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1 Introduction

Significant results concerning polynomial time approximation schemes
(PTAS’s) for ”dense” instances of several NP-hard problems such as MAX-
CUT, MAX-k-SAT, BISECTION, DENSE-k-SUBGRAPH, and others have
been obtained recently in Arora, Karger and Karpinski [AKK95], Fernandez
de la Vega [FF'V96], Arora, Frieze and Kaplan [AFK96], Frieze and Kannan
[AK97]. Still more recently, the approximability of dense instances of N'P-
hard problems has been investigated from the point of view of the query
complexity. Goldreich, Goldwasser and Ron [GGR96] show that a constant
size sample is sufficient to test wether a graph has a cut of a certain size.
Frieze and Kannan [AK97], obtain quick approximations for all dense MAX-
SNP problems. Recall that a PTAS for a given optimization problem is a
family (A.) of algorithms indexed by a parameter € € (0,00) where each
algorithm runs in polynomial time and, for each ¢, the algorithm A, has
approximation ratio 1 — € (or 1+ € for a minimization problem). In most
cases, the instances are graphs, and a dense graph is defined as a graph
with ©(n?) edges where n is the number of vertices. (In some cases, the
algorithms apply only to graphs with minimum degree ©(n).) Some of the
problems considered in the papers mentioned above, such as MAX-CU'T,
are MAX-SNP-hard, and thus, if P # NP, have no PTASs when the set of
instances is not restricted. Let us also mention that the PTASs in [FV96],

[AK97] and [GGRI6] are efficient in the sense of Cesati and Trevisan [CS97].

The natural instances of optimization problems (see the definitions given
in [GJ79]) involve weights while the results mentioned above deal mainly
with the 0,1 case. The purpose of this paper is to examine how these results
can be extended to the weighted case. We want to define a concept of den-
sity for the weighted case which ensures that our algorithms, possibly with
minor modifications, work in the corresponding dense classes of instances
and such that the non-dense classes are not approximable under a stan-
dard intractability assumption. For the sake of simplicity, we concentrate
here on MAX-CUT. In fact, for technical reasons, we start by considering
MAX-BISECTION, which is MAX-CUT restricted to cuts with equal sides.
(MAX-BISECTION is also called MAX-50/50-CUT or MAX-EQUI-CUT.)
Our results extend easily to other MAX-SNP-hard problems such as MAX-
2SAT or MAXIMUM ACYCLIC SUBGRAPH. We remark in passing that
the methods of [AKK95] and [F'V96] give a PTAS for MAX-BISECTION.

We note that weight problems have been briefly considered in [GGR96]
and [AK97]. In both papers, the authors evaluate the increase of the compu-
tation time of their algorithms when one allows weights belonging to some
fixed interval [0, a] instead of 0,1 weights. Weight problems are also consid-
ered in a recent paper [TR97].

The plan of this paper is as follows. In sections 2 and 3, we define and



characterize our dense classes of weighted instances via classes of distribu-
tion functions (d.f.’s for short) of the weights. They clearly grasp the intu-
itive, and standard notions of dense instances of combinatorial optimization
problems. In section 5, we prove that MAX-BISECTION and MAX-CUT
both have PTASs in any dense class of weighted instances according to our
definition. In section 6 we prove that both MAX-BISECTION and MAX-
CUT are MAX-SNP hard on any fixed non-dense set of weighted instances
satisfying a certain mild additional condition. The last section contains a
summary and open problems.

2 Definition of a Dense family

In as much as density requirements come in, any given instance is a set
of non-negative real numbers (the weights) or rather a multi set. Let us
associate to this instance the empirical distribution function of the weights:

2
F(z) = P Rt
() n(n_])Zm, z €

where m; denotes the multiplicity of the weight x; in the instance and n is
the number of vertices.

We define our density classes in terms of families of weight distribution
functions. More precisely:

(i) To each d.f. F with support in R, we associate the set Iz of all
weighted graphs whose empirical weight distribution coincides with F.

