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Abstract

Given a Boolean matrix and a threshold ¢, a subset of the columns
is frequent if there are at least ¢ rows having a 1 entry in each corre-
sponding position. This concept is used in the algorithmic, combina-
torial approach to knowledge discovery and data mining. We consider
the complexity aspects of frequent sets. An explicit family of subsets
is given that requires exponentially many rows to be represented as
the family of frequent sets of a matrix, with any threshold. Examples
are given of families that can be represented by a small matrix with
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threshold ¢, but that require a significantly larger matrix if the thresh-
old is less than t. We also discuss the connections of these problems
to circuit complexity and the existence of efficient listing algorithms.

1 Introduction

Let A be a 0-1 matrix with m rows and n columns, and let ¢, 0 <t <m+1
be an integer called the frequency threshold, or threshold. A subset I C
{1,...,n} of the columns is frequent if there are at least ¢ rows that have a
1 entry in each column belonging to I, and it is infrequent otherwise. Clearly,
a subset of a frequent set is also frequent, and a superset of an infrequent set
is also infrequent. On the other hand, every family of subsets that is closed
under taking subsets can be represented as the system of frequent sets of a
matrix, even when the threshold is restricted to 1.

Frequent sets are used in the algorithmic, combinatorial approach to
knowledge discovery and data mining [1, 18, 19]. (Some papers use the term
“large itemset” for frequent sets.) Here a matrix, for example, can represent
the transaction database of a department store. Columns can correspond
to products, rows can correspond to transactions, and a set of products is
frequent if many transactions involve each of these products.

In this paper we study the complexity aspects of frequent sets. Given
a family of subsets that is closed under taking subsets, what is the small-
est matrix that has this family as its frequent sets? The size of a matrix
is measured by the number of its rows. The existence of families requir-
ing exponentially many rows follows from a standard counting argument
in Boolean complexity theory. We give an ezplicit family of subsets that
requires exponentially many rows. The role of the frequency threshold is
also considered. We show that there are families that can be represented
by a small matrix with some threshold ¢, but that require a significantly
larger matrix if the threshold is required to be anything less than ¢. Related
results, for a more general model and a different range of parameters, are
obtained by Jukna [15].

The proofs use techniques from circuit complexity theory and combina-
torics [4, 8, 13, 16, 23]. The problems studied here have a reformulation
in terms of threshold circuits, and thus the results can be interpreted as
separation and trade-off results for monotone perceptrons.

The paper is organized as follows. In Section 2 we give preliminaries
on frequent sets. Section 3 contains the exponential lower bound. Section
4 gives the size-threshold trade-offs, with the combinatorial lemmas proven



separately in Section 4.1 . In Section 5 we reformulate the results in terms
of circuit complexity. Sections 6 and 7 contain a brief discussion of the
application of frequent sets in knowledge discovery and data mining, and
several open problems, mostly concerning the existence of efficient listing
algorithms related to frequent sets.

2 Preliminaries

Instead of a subset I C [n] = {1,...,n}, we usually refer to the characteristic
vector vy € {0,1}" of I, and so we talk about frequent and infrequent vectors.
The 0-set of a vector in {0,1}" is the subset of [n] that corresponds to its 0
coordinates; similarly for 1-set.

Given a matrix A and a threshold ¢, we consider the set of infrequent
vectors, corresponding to the Boolean function f4, : {0,1}" — {0,1}. Thus,
fas(z) = 1 iff z is the characteristic vector of an infrequent set. We say
that fa: is represented by A and t. (We consider infrequent sets rather
than frequent sets for convenience of notation.) Clearly, fa: is always a
monotone function. (A Boolean function is monotone if f(z) =1 and y > =
implies f(y) = 1, where y > x means that every component of y is at least
as large as the corresponding component of z. A maximal 0-vector x of a
monotone Boolean function f is a vector x such that f(x) = 0, but if y is
obtained from z by switching any of its 0 components to 1, then f(y) = 1.)
On the other hand, every monotone Boolean function f is represented by
some matrix A and threshold ¢. This follows from the fact that infrequent
sets of matrices with threshold 1 are equivalent to monotone conjunctive
normal form (CNF) expressions.

Proposition 1 A monotone Boolean function of n wvariables f is repre-
sented by some m x n matriz A with threshold t = 1 if and only if f has a
monotone CNF with m clauses.

