 2, 1). Note that the

computation of the h;’s depends only on the r()’s,

Proposition 6 Compute-coefficients(p™), ..., pd+D) ¢+ p(@+D) 'y d g 1) satisfies (P4).

Its running time 1s O(n® + (";d)).

3.2 The main routines

As mentioned earlier, the main subroutines are Find-all-poly and Extend, whose inputs and
properties are described next. They take, among other inputs, a special parameter « which
will be fixed later.

(P5) Find-all-poly(f,é,n,d,q,%, ¢, a) returns a list of polynomials containing every polyno-
mial of degree d on n variables that agrees with f in ¢ fraction of the inputs. Specifically,
the output list contains every degree d polynomial p with agreement 6 with f, with
probability at least 1 — .

The algorithm is described formally in Figure 3. Informally, the algorithm uses the
(“trivial”) subroutines for the base cases n < 4 or d = 0, and in the remaining (interesting)
cases it iterates a randomized process several times. Each iteration is initiated by a random
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linear transformation of the coordinates. Then in this new coordinate system, Find-all-poly
finds (using the “trivial” subroutine Brute-force) a list of all 4-variate polynomials having
significant agreement with the 4-prefix of the oracle. It then extends each polynomial in the
list one variable at a time till it finds the n-prefix of the polynomial (which is the polynomial
itself). Thus the crucial piece of the work is relegated to the subroutine Extend which is
supposed to extend a given (i — 1)-prefix of a polynomial with significant agreement with f
to its i-prefix. The goals of Extend are described next.

(P6) Extend(f,p,é,n,d,q, v, d,«) takes as input a degree d polynomial p in n — 1 variables
and returns a list of degree d polynomials in n variables. The guarantee is that is if p*
is a polynomial with agreement 6§ with f and further p*|; has agreement « - ¢ with f|;
for every j € {0,...,d} (implying, in particular, that p equals p*|o, the (n — 1)-prefix
of p*), then p* is in the output list (with probability 1 — ).

Figure 4 describes the algorithm formally. Extend returns all n-variable extensions p*, of
a given (n — 1)-variable polynomial p, provided p* agrees with f in a strong sense: p* has
significant agreement with f and for every j € {0,...,d}, p*|,; also has significant agreement
with f|; (the latter agreement may be slightly less than the former). To recover p*, Extend
first invokes Find-all-poly to find the polynomials p*|; for d 4+ 1 values of j. This is feasible
only if a polynomial p*|; has good agreement with f|;, for every j € {0,...,d}. Thus it
is crucial that when Extend is called with f and p, all extensions p*’s with good agreement
with f also satisfy the stronger agreement property (above). We will show that the calling
program (i.e., Find-all-poly at the higher level of recursion) will, with high probablity, satisfy
this property, by virtue of the random linear transformation of coordinates.

All the recursive calls (of Find-all-poly within Extend) always involve a smaller degree
parameter, thereby ensuring that the algorithms terminate (quickly). Having found a list of
possible values of p*|;, Extend uses a simple interpolation (subroutine Compute-coefficients)
to find a candidate for p*. It then uses Test-valid to prune out the many invalid polynomials
that are generated this way, returning only polynomials that are close to f.

Notice that we do not make any claims (in (P5) and (P6)) about the probability with
which polynomials with low-agreement may be included in the output. We will consider this
issue later when analyzing the running times of Find-all-poly and Extend.

We now go on the formal analysis of the correctness of Find-all-poly and Extend.

3.3 Correctness of Find-all-poly and Extend

Lemma 7 Ifa < 1— %, 6 > %, and q > 3 then Find-all-poly satisfies (P5) and Extend
satisfies (P6).

Proof: We prove the lemma by a double induction, first on d and for any fixed d, we induct
on n.

Assume that Find-all-poly is correct for every d' < d (for every n' < n for any such d'.)
We use this to establish the correctness of Extend(f,p,n’,d, q,v, a) for every n' < n. Fix a
polynomial p* satisfying the hypothesis in (P6). We will prove that p* is in the output list
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Find-all-poly(f, 8, n,d, q, %, ¢, a);

If d =0 return(Constants(f,6,n,q,v%));

If n <4 return(Brute-force(f, 6, n,d, q, %, d));
L—{}

Repeat O(log %) times:
Pick a random nonsingular m X n matrix R over GF(q)
Pick a random vector b€ GF(q)".
Let g denote the oracle given by g(y) = f(R '(y —b)).
L, — Brute-force(glon-1,6,4,d, ¢, 13-, }).

for =05 to n do
L; — {} /* List of (d,i)-prefixes */
for every polynomial p € L, ; do
L; = L; U Extend(g|pn—i, D, 6,1, d, q, 10%’ o, @)
endfor
endfor

Untransform L,: L. — {p'(z) ¥ p(Rz +b)|p € L.}
L—LUL.
endRepeat

return(L)

Figure 3: Find-all-poly

with probability 1 — #’“ The correctness of Extend follows from the fact that there are

at most N, 45 such pol};ﬁomials p* and the probability that there exists one for which the
condition is violated is at most .

To see that p* is part of the output list, notice that for any fixed j € {0,...,d}, p*|; —p
is included in £ with probability 1 — m. This follows from the fact that p*|; — p
and f|; — p have agreement at least 6, the fact that p*l; —p =p*|; — p*lo is a degree d — 1
polynomial?, and thus, by the inductive hypothesis on the correctness of Find-all-poly, such
a polynomial should be in the output list. By the union bound, we have that for every
j €{0,...,d} p*|; — p is included in £V) with probability 1 — T and in such a case
p* — p will be one of the polynomials returned by an invocation of Compute-coefficients. In

4To see that p*|; — p*|o is a polynomial of total degree at most d — 1, notice that p*(z1,...,z,) can
be expressed uniquely as r(z1,...,%n_1) + Tnq(z1,...,Z,), where degree of ¢ is at most d — 1. Then
p*l; —p*lo(z1,...,Zn_1) =5 - q(z1,...,2n_1,]) is also of degree d — 1.
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EXtend(fu 67 p7 nu d7 Q7 w7 ¢7 O{) °

L —{}.
L£© « {0} (where 0 is the constant 0 polynomial).
for j=1 to d do

f9 e~ flj—p. .