(ii) To each set F of d.f.’s we associate the set of instances

Ir =Urper Ir

Thus, we shall define below dense sets of d.f.’s having in mind the sets of
instances to which they correspond according to (i) and (ii).

Clearly, our d.f.’s need have finite discrete support and rational individ-
ual probabilities. (We don’t dwell here about the nature of the values in
the support. For definitness, let us say that they are also rational.) We call
such d.f.’s representable. Conversely, the set of instances corresponding to a
representable d.f. I’ with individual probabilities having smallest common
denominator d, say, is given by

Ir = Ulnadn(n-1))9n

where G, is the set of weighted graphs on n vertices whose empirical weight
distribution coincides with £'. Notice that I is infinite for any representable
F. FKor convenience, when representativity is not essential, we state in var-
ious occasions our theorems in terms of arbitrary d.f.’s. (not necessarily



having finite or even discrete range). Moreover, we often assume in our
proofs that our d.f.’s are continuous (i.e. we assume that the corresponding
random variables have densities). Whenever we make this assumption, it is
justified by the fact that any d.f. can be approximated arbitrarily closely
by a continuous one.

We can assume that the mean of the weights in each instance is equal to
1, since, when we divide all the weights by their mean, say m, we also divide
the values of the objective function by m so that the approximation ratios
are unaffected. (We assume that the weights are not all 0.) Nevertheless,
we shall not always impose this condition in the definition of our dense
families. Since our definitions are invariant under scaling we shall assume
in the proofs that the d.f.’s have expectation 1. (Here and all along the
paper, we speak with some abuse of language, of the expectation of a d.f. F
meaning the expectation of a random variable with d.f. I.)

We can now state our definition of a dense family of d.f.’s.

Definition 1 (Dense families of d.f.’s) Let F = (F}) ;e be a family
of integrable d.f.’s with supports contained in RT and each with mean 1. Let
p; denote the expectation of I;. For each j € J and each k € N, define

k
1
Mjj = X
]7k leL] )%

=1
where the X;; are independent r.v.’s each with d.f. ;.

We say that the family F is dense if and only if, for each j € J, the
sequence (M; 1) p=1,2,. converges in probability to 1, and moreover, this con-
vergence is uniform for j € J.

In other words, F is dense iff there exists a function n.=n(e) : (0,1] - N
such that the inequalities

PriMjr—1[ <€ >(1-¢), k> n (1)

hold for each € and simultaneously for all j, with an n. which depends only
on € (and not on j).

Definition 2 A family F of d.f.’s which is not dense is called a non-
dense family

REMARK. Our characterization of dense families of d.f.’s does not re-
quire that the d.f.’s be representable. Of course, our approximability or
inapproximability theorems will in fact be concerned with representable fam-
ilies.

An instant reflexion shows that condition (i) brings just what we want.
If F is dense in the sense of definition 1, then we can estimate the mean of
each F' € F with any desired relative accuracy by picking a sample whose
size n. does not depend on F. In the next section we identify some natural
dense families of d.f.’s.



3 Some Dense Families of d.f.’s

Recall the law of large numbers: If X has a finite mean F X, then the means
of the partial sums of a sequence of independent random variables each
distributed as X converges in probability to £ X. This implies immediately
the next proposition.

Proposition 1 Any singleton (and any finite set of integrable d.f.’s)
with support in RT is a dense family

The following assertion can easily be checked.

Proposition 2 The family of all integrable d.f.’s is not dense

Our next dense family defines precisely, when restricted to 0,1 instances,
the usual density classes. In the unweighted case (and after scaling), dense
means "not too dispersed”. We can thus define dense families based on
some dispersion measure. The most common of these is the variance, and
this leads to the following class of dense families.

Proposition 3 For each s > 0 the family

<
(FX)2 ="

7, = { Py - VarX }

is dense.