Proof. Let f be a monotone Boolean function in the variables z1,..., 2z,
and C; A --- A Cy, be a monotone CNF for f. Then the m x n matrix A
defined by a;; = 0 iff z; is contained in Cj, represents f with threshold 1.
Conversely, let A be an m-row matrix representing f with threshold 1. Then
Ci A--- N Cy, is a monotone CNF for f, where C; contains a variable z; iff
ai; = 0. O

Let T (x1, - . ., x5 ) be the “at-least-k-out-of-n” threshold function. Thus,
T (z1,...,2,) = 1 iff at least k of the variables z1,...,z, are set to 1. The



unique minimal monotone CNF of T}'(z1,...,z,) is

/\ (‘Til VeV ‘Tin—k+1)a
11 < <lp—g+t1

having (,_%.,) = (,",) clauses.

By J, we denote the n x n matrix that has 0’s in its diagonals, and
1’s everywhere else. The following proposition follows directly from the
definitions.

Proposition 2 The matriz J, with threshold t (0 <t < n + 1) represents

the function T} ;.

Now we note that representing monotone Boolean functions as infre-
quent sets of matrices with arbitrary thresholds can actually be more pow-
erful than representing them as CNF's, which correspond to threshold 1 by
Proposition 1.

Proposition 3 T}, is represented by Jp with threshold |n/2] + 1. Every
matriz representing T, with threshold 1 must have at least ([n/g]il) TOWS.

Proof. We only have to prove the second claim, and this follows from

Proposition 1 by noting that the unique minimal monotone CNF of 7?/2

has (p,, 51_1) clauses. |

3 A lower bound for the number of rows

In this section we discuss lower bounds for the number of rows needed to
represent a monotone Boolean function f. First we note that the standard
counting argument from Boolean complexity theory (see, e.g., [25]) shows
that most monotone Boolean functions require large matrices.

Proposition 4 Almost all n-variable monotone Boolean functions require
Q(n%—jz) rows to be represented by a matriz, with any threshold.

2n
Proof. There are at least 2°V@ n-variable monotone Boolean functions for
some constant c (see, e.g. [25]), and at most m22™" matrices of < m rows
with a threshold. The bound follows by comparing these quantities. O

Now we give a family of explicit Boolean functions which require expo-
nentially many rows. The proof of the lower bound uses the “discriminator
method” of [13] for threshold circuits.



Theorem 5 The minimal number of rows required to represent the function
f’n(mla s Tpy Y1y - ayn) = V?:l(mi N yz) is 2".

Proof. The upper bound follows from using the CNF as in Proposition 1.
For the lower bound, let A be an m x 2n matrix with threshold ¢, representing
fn- Let a; be the i’th row of A, and a; be its complement. Let V =
{v1,...,v,} be the set of minimal 1-vectors of f,. Thus, for v; one has
z; = 1; = 1 and all the other components are 0. Also, let W be the set
of maximal 0O-vectors of f,. Thus, |W| = 2", and for every vector in |W/|,
exactly one of x; and y; is 1, for every . Let D be the uniform probability
distribution on V and let Dy be the uniform probability distribution on W'.

If z is any vector in {0,1}2" then let #(z) be the number of rows i such
that z A @; # 0 (where A denotes componentwise “and” and 0 is the all 0
vector). Thus #(z) is the number of rows for which the 0-set of the row
intersects the 1-set of z. Put »r = m + 1 — t. Then, by definition, if v € V'
then #(v) > r, and if w € W then #(w) < r — 1. Taking expectations with
respect to Dy and Ds, it follows that Ep, (#(x)) > r and Ep, (#(x)) <r—1.

But

m
Ep, (#(x)) = _Probp, (x Aa; #0) >r
=1
and
m
Ep,(#(x)) = _Probp,(x Ad; #0) <r — 1.
i=1

Subtracting these two inequalities we get

m
ZPTO‘DD1 (x Aa; #0) —Probp,(xAa; #0) > 1.

=1
Thus it must be the case that for some 1
Probp, (x A a; # 0) — Probp,(x Aa; #0) > 1/m.

Hence the lower bound follows if we show that for every b € {0,1}?" it holds
that
Probp, (x Ab# 0) — Probp,(x Ab#0) < 1/2™.