L£Y) «Find-all-poly(fY, a.- 6,n,d — 1, ¢q, m, o, ).
endfor

for every (d+ 1)-tuple (p©,...,p®) with p®* € L*) do
p' « Compute-coefficients(p®, ..., p ¥ 0,...,d; n,d,q).
if Test-valid(f,p +p',6,n,d,q,%/(2Ny 4.0.5), ) then
L —Lu{p+r};

endfor
return(L') .
Figure 4: Extend
such a case p* will be tested by Test-valid and accepted with probability at least 1 — 72

2Nn’,d,a-6.
Again summing up all the error probabilities, we have that p* is in the output list with
probability at least 1 — Wfﬁ This concludes the correctness of Extend.

We now move on to the correctness of Find-all-poly(f, 8, n,d, q,, ¢, «). Here we will try
to establish that for a fixed polynomial p with agreement § with f, the polynomial p is
added to the list £ with constant probability in each iteration of the Repeat loop. Thus
the probability that it is not added in any of the iterations is at most N:/’d& and thus the
probability that there exists a polynomial that is not added in any iteration is at most .
We may assume that n > 5 and d > 1 (or else correctness is guaranteed by the trivial
subroutines).

Fix a degree d polynomial p with agreement § with the function f : GF(q)" — GF(q).
We first argue that (R,b) form a “good” linear transformation with constant probability.
Recall that from now onwards Find-all-poly works with the oracle g : GF(q)" — GF(q)
given by g(y) = f(R™'(y — b)). Analogously define p'(y) = p(R~'(y — b)), and notice p'
is also a polynomial of degree d. For any i € {5,...,n} and j € {0,...,d}, we say that
(R,b) is good for (i, j) if the agreement between g|;»-i and p'[; o=-i is at least ad. Lemma 8
(below) shows that the probability that (R,b) is good for (i,7) with probability at least
1— qi%l . (1 + m) Now call (R, b) good if it is good for every pair (i,7), i € {5,...,n}
and j € {0,...,d}. Summing up the probabilities that R is not good for (7, j) we find that
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R is not good with probability at most

(d+1) (1 + ﬁ) ;—, g

1 1
< (d+1)(1 -3
0 (14 gty Tt
1 1
< 3d+ + (Using @ < 1— 1 and § > 9+L)
?@—-1) q¢-1 e e
1 1
< 1_8+§ (Usingd+1 < qand g > 3.)
2
< i
3

Conditioned upon (R,b) being good, we find that £, does not contain the 4-prefix of p
with probability at most 10%1. Inductively, we have that the ¢-prefix of p is not contained
in the list £; with probability at most == (There is a probability of at most - that the
(i—1)-prefix of pisin £; ; and the i-prefix is not returned by Extend.) Thus with probability
at most %, the polynomial p is not included in £, (conditioned upon (R,b) being good).
Adding back the probability that (R,b) is not good, we find that with probability at most
% + %o < %, the polynomial p is not in £,, in any single iteration. This concludes the proof
of the correctness of Find-all-poly. I

3.4 Analysis of the random linear transformation

We now fill in the missing lemma establishing the probability of the “goodness” of a random
linear transformation.

Lemma 8 Let f and g be functions mapping GF(q)" to GF(q) that have § agreement with
each other, and let R be a random non-singular n X n matrix and b be a random element of
GF(q)". Then, for everyi € {1,...,n} and j € GF(q):

1 1
PE [f/|j70nﬂ_ and g'|;on—i have less than ab agreement] < e (1 + 5(1—a) o¢)2> .

where f'(y) = f(R™*(y — b)) and ¢g'(y) = g(R"(y — b))

Proof: Let G = {z € GF(q)"|f(z) = g(z)}, be the set of “good” points. Observe that
6§ =|G|/q". Let Sgp = {z € GF(q)"|Rz + b ends in j,0""}. Then we wish to show that

|Srs NG| |G| 1 1
Prl————— < a-—| < — 1+——]. 3
R,b [ ‘SR,b| @ qn - qul + (5(1 — CK)2 ( )

Observe that the set Sgj can be expressed as the preimage of (j,0" %) in the map 7 :
GF(q)" — GF(q)™, where m = n — i + 1, given by n(z) = R'z + b’ where R’ is the m x n
matrix obtained by taking the bottom m rows of R and b’ is the vector obtained by taking
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the last m elements of b. Note that R’ is a uniformly distributed m x n matrix of full rank
over GF(q) and ¥’ is just a uniformly distributed m-dimensional vector over GF(q). We first
analyze what happens when one drops the full-rank condition on R'.

Claim 9 Let R' be a random m X n matriz over GF(q) and V' be a random element of
GF(q)™. For some fized vector § € GF(q)™ let S = {x|R'z + bV = §}. Then, for any set
G € GF(q)",
r SN G < a-@ < 7qm
ry [ |S] |~ (1-a)G

Proof: For z € GF(q)", let I(z) denote the indicator variable that is 1 if z € S (i.e.,
R'z+1b = §) and 0 otherwise. Then, the expected value of I(x), over the choice of (R',b'), is
¢~™. Furthermore, the random variables I(z;) and I(x4) are independent, for any distinct
pair z; and x,. The event whose probability is being estimated in the claim is the event that
Y seq I(x) is smaller than « times its expectation. A standard application of Chebychev’s
inequality yields the desired bound. I

To fill the gap caused by the “full rank clause”, we use the following claim.