PROOF The proof is straightforward by using Chebyshev’s inequality.
O

The last example can be generalized as follows.

Proposition 4 For each pair (r,C) where r € (1,4+00) and C' € R, the

family
1

]::{FX;W/OOOJC’"dFX(w)SC} (2)

is dense.

PROOF Fix r € (1,400] and €' € RT and let F be the corresponding
family of d.f.’s defined in proposition 4 where we can suppose KX = 1 for
every X. The inequality (2) gives immediately, for any ¢t € RT,

1-F(@) = / dF(z) < Ct™,
t
We have thus

t(1— () <Ct'=r

whose right hand side tends to 0 when ¢ — oo, uniformly for F € F.
Anticipating our characterization of the dense families (see Theorem 1 in
the next section), we deduce that F is dense. O



4 A Characterization of the Dense Families

The following theorem characterizes the dense families. Once again, this
theorem, alike Definition 1, is stated in terms of arbitrary (not necessarily
representable) d.f.’s.

Theorem 1 Let F = (I})jes be a family of non-negative integrable
d.f.’s and assume all expectations equal to 1.

The family F is dense in the sense of Definition 1 if and only if one of
the following conditions (i) and (ii) holds:

(i) For each j and each x € RY, define 7j(2) = (1 — F;(2)). There is a
function 7,(x) tending to 0 as x — oo and such that the inequalities

7i(2) < 7o(2) (3)

hold for each pair (j, ).
(ii) For each j and each x € R*, define

@) = [ vdr). (@)

There is a function s,(z) tending to 0 as + — oo and such that the inequal-
ities

85(2) < 5,(2) @
hold for each pair (j, ).

We shall also use occasionally the following characterization of the non-
dense families.

Assume that F is not dense. Then there is an n > 0 such that, for any
arbitrary large y € RY, there is an I € F with

y(1 = F;(y)) 2 - (6)
To see this, note that the contrary would state:

Vi >0 3y(n) € RY s.t. y(n) (1= F(y(n) <n
for every F' € F

Then, putting yx = y(27%), we could define an 7, for F by 7,(z) = 27k
for yr <z < yg4+1, which contradicts the assumption that F is not dense.

PROOF (of Theorem 1). Notice that if we take s, = 7,, then ii) is more
stringent than i). Thus, it suffices to show that (ii) is necessary and (i)
sufficient.

The fact that condition (i) implies that the family F is dense, can be
established easily by adapting the proof of the law of large numbers in order
to get an effective bound on the sample size. Actually, we will adapt a proof
of Feller (see [Fe]) that he uses to show the convergence of the means of



sums of independent r.v.’s to a not necessary constant specified function.
The speed of convergence is governed by the function 7. Let us write

S,=X+...+ X,

where the X; are independent with the common d.f. F’ with expectation p.
Let us define new r.v.’s X! by truncation at level n:

X/ =X;if X; <n, X!'=0if X; > n.
Put
S =X+ .+ X, ml=FS)=nkE(X).
Then,

Pl|Sp —my| > ] < P[S; —my| > 1]
+ P[S, # S].
Putting ¢ = ne and applying Chebyshev’s inequality to the first term on the
right, we get
1

Pr[|S, —ml|>t] < a7

E(X{’) +nP[X1 > 1] (7)

Put .
a(t):/o z2dF(z).

Then, an integration by parts gives

o(n) = —nT(n)-I—Q/On a7 (z)dz

< 2/ x7(x)dz.
0

(Recall that 7(z) = z(1 — F(z)).) We have thus, for each n,
2 n
> e] < / a7 (z)dz
0

Pr H& - EX]
n

n2e?
+7(n)
Since F'X{ tends to F X uniformly for F' € F as n — oo, this implies
S, a 2 [ a7 (z)de
Pr [T_EX] 226] S T(n) (8)

for sufficiently large n. Clearly, the right side tends to 0 again uniformly
whenever 7(t) < 7,(t) with a 7,(t) — 0. This concludes the proof of suffi-
ciency of condition (i).