This is certainly true if b is such that x; = y; = 1 for some %, as in this
case Probp,(x A b # 0) = 1. Otherwise let us assume that b is such that
exactly one of z; and y; is equal to 1 for s values of ¢, and z; = y; = 0 for



the remaining n — s values of 7 (0 < s < n). Counting the number of vectors
in V and W intersecting b we get

Probp, (x Ab#0) =s/n

and )

Probp,(x Ab#0)=1— 7
Now if s = n then s/n — (1 — 1/2%) = 1/2". Otherwise, we claim that
s/n < 1—1/2% Indeed, if 1 < s < n/2 then s/n < 1/2 <1 —1/2% if
nj2 < s <nthens/n<1—1/n<1—1/2%? < 1/2° whenever n > 5. If
n < 5 or s = 0 the statement is obvious. O

In fact, the proof shows that the matrix corresponding to the CNF is the
unique representation of the function fy(z1,...,Zn,y1,...,Yn) = Vieq (i A
y;) with 2" rows.

4 The role of the frequency threshold

We now turn to “trade-offs” between the size of the threshold and the num-
ber of rows. Examples are given that show that even decreasing the thresh-
old by 1 may result in a significant increase in the number of rows. We show
that such a trade-off phenomenon holds for the threshold functions T3} ;4
represented by the matrix J,, with a threshold ¢, for every fixed constant ¢.
For small values of ¢ (2 <t < 4) we get sharper bounds than in the general

case, therefore these cases are discussed separately.

Proposition 6 7} | is represented by J, with threshold 2. The minimal
number of rows needed to represent Tj'_, with threshold < 2 is (3).

Proof. The unique minimal monotone CNF of T ; is A;;(zi V z;) with
(3) clauses. The proposition then follows from Proposition 1. O

The combinatorial lemmas used in the proofs of the remaining theorems
of this section are given separately in Section 4.1.

Theorem 7 T} , is represented by J,, with threshold 3. The minimal num-
ber of rows needed to represent 1}’ o with threshold < 3 is (";1) +1.

Proof. Let A be a matrix representing 7} , with threshold less than 3. If
the threshold is 1, then the number of rows is at least (g) by Proposition



1. So let us assume that the threshold is 2. In this case let us consider the
collection S of subsets of [n] consisting of the 0-sets of each row of A.> Then,
by considering the 0-sets of frequent and infrequent vectors, it follows that
S has the following property: every < 2 element subset of [n] contains < 1
set from S and every > 3 element subset of [n] contains > 2 subsets from
S. Conversely, every collection S of subsets of [n] with this property can be
used to construct a matrix that represents T’ , with threshold 2. Hence,
what we need is a lower bound for the size of collections of subsets having
this property. Such a lower bound is provided by Lemma, 10 in Section 4.1. O

The proofs of the next two theorems are analogous, using Lemmas 11
and 12, and Lemma 13, respectively.

Theorem 8 T 5 is represented by Jy with threshold 4. The minimal num-
ber of rows needed to represent 1)} s with threshold < 4 is between (% +
o(1))n? and (55 + o(1))nd.

Proof. The argument is analogous to the proof of the previous theorem.
In this case the threshold may be 1, 2 or 3. If the threshold is 1, a lower
bound of (%) follows from Proposition 1. If the threshold is 2 or 3, then
the required lower bound follows from Lemma, 11, respectively Lemma 12 in
Section 4.1. O

Finally, we present the bound for the case when ¢ is an arbitrary fixed
constant.

Theorem 9 Lett > 5 be a fived constant. Then T , | is represented by
Jn with threshold t. The minimal number of rows needed to represent Ty ;4

with threshold < t is ©(n'1).

Proof. As in the previous theorems, let A be a matrix representing 7} ,

with threshold 1 <[ < ¢, and consider the collection S of the 0-sets of the
rows of A. Then every set of size <t — 1 contains < [ <t — 1 sets from S,
and every set of size > t contains > [ sets from S. In Lemma, 13 we show the
following: if S is a set of subsets of [n] such that for every A C [n] it holds
that if |A| < k then A contains fewer than £ sets from S, and if |A| > &
then A contains at least one set from S, then |S| = Q(n*). Note that in
this version we do not have to talk about multiple occurrences of a set, as
deleting multiple occurrences will still preserve the conditions. The theorem
thus follows from Lemma 13 by putting k =¢ — 1. m|

LA collection of subsets may contain a given subset several times.