Claim 10 The probability that a randomly chosen m x n matriz over GF(q) is not of full
rank is at most g~ ("™,

Proof: We can consider the matrix as being chosen one row at a time. The probability
that the jth row is dependent on the previous j — 1 rows is at most ¢/~!/¢". Summing up
over j going from 1 to m we get that the probability of getting a matrix not of full rank is
at most g~ (™).

Finally we establish (3). Let Egy denote the event that ‘Sg'G' < oz'G‘ (recall that
S = Sr ) and let F y denote the event that R’ is of full row rank.
Then considering the space of uniformly chosen matrices R’ and uniformly chosen vectors

b’ we are interested in the quantity:

PI‘RIJ)I [ERI,bI and FRIJ)I]
Pre y[Fr y]
< Rl:’)i’[ER,’b’] -+ 1.%:/)7%/ [_'(FR’,b')]

m

b [Ery|Fry] =

q

(1 - a)’G]

The lemma follows by substituting m =mn — i + 1. |

+ q*(n*m).

3.5 Analysis of the running time of Find-all-poly

Lemma 11 For integers dyg,ng and «, 6y € [0,1], let M = maXo<a<da,{NVn 0., (ao—d). (50/2)}
Then, the running time of Find-all-poly(f, by, 1o, do, ¢, ¥, B, @) is bounded by a polynomial in
M¥FL (ng+dy)%, (%)(d”‘*)4 andlog ;;,10g 3, with probability 1—¢-(ng(do+1)>M log M)%*.
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Proof: We fix ny and dy. Observe that in all recursive calls to Find-all-poly, 6 and d are
related by the invariant § = a%~%§,. Thus assuming the algorithms run correctly, they
should only return polynomials with agreement at least §/2 (which motivates the quantity
M). Observe further that the parameter ¢ never changes and the parameter ¢ only affects the
number of iterations of the outermost call to Find-all-poly. In all other calls, this parameter
is at least ¥y = S0 (AT 1) Let T denote an upper bound on the running time of any of the
subroutine calls to &ompute coefficients, Brute-force, Constants, Test-valid. Then

Ny + dy 2 (o) 1
Tsmax{(nodo( do ))(ﬁ) 1gm}

Let P(d) denote an upper bound on the probability that any of the recursive calls made
to Find-all-poly by Find-all-poly(f, a® =8, n, d, q, %, ¢, ) returns a list of length greater than
M, maximized over f, 1 < n < ng, ¥ > 1. Let F(d) denote an upper bound on the running
time on Find-all-poly(f, a®~%6y, n,d, q, 1, ¢, ), conditioned upon the event that no recursive
call returns a list of length greater than M. Similarly let F(d) denote an upper bound on
the running time of Extend, under the same condition.

We first derive recurrences for P. Notice that the subroutine Constants never returns
a list of length greater than _z~ (every constant output must have a fraction of S
representation in the sampled points). Thus P(0) = 0. To bound P(d) in other cases, every
iteration of the Repeat loop in Find-all-poly contributes as follows: ¢ from the call to Brute-
force; at most ng — 4 times the probability that Extend returns an invalid polynomial, i.e.,
a polynomial with agreement less than §;/2 with its input function f. The probability that
Extend returns such an invalid polynomial is bounded by the sum of (d+1)-P(d—1) (from the
recursive calls to Find-all-poly) and M?*'¢ (from the calls to Test-valid). (Notice that to get
the final bound we use the fact that we estimate this probability only when previous calls do
not produce too long a list.) Finally the number of iterations of the Repeat loop Find-all-poly
is at most log(30ng(dy + 1)M?), by the condition of 1) > 1), and the assumption on M in the
lemma statement. We replace this quantity by a gross bound of ny(dy + 1)(log M), which is
certainly an upper bound for large enough ny. Thus summing up all the error probabilities
and simplifying a little we get:

P(d) < (n(do + 1) log M) - ((d+ 1)P(d — 1) + M**') -
Clearly P(d) < (n2(do + 1)>M log M)**¢.
A similar analysis for F' and E' yields the following recurrences:
FO) < T
F(d ny(do + 1)(log M) - E(d)
E(d (d+1)F(d—1)+ M*'T

Solving the recurrence yields F(d) < (n3(dy + 1)2M log M)4*1T. This concludes the proof
of the lemma. |

)
) <
) <
(

Lemma 12 For integers do,ng and o, & € [0,1], let M = maxXo<d<do{ Nng,d,(ado4)(50/2) ) If
aZl—dolﬁ and &y > 2e %0 thenMSO(%).
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Proof: We use Part (2) of Theorem 17, which claims that N, 45 < m, provided
62 > d/q. Let 64 = a® 96,. Then 64/2 > (1 — ﬁ)d"“ - (60/2) > 69/2e > 4/d/q, by the

e . 1 2l
condition in the lemma. Thus M is at most T < 7= O(%) I

Theorem 13 Given oracle access to a function f and Suppose 6,k,d and q are parameters

satisfying 6 > max{%,%\/d/q} and ¢ > 3. Let o = 1 — ﬁ, v =2"%and ¢ = 27 -

(n(d + 1)%) 2D, Then, given oracle access to a function f : GF(q)" — GF(q), the
0

algorithm Find-all-poly(f, 6, n, d, q,v, ¢, @) runs in poly((k-nd/é)o(d4))—tz'me and outputs, with
probability at least 1 — 27F, a list containing all degree d polynomials which agree with f on
at least an 6 fraction of the inputs. Furthermore, the list does not contain any polynomaials
which agree with f on less than an g fraction of the inputs.

Remarks:

1. Thus, combining Theorems 1 and 13, we get reconstruction algorithms for all d < g,
provided ¢ is large enough. Specifically, for the case ¢ = 2 and d = 1, we invoke
Theorem 1.

2. The constant 2e in the lower bound on § can be replaced by (1 + €)e?/?, for any € > 0,

by recalibrating the subroutine Test-valid and by setting o =1 — %.

Proof: The correctness follows from Lemma 7 and running time from Lemmas 11 and 12.