The proof of the necessity of condition (ii) again mimics standard argu-
ments. We omit it in this extended abstract. O



5 A PTAS for Dense Weighted Instances of M AX-
BISECTION and MAX-CUT

In [AKK95] and [F'V96] the following Theorem was proved.
Theorem 2. 0,1 dense MAX-CUT does have a PTAS.
The following more general result can be proved in a similar way.

Theorem 3. Assume that the set of instances I has been standardized
(i.e. the mean of the weights is 1) and moreover assume that the weights
are bounded above by an absolute constant. Then MAX-CUT and MAX-
BISECTION on I both have PTASs.

The crux of the methods of [AKK95] and [FFV96] relies on so-called sam-
pling lemmas which work when the dispersion of the weights is of comparable
magnitude to that of their means. This is guaranteed by the assumptions
of Theorem 3.

The following Theorem will be easily deduced from Theorem 3.

Theorem 4. Let the family of representable d.f.’s F be dense (i.e.
each F € F has a finite support and rational probabilities and, moreover,
F satisfies to the conditions of Theorem 1). Then MAX-CUT, and MAX-
BISECTION both have PTASs when restricted to the instances correspond-
ing to F.

PROOF We first need some notation. Given an underlying vertex set
V =V, of size n and any subset S C V we denote by §(5) (= §(V - 9))
the set of unordered pairs uv of vertices with w € S, v € V. — S. Thus §(5)
is the cut defined by S in the complete graph with vertex set V/,.

For any instance [ and any subset S of the corresponding graph, we
denote by val(I,S) the value of the cut defined by S:

val(l,S) == Yees(s)w(e)

Here w(e) is the weight of the edge e. If the instance is a graph, we write
more simply val(G, S) for val(I,S). Hence we have

val(G, S) = [6(S) N E(G))|

where I/(G) denotes the edge set of G. Turning to the proof of Theorem 4,
let F be dense, fix an ¢ > 0 and let m, be the minimum real number such
that the inequality

So(mo) <

is satisfied. Here s,(.) is the function corresponding to F in condition (i) of
Theorem 1. Now let I be an instance whose weight distribution coincides



with some I’ € F). In order to approximate the maximum cut of I within
1 — € we can proceed as follows.

e We replace by 0 all the weights exceeding m,. Let I’ denote the new
entry.

e Since I’ has bounded weights after standardisation, we can according
to Theorem 3, find in polynomial time a cut §(S5) whose value val(I’,S)
approximates that of a maximum cut of (/') within 1 — ¢/2, say.

Now, to see that 4(5) solves MAX-CUT within 1 — ¢ on the original
instance I, observe that the total weight annihilated when going from [ to
1" does not exceed (}).¢/2. Thus, if Opt(/) is the maximum value of a cut
of I, we have certainly

val(I',5) val(I',S) Opt(I’)
Opt(7) Opt(I') "Opt(I)"
(1-¢/2)>>1—¢

v

where we have used in the last derivation the inequality Opt(/) > 1(3).
This concludes the proof for MAX-CUT. The proof for MAX-BISECTION

is exactly the same. O

6 Hardness of MAX-BISECTION on a Non-Dense
Set of Instances

The strict converse of Theorem 4 which would state that MAX-BISECTION
and MAX-CU'T are MAX-SNP-hard on any non-dense set F does not hold.
To see this, let us recall first the precise result of [FV96] or [GGRI6].

Theorem 5 For any fired d > 0 and relative accuracy requirement e,
there is an algorithm which solves MAX-CUT on instances of density at
least d in time at most .