4.1 Combinatorial lemmas

In this section we prove the lemmas used in the preceding trade-off results.
Before formulating them, let us give a brief description of the general com-
binatorial problem, which is partially solved here.

The collection S consisting of the singletons {1},...,{n} in [n] has the
following property: if a subset A C [n] has size < k than it contains < k
sets from S, and if it has size > k then it contains > k sets from S. Thus
“large” (i.e., size > k) and “small” (i.e., size < k) sets can be distinguished
by counting how many sets they contain from § and using k as the cut-off
point. Now the general question is the following: how many sets do we need
in our collection to distinguish large (i.e., size > k) from small (i.e., size
< k) sets if the cut-off point must be a number [ that is less than k? The
set of all k-element sets gives a solution with (2) sets, using any number [,
2 <1 < k, as the cut-off point. The results below show that if k is a fixed
constant then this solution is optimal up to order of magnitude. Note that
S may contain repeated sets, and sets of different sizes. As the examples in
Lemmas 10 and 11 below indicate, using sets of different sizes does help to
reduce the size of S.

The first lemma, is used in the proof of Theorem 7.

Lemma 10 Let S be a collection of subsets of [n] (n > 3) such that for
every A C [n] it holds that

1. if |A| < 2 then A contains at most 1 set from S,
2. if |A| > 3 then A contains at least 2 sets from S.

Then |S| > (",') + 1. Furthermore, there is an S of this size with the
required properties.

Proof. A set of subsets S of size (";1) + 1 with the required properties is
given set by the singleton {1} and all pairs {i, 7} with 2 <4,j <n.

In order to prove the lower bound, we note that it may be assumed that
S contains no sets of size > 4, as Condition 2 is satisfied for every A if it
is satisfied for every A of size 3, and in this case sets of size > 4 are “of
no help”. Furthermore, Condition 1 implies that S contains at most one
singleton.

It may also be assumed that S contains no triples. To see this, assume
that the triple {4, j,k} occurs in S, one or more times. If {i,7, k} contains
at least two sets of size < 2 from S then all its copies can be deleted from S
without violating Conditions 1 and 2. If it contains exactly one set of size



< 2 from S, then we distinguish two cases. If this set is a singleton, say {i},
then we can delete all copies of {7, j,k} and add the pair {j,k} to S. If this
set is a pair, say {7, 7}, then we can delete all copies of {7, j,k} and add the
pair {i,k} to S. In both cases, Conditions 1 and 2 continue to hold and the
size of S is not increased. If {7, j,k} does not contain any set of size < 2
form S, then we can delete all its copies and add the pairs {7, j} and {3, k}
to §. Again, Conditions 1 and 2 are not violated, and the size of S is not
increased as it must have contained at least 2 copies of {3, j, k}. Repeating
this process, we can eliminate all the triples from S.

Now, if S contains exactly one singleton {i}, then Condition 1 implies
that it cannot contain any pair {4, j}. By Condition 2, § must contain > 2
sets from every triple {i,7,k}. Hence S must contain all the pairs {j,k}
where j and k are different from 4, and so |S| > (";') + 1.

Otherwise S contains only pairs. By Condition 2, there cannot be any
two pairs {4,j} and {j,k} missing from S. Thus the pairs missing from S
must be pairwise disjoint, and so their number is at most |n/2]|. Hence in

this case
n n n—1
> — =1 > 1
s ()L ()
ifn > 3. O

The next two lemmas are used in the proof of Theorem 8.

Lemma 11 Let S be a collection of subsets of [n] such that for every A C [n]
it holds that

1. if |A| < 3 then A contains at most 2 sets from S,
2. if |A| > 4 then A contains at least 3 sets from S.

Then |S| > (g= + o(1))n3. Furthermore, there is an S of size (55 + o(1))n?
with the required properties.

Proof. A set of subsets S of size (37 + 0(1))n® with the required properties
is given by the set of triples {i,j,k} with either 1 < 4,5,k < [n/2] or
In/2] +1 < 4,7,k < n and the set of pairs {i,7} with 1 < i < [n/2],
[n/2] +1 < j < n. In other words, S consists of a complete bipartite graph
with half the vertices on each side, and all possible triples contained in each
side.