4 Counting: Worst Case

In this section we give a worst-case bound on the number of polynomials which agree with
a given function f on ¢ fraction of the points. In the case of linear polynomials our bound
works for any 6 > %, while in the general case our bound works only for ¢ that is large

enough.

4.1 General derivation

The bounds are derived using a very elementary property of polynomial functions, namely
that two of them do not agree on too many points. In fact we state and prove the theorem for
any generic “error correcting code” and then specialize the bound to the case of polynomials
later. We first recall the standard definition of error-correcting codes. To do so we refer to
strings over an alphabet [g]. For a string R € [¢|Y (R for recieved word) and i € [N], we
let R(i) denote the ith coordinate of R. The Hamming distance between strings R; and Ry,
denoted A(Ry, R»), is the number of coordinates ¢ where Ry (i) # Ro(i).

Definition 14 (Error correcting code) For integers N, K, D and q an [N, K, D], code C
is a family of ¢¥ strings from [q]™ such that for any two strings C1,Cy € C, the Hamming
distance between them s at least D.
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Theorem 15 Let § > 0 and R € [q|". Suppose Ci,...,C,, € [q|" are distinct codewords
from an [N, K, D], code that satisfy Vj € {1,...,m}, A(R,C;) < (1 —06)N. Let v denote the

quantity N;,D. Then the following bounds hold:

L If6>2+7-\/7—3 thenm< (H%%.
(For small vy the above expressions are approzimated by 6 > /27 and m < 2/6, respec-
tively. )

2 If6> 5+ \lr=D0 -7 thenm < (1—-7) (1-1) - e D

(For small -y the above expressions are approvimated by 6 > min{,/7, % + /7 — %} and

51{_77 < 521_7, respectively. For v = %, the bounds hold for every 6 > %) 5

m <

Remark: The above bounds apply in different situations and yield different bounds on m.
The first applies for somewhat larger values of § and yields a stronger bound which is O(%).
The second bound applies also for smaller values of é and yields a bound which grows as
Proof: The bound in (1) is proven by a simple inclusion-exclusion argument. Let m' < m.
We count the number of coordinates ¢ € [N] that satisfy the property that one of the first m/
codewords agree with R on coordinate ¢. Namely, let x;(¢) = 1 if C;(i) = R(3) and x;(¢) =0
otherwise. Then, by inclusion-exclusion we get

N = [i:35x;(i) =1}

> ST 60— Y Y @xal)

=1 4 1<j1<jo<m! i

, m'
> : - . ) (1) = . (7
> o= () e 65 Cu) = )

where the last inequality is due to the fact that C; agrees with R on at least 6V coordinates.
Since two codewords R; and R, can agree on at most N — D coordinates, we get:

(' — 1)

Vm' <m, m'N— - — (N-D)<N. (4)

Consider the function g(y) & 1.9>—(64+72)-y+1. Then (4) says that g(m') > 0, for

every integer m' < m. Let «; and as be the roots of g. Suppose that the roots are real and
additionally satisfy |a; — ap| > 1, then m < min{ay, as}. We now show first that under the
condition given on 6, |a; — ap| > 1. Then we show that min{ay, s} < M% This will suffice
2
to prove Part (1) of the theorem.
Let 3 =/2. Then g(y) = fm?*— (8+6)-m+ 1. The roots, a; and ay are real, provided

that ¢ ¥ (B + €)* — 403 is positive which follows from a stronger requirement (see below).

5The bounds given by the “approximations” are always applicable. In case « is small, they are not much
weaker than the more complicated expressions. This note applies to Theorem 17 as well.
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Let a; be the smaller root. To guarantee ay — oy > 1 we require 2 - %é > 1 which translates
to ¢ > (% (and hence ¢ > 0 as required above). We need to show that

(B+6)" =48> 5

which occurs if 6 > /3% + 45— (3. Plugging in the value of 3 we find that the last inequality
is exactly what is guaranteed in the hypothesis of Part (1) of the theorem statement. Thus
|ag — ap| > 1. Lastly, we upper bound the smaller of the two roots, i.e., a;:

B+06—/(B+06)2—43

20
_ w.ll_(l_ﬂﬂ
20 (B+06)?
B+6 43
< 25 -[1 1+(ﬂ+5)2]
_ 2
= 5+

The inequality follows by ¢ > 0. Again by plugging in the value of # we get the desired
bound.

We now prove Part (2). We first introduce some notation. In what follows we will use
the arithmetic of integers modulo ¢ to simplify some of our notation. This arithmetic will
be used on the letters of the alphabet, i.e., the set [¢g]. For j € {1,...,m} and i € [N]
let I';(i) = 1if C;(i) # R(:) and 0 otherwise. (Notice that I';(i) = 1 — x;(4).) For j €
{1,...,m}, t € {0,...,¢— 1} and i € [N] let F§-t)(z') = 1 if C;(i) — R(i) = t(mod¢) and
0 otherwise. Thus I';(¢) = 1 if and only if there exists ¢ # 0 such that Pg-t) (1) = 1. Let

w; = [{i: Cj(7) # R(i)}| and let w = # The fact that the C;’s are close to R implies
that for all j, w; < (1-6)-N

Our proof generalizes a proof due to S. Johnson (c.f., MacWilliams and Sloane [31]) for
the case ¢ = 2. The central quantity used to bound m in the binary case can be generalized
in one of the two following ways:

S= 3 (T

J1,J2,%

Z Z F(t) F(t)
J1,J2,t t£0
The first sums over all ji, j», the number of coordinates for which C; and Cj, both differ
from R. The second sums over all ji, jo, the number of coordinate where C; and C}, agree
with each other, but disagree from R by ¢. (Notice that the two quantities are the same for
the case ¢ = 2.) While neither one of the two quantities are sufficient for our analysis, their
sum provides good bounds.
Lower bound on S + S’: The following bound is shown using counting arguments which
consider the worst way to place a limited number of differences between the C;’s and R. Let
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= [{j|C;(i) # R()}| = ¥, T;(i) and let N = [{§|C;(i) — R(i) = t(mod ¢)}| = ¥; T\ (3).
Then we can lower bound S as follows:

N TAL
S= ¥ L0000 = TN > )
71,7251

The last inequality above follows from the fact that subject to the condition >, N; = mw, the
sum of N;’s squared is minimized when all the IV;’s are equal. Similarly, using 3=, 3=, Ni(t) =
mw, we lower bound S’ as follows:

t t t (mw)?
ZZF() () ZZ () —1)N'

31,4251 1£0 i 1£0 (q
By adding the two lower bounds above we obtain:
—\92 —\92 LmZWQ
S SI > (mw) (mw) — qfl . 5
T2 T o )N N (5)

Upper bound on S + S’: For the upper bound we perform a careful counting argument
using the fact that the C;’s are codewords from an error-correcting code. For fixed ji, j2 €
{1,...,m} and t,ty € [q], let

M) = | (T @) = 182 (6) = 1)),

For every ji, j2, we view these as elements of a ¢ x ¢ matrix M172)_ S and S’ can be expressed
as sums of some of the elements of the matrices M¥172). Summing over the (g — 1) x (g — 1)
minors of all the matrices we get:

S=3 3 % MU

J1,J2 t17#0 t2#£0

and summing the diagonal elements of M U172) over all j,j,, we get
_ Z Z Mt(glj2)'
j1j2 t#0
We start by upper bounding the internal sum above for fixed pair (ji, j2), 71 # j2. Since

the C}’s are codewords from an [N, K, D], code we have R, (i) = Rj,(¢) for at most N — D
values of i, so N o

ZMt(tJUz) <N-D-— M(%Uz).

t£0
Note that the sum of the values of all elements of M%) equals N, and N — w;, (resp.
N —wj,) is equal to the sum of the values of the 0** column (resp. row) of M52, To bound
the remaining term in the summation above we use inclusion-exclusion as follows:

> 3 Mg

t17£0 t2#£0
= Y M - M -3 MG + Mg
t1 to t1 t2

= N- (N B wjl) - (N - ij) + M(th)
= wj +wj, — N + MG,
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Combining the bounds above we have (for j; # js)
SMPP 43S MG < (N = MGT) + (wj, +w, — N+ MG™)
t£0 t17£0 t2#£0
= wj + Wy, _N(l —’Y)-

(The key point above is the cancellation of Méglh).) Observe that if j; = j, = j, then the

quantity Yy, 20 i,z M2 = Yyso M = w.
We now combine the bounds above as follows:

s+5 = £ (Su+ T T ik)+  (Sui+ 5 i)

J  \t#0 t1#0 t2#0 J17j2 \t#0 t1#0 t2#0
< Z2wj + Z (wjl +wj2 _N(1 _’7))
J

J1#72

Simplifying the right hand side above, we get:

S+ S5 <2m*w—m(m —1)(1 —~)N. (6)
Putting it together: Combining (5) and (6), we find that
< (1-7) :
m-o = V) T w
(¥)PeE+1-7-2%
1
< (1—=7)- ing w/N <1-—6.

provided (1 — 6)2(1%1—#1 — y=2(1—6) > 0. Let g(z) & q%l:rz—2x—|—(1—fy). We need to bound

6 so that g(1 — &) > 0. Observe first that g(z) = % (% — x)2 + v — %. Thus g(x) > 0 if

%—x > ,/q;ql (v - %) In other words, g(1—§) > 0 provided, § > %—i-\/(l - %) . (fy— %)

In this case the bound obtained on m is 9(11%75- This is exactly as claimed in Part (2). We
now move on to the approximations claimed there.
The relation g(1 — 6) > 0 for 6§ > % +4/7 - % follows immediately from the above and

the inequality:
1 1 1 1 1
R A ]
q q q q q

Next, we verify that g(1 —6) > 0 for every 6 > /7. Let 2 =1—46. Then 1 —z =6 > /7).
In this case we have:

g(z) = 1+L)x2—2x+1—7
qg—1
— (-2 42
qg—1
> (1-2)" =7
> 0
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Thus g(1 — 6) > 0 provided 6 > min{,/7, % + /7 — %} We now derive the claimed upper
bounds on m. Setting x = 1 — §, and using g(z) > (1 — z)? — v, we get g(1 — &) > 62 — ~.
1—v 1—v 1
Thus m < ) < 7y < 57 2
Finally, for v = 1/q we have g(z) = -L - (:v - %) >0forallz #1— %. Thus, in this

q—1
case, the bound holds for all § > 1/¢. |

4.2 The special case of polynomials

Notice that a function f : GF(q)" — GF(q) may be viewed as a string of length ¢" with
letters from the set [¢]. Viewed in this way we get the following construction of a code using
multivariate polynomials. These codes are known as Reed-Muller codes in the coding theory
literature.

Proposition 16 The collection of degree d polynomials in n variables over GF(q) form an
[N, K, D], code, for N =q", K = q(njd) and D = (¢ — d)g" .

Proof: The parameters N and K follow by definition. The distance D is equivalent to the
well-known fact [10, 38, 44] that two degree d (multivariate) polynomials over GF(q) may
agree in at most d/q fraction of the inputs. |

Combining Theorem 15 with Proposition 16 (and using v = ¢ in the theorem), we get
the following upper bound on the number of polynomials with 6 agreement with an arbitrary
function.