2
where Cy and Cy are absolute constants

Now let F = (I)i=1,2,.. be a non-dense family of d.f’s where F; corre-
sponds to the 0,1 instances with density d;, say, and the sequence (d;) tends
to 0. (We always assume that the sequence (d;) decreases.). Let % = d;
T4

5 ) where n; the
smallest order of a graph where F; can be represented. T'hus we certainly

A
have n; > v/D;. Assume D; > 2% for some fixed A > 0 and all i. Then,
the order n of any graph on which F; is representable satisfies the inequality
A

be the shortest fraction expressing d;. Then D; divides (

n > 224 . Thus, according to 9, the time complexity 7'(n) for computing
MAX-CUT within 1 — € on such a graph satisfies

C2 2Cq

T(n) < Cru2is® < Cyn'+5,



i.e. we have a PTAS for F with exponent 1+ %

We thus need an upper bound for the denominators of the d;’s to obtain
an inapproximability result in the 0,1 case and we will assume that the D;’s
are bounded above by a polynomial function of the inverse of the density.
We shall use a similar condition in the general weighted case (see Theorem
7). Besides these small denominators conditions, the proofs of the inapprox-
imability results that we present require another condition which, in the 0,1
case, says roughly speaking, that the sequence of densities (d;) does not de-
crease too fast (albeit it may decrease as fast as a double exponential). Let
us now state these results.

Theorem 6 (MAX-SNP-hardness of MAX-BISECTION in the non-
dense 0,1 case) Assume that the sequence of rational densities (d;) tends
to 0 and, moreover, that it satisfies to the inequalities

dig1 > dt, i=1,2, ... (10)

where h is a positive constant. Assume moreover that the denominators D;
of the d; satisfy
D; < p(d;") (11)

where p(.) is a fized polynomial.

Then, MAX-BISECTION is MAX-SNP-hard on the set of 0,1 instances
whose densities belong to (d;).

Theorem 7 (MAX-SNP-hardness of MAX-BISECTION in the non-
dense weighted case) Let F = (F})i=1,2,.. be a non-dense family of repre-
sentable d.f.’s and, for each i, let D; denote the smallest common denomi-
nator of the individual probabilities of the distribution F;. Assume that there
exists reals n > 0 and h > 1, and a sequence of numbers (t;);=1,2,.. tending
to infinity, s.t. the following three conditions hold for all i € N:

ti(1 = Fi(ti)) > n, (12)
D; < p(t;) (13)

and
tipr <t (14)

Then, MAX-BISECTION is MAX-SNP-hard on the set of instances corre-
sponding to F.

Theorem 8 (MAX-SNP-hardness of MAX-CUT in the non-dense
weighted case) Let F = (F;)i=1,2,.. be a non-dense family of representable
d.f.’s and assume that F fulfills the conditions of Theorem 7. Then, MAX-
CUT is MAX-SNP-hard on the set of instances corresponding to F.

Before turning to the proofs of these theorems, let us give some words of
explanation about conditions (10) and (11) in Theorem 6. (Theorem 7 uses

10



similar conditions (13) and (14).) In the set of 0,1 instances corresponding
to non-dense family F, the density d achieves arbitrarily small values. Thus,
from the fact that MAX-BISECTION (or MAX-CUT) is MAX-SNP hard
on 0,1 instances with bounded degree (see Papadimitriou and Yannakakis
[PY91]), there is apparently nothing to prove to obtain Theorem 6 where
it not because of the apparently innocuous fact that, for each involved d,
we are not required to solve MAX-BISECTION on all possible instances of
density d, but only for a set of sizes which may be quite thin. Conditions
(10) and (14) are introduced to keep these sizes under control.

6.1 Hardness of MAX-BISECTION on a Non-Dense Set of

Unweighted Instances

We need several lemmas.

Let G(n,d) denote the set of graphs with n vertices and average degree

d.

Lemma 3 Let an integer h and a graph G of order n be given. Let
H denote the join of G with an independent set of size h (i.e. we make h
replicas of each vertex of G and each edge of G gives a complete bipartite
graph between the two corresponding sets of replicas). Assume 1 < h < p(n)
where p(.) is a fized polynomial. Then, the problems of approzimating MAX-
BISECTION in H and in G are mutually L-reducible one to the other.