For the lower bound note that Condition 1 implies that S can contain
at most two singletons. Deleting these, the remaining subsets on > n — 2



elements still satisfy Conditions 1 and 2, and it is sufficient to prove the
bound for these subsets. Thus it may be assumed that the collection S of
subsets of [n] contains no singletons.

Let the number of pairs, triples and quadruples in S be es, e3 and ey,
respectively. (Each pair, triple or quadruple is counted with its multiplicity.)
We now count how many times each pair, triple and quadruple in § can be
included in some 4-subset of [n]. As any 4-subset of [n] must contain at least
3 subsets from S by Condition 2, we get

62<n;2> +e3(n—3)+es> 3(2) = (%—I—o(l)) nt.

Now if e4 > n7/2 then we are done. Otherwise it holds that

e (“ ) 2) +es(n—13) > (% + 0(1)> nt.

We distinguish two cases.

Case 1 ey < 0.226n°.

Then
e > ((% + 0(1)) n* — 0.226n2 (” N 2)) /(n — 3)

_ ((é + 0(1)) nt— (0.113 + 0(1))n4) J(n—3)
= (0.012 + o(1))n?

1
il 1 3
> ( 7 + of )) n°,
and the lower bound follows.

Case 2 ey > 0.226n°.

By Condition 1, every pair may occur at most twice in S. If a pair
{i,j} occurs twice in S, then, again by Condition 1, there cannot be any
other pair {i,k} in S, where j # k. Hence the number of pairs that occur
twice in § is at most n/2. After deleting these pairs, we are still left with
(0.226 + o(1))n? pairs. Let us consider the graph formed by the remaining
pairs. Let d be its maximal degree, let v be a vertex of degree d, and let
N (v) be the set of neighbors of v. As

d
7” > (0.226 + o(1))n2,

10



it follows that d > (0.452 + o(1))n. Now, by Condition 1, no pair in § can
join two neighbors of v. Hence, if f3 and f4 denote the number of triples and
quadruples, respectively, of S contained in N(v), then Condition 2 implies

d 1
f3(d=3)+ fa > 3<4) = <§ + 0(1)> d*.
As fa<es<n’/?= O(d7/2), it follows that

fz =

Y

\Y%
N TN TN

\%
|
+
)
=
~—
N
w

again implying the lower bound. O

Lemma 12 Let S be a collection of subsets of [n] such that for every A C [n]
it holds that

1. if |A| <3 then A contains at most 1 set from S,
2. if |A| > 4 then A contains at least 2 sets from S.
Then |S| > (35 + o(1))n3.

Proof. Again, we may assume that S contains no singletons. Now Condi-
tion 1 implies that every pair or triple may occur at most once. Also by
Condition 1, any two pairs must be disjoint, hence there can be at most n/2
pairs. Thus the number of 4-subsets containing > 2 pairs is < ("%). The
remaining 4-subsets must contain at least one triple or quadruple. If the
number of triples and quadruples in § is e and ey, respectively, then

es(n —3) +eq > (Z) - <né2> = (% + o(l)) nt.

So either it holds that e4 > n7/2 or it holds that e3 > (3 +o(1))n3, proving
the claim in both cases. o

The final lemma is used in the proof of Theorem 9.

11



Lemma 13 Let k > 3 be fized. Let S be a set of subsets of [n] such that for
every A C [n] it holds that

1. if |A| < k then A contains fewer than k sets from S,
2. if |A| > k then A contains at least 1 set from S.

Then |S| = Q(n*). Furthermore, there is a collection of size O(n*) with the
required properties.

Proof. The set of all k-subsets of [n] gives the upper bound.

In order to prove the lower bound, we note again that by Condition 1, S
contains at most k — 1 singletons. Deleting these elements, we get a set of
size > n — k + 1, for which Conditions 1 and 2 still hold. It is sufficient to
prove the bound for this set. Thus we may assume that S is a set of subsets
of [n] containing no singletons.

As (f) > kfor k>3 and 2 <r < k-1, Condition 1 implies the following

Fact For every r, 2 < r < k — 1, there is no subset A of size k such that
all r-subsets of A are in S.