Theorem 17 Let 6 > 0 and f : GF(q)" — GF(q). Suppose pi,...,pm : GF(¢)" — GF(q)
are distinct degree d polynomials that satisfy Vj € {1,...,m}, Procar [f(z) = pi(x)] > 6.
Then the following bounds hold:

1. [f&z,/2+f—q-\/§—i then m < —2

2g 8+(55)”
(For small g the above expressions are approrimated by 6 > (/2d/q and m < 2/6,
respectively. )
9. If6> IVEDED oy < D) 1
- q - q

(5_1)2_% ’

q q

(For small g the above expressions are approrimated by 6 > min{,/d/ ,%—i— ,/%} and
m < m, respectively. )

For the special case of linear polynomials, the bound in Part (2) above is always appli-
cable. This is emphasized in the following theorem.
Theorem 18 Let ¢ > 0. For a function f : GF(q)" — GF(q), if p1,---,pm : GF(@)" —
GF(q) are distinct linear functions which satisfy
1

Vie{l,...,m}, me(%r(q)n [f(z) = pi(x)] > §+ €

1\* 1
thenm < [1— — C =
q €
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4.3 Tightness of our bounds

We show that several aspects of the bounds presented above are tight. We start with the
observation that Theorem 15 can not be extended further (i.e., to smaller §). without
(possibly) relying on some special properties of the code.

Proposition 19 Let éy, vy satisfy the identity

1 1 1
0= (70 q)( q) (7)
Then for any € > 0, and for sufficiently large N, there exists an [N, K, D], code C, with
ND < ~y+e and a word R € [q)Y and M > 2UEN) codewords Cy, . . .,Cyy from C such that
A(R,Cj) < (1—(6g — €))N for every j € [M].

Remark: The proposition above should be compared against Part (2) of Theorem 15.
Note that Theorem 15 says that for 6y and 7, satisfying (7) and any [N, K, D], code with

AL > v, there exist at most O(%) codewords at distance at most (1 — §)/N from any

string of length N, while the proposition shows that if ¢y is reduced slightly and 7, increased
slightly, then there could be exponentially many codes at this distance.

Proof: The bound is proven by a standard probabilistic argument. C will consist only of
codewords C',...,Cuy. The codewords C}’s are chosen randomly and independently by the
following process. Let p € [0,1] — this will be determined shortly.

For every codeword C}, each coordinate is chosen independently as follows: With prob-
ability p it is set to be 1, and with probability 1 — p it is chosen uniformly from {2,...,¢}.
The string R is simply 17V.

Observe that for any fixed j, the expected number of coordinates where R and C; agree
is pN. Thus with probability at most 2-%€°N)_ the agreement between R and Cj is less than
(p — €)N. Tt is possible to set M = 2%’N) 5o that the probability that there exists such a
word Cj is less than 3.

Similarly the expected agreement between C; and Cj is (p*+ %)N . Thus the probabil-
ity that the distance between a fixed pair is e N larger than this number is at most 2N,
Again it is possible to set M = 2 N) guch that the probability that such a pair C; and Cj
exists is less than %

Thus there is a positive probability that the construction yields an [N, Q(%), D], code
with 22 = p? 4 (1;%1)2 + €, so that all codewords are within a distance of (1 — (p — €))N

of the word R. Thus setting § = p and vy = p* + ﬁlq;_plﬁ would yield the proposition, once
it is verified that this setting satisfies (7). This is easily verified by the following algebraic
manipulations, starting with our setting of §, and ~p.

(1—6)?

= 62
Yo ot g—1
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1 1 1
o 50=5+\/<%——)<1——>

This concludes the proof. |

Next we move on to the tightness of functions described by polynomials. We show that
Theorem 18 (i.e., the linear case) is tight for § = O(1/q), whereas Part (1) of Theorem 17
is tight for 6 = ©(1/,/9) and d = 1. The results below show that for a given value of §
that meets the conditions of the appropriate theorem, the value of m can not be made much
smaller.

Proposition 20 Given a prime p, and an integer k satisfying 1 < k < p/3, let 6 = k/p.

Then, there ezists a function f : GF(p) — GF(p) and at least m ef m linear functions

fis--, fm : GF(p) — GF(p) such that for alli € {1,...,m}, [{z|fi(x) = f(z)}| > ép.

Proof: We start by constructing a relation R C GF(p) x GF(p) such that |R| < p and
there exist many linear functions g1, ..., g, such that |RN {(z, g:(z))|x € GF(p)}| > k for
all 7. Later we show how to transform R and the g¢;’s so that R becomes a function which
still agrees with each g; on k inputs.

Let I = |p/k|. Notice | =~ %, where ¢ = k/p. The relation R simply consists of the pairs
in the square {(7,7)|0 <7 < k,0 < j < l}. Let G be the set of all linear functions which agree
with R in at least k places. We now show that G has size at least 1?/2(k — 1). Given non-
negative integers a, b, s.t. a(k—1)-+b < [, consider the linear function g, ;(x) = az+b(mod p).
Then, g,4(i) € {0,...,0 — 1} for ¢ € {0,...,k — 1}. Thus, g,(¢) intersects R in k places.
Lastly we observe that there are at least [>/2(k — 1) distinct pairs (a, b) s.t. a(k — 1) +b < L.
Fix a < I. Then there are at least [ — (k — 1)a — 1 possible values for b, so that the total
number of pairs becomes

1—
l—]. —llll l—l

l2
_ i > i < .
> %=1 (Using | > 3 since k < p/3.)

ol
==

I
=)

a

Now we convert the relation R into a function in two stages. First we stretch the relation
by a factor of I to get a new relation R'. Explicitly, R = {(I3,5)|(i,7) € R}. Given
g(z) = ax +b € G, let ¢'(x) = (a- 1 ')z + b, where I is the multiplicative inverse of
l(modp). If g(i) = j, then ¢'(li) = j. Thus if (i,9(i)) € R, then (li,¢'(li)) € R'. Thus if
we use G' to denote the set of linear functions which agree with R’ in k places, then ¢’ € G’
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if g € G. Moreover the map from g to ¢’ is one-to-one, implying |G'| > |G|. (Actually the
argument above extends to show that |G'| = |G|.)