PROOF For each vertex z € V(G), its h replicas are equivalent and
thus we can assume that they all go to the same side of the cuts of H. But
then the natural correspondence between the equi-cuts of G and the cuts
of H with this property leaves the approximation ratios unchanged and the
Lemma follows. O

Lemma 4 Let A be a sufficiently large real number and let A" > A.
MAX-BISECTION is MAX-SNP-hard on any set of graphs

H = Upen g(nv dn)

where the d,’s satisfy A < d,, < A’ for each n € N.

PROOF The result of Papadimitriou and Yannakakis [PY91] quoted in
the previous section implies that MAX-BISECTION is MAX-SNP-hard on
graphs whose average degree has a fixed upper bound, say D. We shall
define an [-reduction from these graphs to graphs in # for a fixed sequence
(dy). Let G be a graph, with n vertices and average degree § < D. Clearly,
we can assume & > 1. Let the d,,’s satisfy to the condition of the Theorem
and put h = LdT"J Denote by G’ be the join of G by an independent set
of size h. Then, by adding less than 2d,6~!|F((G)| arbitrary edges to G,
we obtain a graph G7 with average degree d,,. Using LLemma 3, one can

11



easily verify that the mapping G — G” provides (for sufficiently large A)
the desired L-reduction. O

Lemma 5 Assume that the sequence (ny)g=1,. satisfies for any suffi-
ciently large k to the inequality

gy < np (15)

where h is a fized number greater than 1. Then, MAX-BISECTION is MAX-
SNP-hard when restricted to graphs whose vertex set sizes belong to (ny).

PROOF Assume for a contradiction that for any ¢ > 0, there exists an
integer k£ such that 0,1 MAX-BISECTION is (1 — ¢)-approximable in time
n* for vertex set sizes belonging to (n;) by some algorithm A. Set for each

n, m = m(n) = min{n; : n; > 2} = n,, say. We have m < n"*!

for
sufficiently large n. Let A = [Z| and associate to each instance I of size
n the join J of A copies of I. Eventually add isolated vertices to obtain an
instance .J’ of order m. Clearly, an approximate solution of .J/ is also an
approximate solution of J and by Lemma 3, we can deduce in polynomial
time from an approximate solution of .J/ an approximate solution of I with
the same approximation ratio. Thus the algorithm A can be used with
trivial modifications to approximate MAX-BISECTION for an instance of
size n in time n**. This contradicts the MAX-SNP-hardness of unweighted

MAX-BISECTION. O
Lemma 6 Let A and A’ be defined as in Lemma 4 and assume that the
sequence (n;)i=1,2,.. satisfies

B
niy1 <0y

for some real h > 1. Assume moreover that the sequence (d;);=12,.. satisfies

A < d; < A’ for each i. Then, MAX-BISECTION is MAX-SNP-hard on
the set

Uien G (ni, di)
PROOF Starting from Lemma 4, the proof is completely similar to that
of Lemma 5 and is omitted. g
We are now well prepared for the proof of Theorem 6.
Proof of Theorem 6

We shall give an L-reduction to 0,1 MAX-BISECTION. Let the sequence
of densities D = (d;) satisfy to the conditions of the Theorem. Fix an
arbitrary small ¢ > 0 and define from D a new family D’ where for each 1,
d; is replaced by a §; satisfying

(1-ed; <& < d;

12



and having a shortest fractional expression, say §; = %, with (H < F<
[2]. Let us show first that MAX-BISECTION is hard to approximate on
D'. Because of Lemma 5 we need only an infinite sequence of sizes (ny)
such that, for each k, the average degrees dj, of the graphs on ny vertices
and with density di in our family of instances belong to some fixed interval
[A, A’] with A sufficiently large.For a graph on ny vertices with density &g
we have P

Jk = (nk — 1)5k = (’IL]‘C — 1)—k

Qk

Thus, if we choose np = AQy + 1, we get dy, = AP, implying A < d < A’
as desired. It remains to observe that (10) implies the inequality

Sigr > 61!

for all sufficiently large 3.