Ramsey’s theorem [8] for two colors states that for every r > 2, 7 and j
there is a number R’ (7, j) such that if A is any set of r-subsets of a set of
size at least R'(i,7), then either there are i elements all of whose r-subsets
are in H, or there are j elements all of whose r-subsets are not in .

The outline of the argument is the following. By a repeated application
of Ramsey’s theorem and the Fact above it follows that every sufficiently
large subset of [n] contains a set of size k + 1 that contains no set of size
<k —1 from §. By Condition 2, this set must contain a set of size k or
k+ 1 from S. Hence, the sets of size kK and k + 1 in § must be “dense” in
some sense, which implies the lower bound.

More precisely, let us define the numbers Ny_o, Ny_3,..., Ny and Ny by

Ny o = RFYEK4+1),
N; = R"Yk,Njyi)fori=k—3,...,2,1,

and let N = Nj.

We show that every N-subset of [n] contains a (k+1)-subset that contains
no set of size < k — 1 from S. Consider an arbitrary N-subset B of [n].

Claim For every j, 2 < j < k — 2, B has a subset B; of size N; that
contains no subset of size < j from S.

The claim is proved by induction on j. For j = 2, we use N = N; =
R?(k, Ny). From the Fact above, no k-element subset of B has all its pairs

12



in §. Hence, by Ramsey’s theorem, B must have a subset By of size No
that contains no pair from S. For the induction step, assume that the
subset B; of size N; has no subset of size < j in S. The Fact implies again
that no k-element subset of B; has all its (j + 1)-subsets in S. Hence, as
N; = RITY(k,Nj11), we get that B, has a subset B, of size Nj;; that
does not contain any set of size < j+ 1 from S. Thus B has a subset By_o
of size N o that does not contain any set of size < k — 2 from S, proving
the Claim.

As Ny_o = R¥"1(k,k + 1), applying the Fact for » = k — 1, it follows
that B contains a (k + 1)-subset Bi_1 that contains no set of size < k — 1
from §. Now, by Condition 2, By_1 has a subset from S. This subset must
have size k or k£ + 1. Hence we showed that every N-subset of [n] contains
a set of size k or £+ 1 from S.

Let Sk, resp. Sk+1, denote the number of k-element, respectively (k+1)-
element subsets in S. Then

n n—=k n—k—1
<
(N) < [kl (N—k>+|8k+1|<N—k—1>
< Skl + 1Sk ("
< k i &
<

s (}f,‘_’jﬁ)
(i) =(v2h)

Hence, noting that N is a constant depending only on k, we get

using

S| >

. nn—1)---(n—k+1
Y}

(nky  N(N-1)---(N—-k+1

O

We note that Lemma 11 follows from Lemma, 13, but the constant would
be 1/504 instead of 1/87.

5 Monotone perceptrons

It was noted in Proposition 1 that matrices with threshold 1 are equivalent
to monotone CNFs. This correspondence can be generalized to the case

13



of an arbitrary threshold by replacing CNFs with a more general class of
circuits.

A threshold gate is a gate computing a function T}" for some m and ¢. A
perceptron is a depth-2 circuit consisting of A’s of variables or their negations
at the bottom, followed by a threshold gate. If the inputs to the A gates are
all unnegated variables then the perceptron is monotone. Perceptrons form
an important class of neural networks [2, 20].

Depth-2 circuits consisting of V’s of variables or their negations, followed
by a threshold gate can be called dual perceptrons. If the inputs to the V
gates are all unnegated variables then the dual perceptron is monotone.

This terminology is justified by the following fact. The dual of a
Boolean function f(z1,...,z,) is f(%1,...,%,). For example, the dual of
T (w1, ey T) 8 T 1 (21,0, Tn)-

Proposition 14 Let C be a monotone perceptron having m A’s at the bot-
tom and a threshold gate T} ., as the final gate. Then the dual of the
function computed by C is computed by the monotone dual perceptron ob-
tained from C by replacing the N-gates by V-gates and replacing the final
gate by T]". Conversely, let D be a monotone dual perceptron having m
V'’s at the bottom and a threshold gate Ty ;.1 as the final gate. Then the
dual of the function computed by D is computed by the monotone perceptron
obtained from D by replacing the V-gates by N-gates and replacing the final
gate by T{™.