Last we introduce a slope to R/, so that it becomes a function. Explicitly R" = {(li +
7,111, 7) € R}. Notice that for any pair (i1, j1), (i1, j2) € R”, we have i; # i, implying that
R" can be extended to a function f : GF(p) — GF(p), which satisfies if (7,j) € R" then
J = f(i). Now for every function ¢'(z) = ¢’z +0b" € G', consider the function ¢"(z) = ¢"z+0"
where ¢ = a'/(1 +d') and b" = b'/(1 + a'). Observe that if ¢’(z) = y, then ¢"(z +y) = y.
Thus if ¢’ agrees with R’ in k places, then ¢” agrees with R” and hence f in at least k places.
Again, if we use G” to denote the set of linear functions which agree with f in &k places, then
G" > 1d'|.

Thus f : GF(p) — GF(p) has at least [?/2(k — 1) linear functions agreeing with it
in k places. Expressing k as ép, we have [ > and the proposition follows (using

(1/p)+6<%-5and2-(%)2<5). |

Finally we note that the bounds in Theorem 17 always require 6 to be larger than
d/q. Such a threshold is also necessary, or else there can be exponentially many degree
d polynomials close to the given function. This is shown in the following proposition, which
actually asserts the existence of many such polynomials.

1
(1/p)+8>

_d-1

Proposition 21 Let g be a prime-power, d < q and 6 = et Then, for every n-variate

d
q
degree d polynomial, f, over GF(q), there are at least ¢" 1 degree d polynomials which agree
with f on at least a 6 fraction of the inputs.

Proof: It suffices to consider the all-zero function, denoted by f. Consider the family of
polynomials having the form [[%} (z; — i) - X7, ¢;r;, where cy,...,c, € GF(q). Clearly,
each member of this family is a degree d polynomial and the family contains ¢"~! different
polynomials. Now, each polynomial in the family is zero on inputs (a, ..., a,) satisfying
either a; € {1,...,(d — 1)} or %, c;a; = 0. Since at least a % + (1 - dgl) -5 fraction of

the inputs satisfy this condition, the proposition follows. |

5 Counting: Random Case

In this section we present a bound on the number of polynomials which can agree with a
function f if f is chosen to look like a polynomial p on some domain D and random on other
points.

Theorem 22 Let 6 > @. Suppose that D is an arbitrary subset of density 6 in GF(q)"

and p(x1, ..., T,) 18 a degree d polynomial. Consider a function f selected as follows:

1.  f agrees with p on D;

2. the value of f on each of the remaining points in GF(q)" — D is uniformly and inde-
pendently chosen.

Then, with probability at least 1 — exp{(n?log, q) — (6/2)2¢™ 3}, the polynomial p is the only

degree d polynomial which agrees with f on at least an 6/2 fraction of the inputs. Thus for
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functions constructed in this manner the output of our reconstruction algorithm will be a
single polynomial — namely, p

Proof: We use the fact that for two polynomials p; # ps in GF(q)", p1(z) = p2(x) on at
most d/q fraction of the points in GF(q)™ [10, 38, 44]. Thus, except for p, no other degree
d polynomial can agree with f on more than % - ¢" points in D. The probability that any

polynomial p’ agrees with f on more than a %%—e fraction of the points in which f is randomly

chosen is at most exp{—e*q" '}. Furthermore, in order to agree with f on more than an §/2
fraction of all points, p’ must agree with f on at least (6 / 2— —) q" of the randomly selected

points and so we can use € > W 1> ‘5 d+1 + 7> —q Thus, the probability that
there exists a degree d n-variate polynomlal other than p, that agrees with f on at least an
g

6/2 fraction of all points is at most ¢" - exp{— (5)2 "1} and the theorem follows. |

6 Hardness Results

In this section we give evidence that the (explicit or implicit) reconstruction problem may
be hard for some choices of d and the agreement parameter ¢, even in the case when n = 1.
We warn the reader that the problem shown to be hard does differ in some very significant
ways from the reconstruction problems considered earlier. In particular, the problems will
consider functions and relations defined on some finite subset of a large field, either the field
of rational numbers or a sufficiently large field of prime order, where the prime is specified
in binary. The hardness results use the “large” field size crucially.

Furthermore, the threshold for which the problem is shown is very small. For example,
the hardness results of Section 6.2, defines a function f : H; x Hy — F', where F is a large
field and H;, H, are small subsets of F. In such a hardness result, one should compare
the threshold ¢ of agreement that is required, against W’ since it the latter ratio
that determines the “distance” between two polynomials on this subset of the inputs. Our

. d+2
hardness results typically hold for § ~ — EARCEIE

6.1 NP-hardness for a variant of the univariate reconstruction
problem

We define the following interpolation problem PolyAgree:

Input: Integers d,k,m, and a set of pairs P = {(z1,41),---, (Tm,¥Ym)} such that Vi €
[m], z; € F, y; € F, where F is either the field of rationals or a prime field given by its size
in binary.
Question: Does there exist a degree d polynomial p : F* — F for which p(z;) = y; for at
least k different 7’s?

When F' is the field of rational numbers, then the input elements are assumed to be given
as a ratio of two N-bit integers and then the input size is measured in terms of the total bit
length of all inputs.
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Theorem 23 PolyAgree is NP-hard.

Remark: This result should be contrasted with the results of [40, 19]. [40, 19] show that
PolyAgree is easy provided k£ > v/dm, while our result shows it is hard without this condition.
In particular, the proof uses m = 2d + 3 and k = d + 2.

Proof: We present the proof for the case of the field of rational numbers only. It is easy
to verify that the proof also holds if the field F' has prime order that is sufficiently large.
We reduce from subset sum: Given integers B, ay, ..., ay, does there exist a subset of the
a;’s that sum to B (without loss of generality, a; # 0 for all 7).
In our reduction we use the fact that degree d polynomials satisfy certain interpolation
identities. In particular, let o; = (—1)”1@;’1) for 1 <i<d+1and ap = —1. Then

S5 i f(i) = 0 if and only if (0, £(0)), (1, f(1)),...,(d + 1, f(d + 1)) lies on a degree d
univariate polynomial.