The correspondence between matrices with threshold 1 and monotone
CNF's generalizes to the general case as follows.

Proposition 15 A monotone Boolean function f is represented by some m-
row matriz with threshold t if and only if f can be computed by a monotone
dual perceptron having m V’s at the bottom and a threshold gate Ty 1 as
the final gate.

Proof. The two-way simulation is the same as for Proposition 1, with the
V-gates corresponding to the 0-sets of the rows. O

With the translation given by Propositions 14 and 15, Theorem 5 gives
an exponential lower bound for monotone perceptrons, showing, for example,
that they cannot always simulate CNFs polynomially.

Theorem 16 FEvery monotone perceptron computing the function
g (Z1, o Ty Y1,y Yn) = Nieq (20 V yi) has at least 2™ A-gates.
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We also get the following size-threshold trade-off as a direct consequence
of Theorems 7, 8 and 9. It can also proved directly using Lemmas 10, 11,
12 and 13.

Theorem 17 Let t > 3 be a fized constant. Then T}' is computed by a
monotone perceptron consisting of the single threshold gate T}*. The minimal

number of gates required by a monotone perceptron that computes T}* with
threshold < t is ©(nt~1).

6 Listing frequent sets

A possible objective for knowledge discovery and data mining is to pro-
duce a list of potentially “interesting” relationships that are “true” in the
database [1,9, 12, 18, 19]. It is assumed that the user, who may be the man-
ager of the department store, has some notion of “interestingness”, based
on which he will select some of these relationships as truly interesting. For
example, noticing that beer and pretzels are often sold together, he can use
this information to design sales, product location, etc. Frequent sets, besides
providing an example of a notion of interestingness, can also be used as the
computational basis for computing other kinds of relationships, such as as-
sociation rules [1, 18]. As mentioned above, one of the algorithmic problems
arising in this context is that of efficient listing of a class of objects.

In particular, there are many algorithms given for listing all maximal
frequent sets of a matrix with a given threshold, making use of the fact that
the family of frequent sets is closed under inclusion [1, 19]. Thus these algo-
rithms are in fact general methods for listing the maximal 0-vectors of mono-
tone Boolean functions based on function-evaluation queries. (A function-
evaluation or membership query in this context corresponds to checking if
a given set of columns is an infrequent set.) In this general framework one
can prove lower bounds for the complexity of listing algorithms in terms
of the size of the boundary of a monotone Boolean function (the boundary
consists of the maximal O-vectors and the minimal 1-vectors) [9, 12, 19].
On the other hand, there may exist efficient algorithms that make use of
additional information provided by the matrix. For example, let us consider
the n x 2n matrix J,J, with threshold 1. This matrix has only n maximal
frequent sets, but it has 2" minimal infrequent sets. Thus, although it has
only a few maximal frequent sets, it has a large boundary, and therefore
the general algorithms would run for a long time to produce a small out-
put. As the matrix itself has only a few rows, it may be possible that this
extra information could be used to get a faster algorithm. As a first step in
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this direction, it is of some interest to know the restrictions imposed on the
family of frequent sets by the size of the matrix and the threshold, and this
leads to the questions studied in this paper.

The question whether the maximal frequent sets of matrix with a given
threshold can be listed with polynomial delay in terms of the size of the
matrix, appears to be an important open problem that could also be of
interest from the point of view of practical applications. (The definitions of
different efficiency criteria for listing algorithms are given in, e.g., [5, 7, 14].)
In the rest of this section we mention some related listing problems, which
are known to be easy or hard in some sense.

Perhaps the central problem in the area is that of listing the maximal
0-vectors of a monotone disjunctive normal form, which is equivalent to
finding the minimal hitting sets (or transversals) of a hypergraph and many
other listing problems [3, 5, 21]. A recent important result of Fredman and
Khachiyan [6] shows that this can be done with incremental quasipolyno-
mial time. Listing the maximal 0-vectors of a monotone CNF can be done
trivially in polynomial delay, as these are the complements of the minimal
characteristic vectors of the clauses.

Disjunctive normal forms and CNFs are depth 2 formulas. On the other
hand, listing the maximal 0-vectors of a depth-3 monotone Boolean formula
is provably difficult. This was essentially proved by Lawler, Lenstra and
Rinnooy Kan [17] and Gurvich and Khachiyan [10]. The first of those two
articles formulates its result in terms of independence systems, without spec-
ifying the complexity of the formulas needed to implement these systems.
The second article shows the hardness of a related, but somewhat different
problem. Nevertheless, both constructions actually imply the hardness of
this problem, and therefore we formulate both of them below, without prov-
ing the correctness claims. The negative result applies to the “most liberal”
definition of an efficient listing algorithm, where one requires the algorithm
only to be polynomial in the total size of the input and the final output,
called polynomial total time [7, 14].

Theorem 18 If P # NP, then there is no algorithm running in polyno-
mial total time that lists all mazximal 0-vectors of depth-8 monotone Boolean
formulas.

Proof. We show that such an algorithm A could be used to decide CNF-
unsatisfiability in polynomial time. Let ¢ = C1 A -+ A Cy, be a CNF ex-
pression in the variables z1,...,z,. WLOG, we assume that no clause is a
subset of another.
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Let us introduce new variables yi, ..., yn, and let
(P*:Ci/\.../\c:n

be obtained from ¢ by replacing z; by y; for every i =1,...,n
Also, let ¥ = Dy V...V Dy, be the negation of ¢ in disjunctive normal
form obtained by using the De Morgan laws, and let

be obtained from v by replacing z; by y; for every i =1,...,n
Construction 1 (Lawler-Lenstra—Rinnooy Kan [17])

¢1:<¢*V\/(~Ti/\yz> /\szyz

=1

Claim. ®; has at least n maximal O-vectors, and ¢ is unsatisfiable if and
only if ®; has exactly n maximal 0-vectors.
Construction 2 (Gurvich-Khachiyan [10])

n

By =" A\ (@i Ayi)-
i=1

Claim. ®, has at least m maximal 0-vectors, and ¢ is unsatisfiable if and
only if ®9 has exactly m maximal 0-vectors.

Based on either one of these claims, the satisfiability of ¢ can be decided
by running A for a polynomial number of steps and checking its output. O

Now, using the circuit terminology of the previous section, the problem
of listing all maximal frequent sets of a matrix with a given threshold, asks
for listing the maximal 0-vectors of a monotone dual perceptron. This class
of circuits is more general than CNFs, but it is incomparable in its com-
putational power to depth-3 formulas. In one direction this follows from
Theorem 5 which shows that even monotone disjunctive normal forms can-
not be polynomially simulated by monotone dual perceptrons. In the other
direction this follows from results in circuit complexity theory showing that
the majority function cannot be computed by any {A, V}-circuit of bounded
depth and polynomial size [25].
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7 Further remarks and open problems

The problem of listing all minimal infrequent sets is also interesting, al-
though it is less important from the point of view of practical applications.
An equivalent formulation of this problem is the following: given a collection
S of m subsets of [n] and a number £, list all minimal subsets that inter-
sect at least k subsets from S. Thus, this problem generalizes the minimal
hitting set problem, where k = m, and it would be interesting to know if
it can still be solved in incremental quasipolynomial time. It follows from
a general result of Gurvich and Khachiyan [10] that the maximal frequent
sets and the minimal infrequent sets can be listed together in incremental
quasipolynomial time in the size of the matrix.

In the special case when S is a set and every subset in S has size 2, the
problem specializes to listing all minimal vertex sets of a graph that cover at
least k edges, or, turning to the complements of the vertex sets, to listing all
maximal vertex sets that contain at most m — k edges. This problem, which
may be called the “maximal fairly independent set problem,” generalizes the
problem of listing all maximal independent sets in a graph, which can be
solved with polynomial delay [14, 24]. Can maximal fairly independent sets
also be listed with polynomial delay?

Besides frequent sets, there are several other interesting notions of in-
terestingness, such as those corresponding to various statistical tests, stud-
ied in the GUHA project (see, e.g. Héjek and Havrének [12]). One could
study the representational and listing complexity aspects of these notions
as well. Some related complexity questions are discussed in Pudlik and
Springsteel [22].

Concerning the combinatorial problem discussed in Section 4.1, it would
be interesting to extend the results to cases when k£ may grow with n and
to get sharper bounds for constant k. The proof of Lemma 13 provides very
small constants because of the repeated application of Ramsey’s theorem.
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