We construct the following instance of PolyAgree. Set d =1—1, m = 2d+3 and k = d+2.
Next, set x; < i, Tar14i < &, Yi < a;/q;, and yay14; < 0 for 1 < ¢ < d + 1. Finally, set
Taqt3 < 0 and yzq43 «— B.

No polynomial can pass through both (z;, v;) = (4, a;/«;) and (Xay11i, Yar1+:) = (¢,0) for
any 1, since a; # 0. We show that there is a polynomial of degree d that passes through
(0, B) and one of either (7,0) or (i,a;/a;) for each 1 < i < d + 1 if and only if there is a
subset of aq,...,a4,; Whose sum is B.

Assume that there is a polynomial p of degree d that passes through (0, B) and one
of (4,0) and (¢,a;/c;) for each 1 < 7 < d + 1. Let S denote the set of indices for which
p(7) = a;/a; (and p(i) =0 for i € [d + 1]\S). Then

d+1

OZZO@])( = qp - B—i—Zaz ——B—i—Zaz
=0 €S Qi €S
Similarly, if there is set of indices S such that ;.5 a; = B, then we define f so that f(0) = B,
f(i) = ai/o; for i € S and f(i) = 0 for i € [d + 1]\S. Observing that %! a; f(i) = 0 i
follows that there is a degree d polynomial which agrees with f on i =0,...,d + 1.

6.2 NP-hardness of the reconstruction problem for n > 2

In the above problem, we did not require that the x;’s be distinct. Thus this result does not
directly relate to the black box model used in this paper. The following result applies to our
black box model for n-variate functions, for any n > 2.

We define a multivariate version of PolyAgree requires that the z;’s be distinct. We
actually define a parametrized family FunctionalPolyAgree,,, for any n > 1.
Input: Integer d, a field F, a finite subset H C F™. a real number ¢, and a function
f i+ H — F, given as a table of values.
Question: Does there exist a degree d polynomial p : F™ — F for which p(z) = f(x) for at
least 6 fraction of the x’s from H?

Theorem 24 For every n > 2, FunctionalPolyAgree, is NP-hard.
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Proof: We prove the theorem for n = 2. The other cases follow by simply making an
instance where the function depends only on the first two variables and is independent of
the remaining n — 2 variables.

The proof of this theorem builds on the previous proof. As above we reduce from subset
sum. Given an instance B,aq,...,a; of the subset sum problem, we set d = [ — 1 and
k = 2(d + 1) and F to be the field of rationals. (We could also work over any prime field

GF(p), provided p > ¥ ; a;.) Let 6 = 23;32). We set H; ={0,...,d+ 1}, H, = [2k]. and

let H = H, x Hy. For i € H, we let (“i:(_lg)iﬂ(dH) as before. Fori € H, —{0}, let y; = a;/c;
as before. The function f is defined as follows:

B ifi=0
f(i,5)=4¢ v ifie H — {0} and j € [k]
0  otherwise (i.e., if s € H — {0} and j € {k+1,...,2k}

This completes the specification of the instance of the FunctionalPolyAgree, problem. We
now argue that if the subset sum instance is satisfiable then there exists a polynomial p with
agreement 6 (on inputs from H) with f. Let S € [I] be a subset such that Y ;cga; = B.
Then the function
B ifi=0
p(i,5) Ep (i) =4 v ifies
0 ifieH \S

is a polynomial in i of degree d (since S5 a;p'(i) = —B + Y;cg a; = 0). Furthermore, p
and f agree in 2k + k(d + 1) inputs from H. In particular p(0,7) = f(0,5) = B for every

Jj € [2k], p(4,j) = f(i,7) = y;ifi € S and j € [k] and p(4,7) = f(i,j) = 0if ¢ ¢ S and
je{k+1,...,2k}. Thus p and f agree on a fraction 2’;“&%‘;;1) = 2&132) = ¢ of the inputs
from H, as required.

We now argue that if the reduction leads to a satisfiable instance of the FunctionalPoly Agree,

problem then the subset sum instance is satisfiable. Fix a polynomial p that has agreement

6 with f;i.e., p(i,7) = f(i,7) for at least 2k + k(d + 1) inputs from H. We argue first that
in such a case p(i, j) = p'(4) for some polynomial p’(i) and then the proof will be similar to
that of Theorem 23. The following claim is crucial in this proof.

Claim 25 For anyi € [d+1], if [{j|p(i,7) = f(i,7)}| > k, then there exists ¢; € {0,y;} s.t.
p(%,j) = ¢ for every j € [2k].

Proof: Consider the function p®(j) def p(i,5). p® is a degree d polynomial in j. By
hypothesis (and the definition of f(i,7)) we have, p®(5) € {0,;} for k values of j € [2k].
Hence p(j) = 0 for k/2 values of j or pV(5) = y; for k/2 values of j. In either case we
have that p(¥, a degree d polynomial, equals a constant polynomial for k /2 = d+ 1 points
implying that p® is a constant. That p®(j) = ¢; € {0,;} follows from the hypothesis and
definition of f. I

From the claim above it follows immediately that for any ¢ € [d + 1], [{j|f(:,7) =
p(%,7)}| < k. Now using the fact that f and p agree on 2k + k(d + 1) inputs it follows that
for every i € [d + 1], f(i,5) = p(i,7) for exactly k values of j; and f(0,5) = p(0,j) = B
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for all values of j. Using the above claim again we conclude that we can define a function

P (1) e {0,y;} if i € [d + 1] and p'(0) = B such that p(i,j) = p'(i) for every (i,5) € H.

Furthermore p'(i) is a degree d polynomial, since p is a degree d polynomial; and hence
Y5 qip' (i) = 0. Letting S = {i € [d + 1]Jy; # 0}, we get —B + ;e 2iy; = 0 which in
turns implies B = ) ;g a;. Thus the instance of the subset sum problem is satisfiable. This
concludes the proof.
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