In order to conclude the promised reduction, we shall show that MAX-
BISECTION on D' I-reduces to MAX-BISECTION on D.

Such a reduction can be obtained as follows: For each sufficiently large ¢,
pick the smallest 7 such that G;—f > % Make the join of an instance of density

é; with an independent set of size h; — Lcé—]j, and add the necessary number
of edges to obtain an instance with density d;. Using Lemma 5, it is easy
to see that this transformation is an L-reduction. O

The following Lemma asserts broadly speaking that putting random
weights with mean 1 on the edges of a (not too sparse) graph G does not
change significantly the maximum value of a cut of G.

Lemma 7 (Averaging Lemma) Let (G,),=1,... be a sequence of graphs
where G, has n vertices and m = m(n) edges and n = o(m). Assume that
for each n the edges of G, are given random non-negative weights picked
from a fized distribution I with mean 1. Let G', denote this weighted graph.
The quantity

1 /
— max lval(Gh,, S) — val(Gr, S)|,

where S ranges over all subsets of V(G), tends to 0 in probability when
n — 00.

PROOF Is given in the Appendix.

6.2 End of the Proof of Theorem 7

Our strategy for obtaining an hardness result for the general (weighted) case
of MAX-BISECTION is to reduce it to the 0,1 case.
We are going to prove the following Theorem

13



Theorem 9 Assume that F satisfies to the conditions of Theorem 7
with parameters n and h. Then, approzimating MAX-BISECTION on F
L-reduces to approzimating MAX-BISECTION on a non-dense set of 0,1
instances.

PROOF Let the sequences (t;) and (D);) satisfy to the conditions of
Theorem 7 and let y; = 1 — F'(t;). We have #; > -I.. Thus (13) implies
Di < q(p7") (16)

where ¢ is another polynomial. Also, it is not hard to show that (14) implies
the existence of a subsequence (j(i)) of the natural integers with

i) = ()"

We can thus assume by renaming that we have
pigr > pit! (17)

for every 7 € N.
For a fixed 1, set /' = F;, t = t; and define

1 o0
a:aizm/t sdF(s)

and

1 i
ﬁ = ﬂz = —/ sdI(s).
0N
For n = 2AD;, A € N, set m = (Z), (m is an integer because F; is

representable on a graph with n vertices), and use k to index the ((7%))
distinct subgraphs G, of K,, having m edges.

We define for each k a partial instance J by giving to the edges of G}
random weights empirically distributed according to the d.f.

Pl Z 1) sy

G(g): l—F(t) [

We define also a partial instance L by putting on the edges in the set
K,\G} random weights on [0, t] empirically distributed according to the d.f.
H(s) = I'(s)/F(t), s <t. Wedenote by I, the instance obtained by sticking
together Ji and L. Clearly, by the choice of G(.) and H(.), the empirical
distribution of the weights in [ coincides with F.

Assume that one can find in polynomial time a bisection §(S,) with
value val(Iy, S,) > (1 — €)Opt(Iy). Let I} denote the instance obtained by
replacing the weights in Ji (resp. in Lj) by their mean «, (resp. f3).
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By applying the averaging Lemma separately to Ji and L, we see that
the maximum value of a bisection in I; does not differ from val(I}[,S,) by
more than a 1 — o(1) factor.

Let now /7 denote the instance obtained from /| by substracting 3 from
each weight. (Thus, I”; has weights all equal to @ — 3 on the edges of G,
and zero weights elsewhere.) For any bisection §(5) we have

fu(n—1)

val (I}, S) = val(I"y, S) + 1

Note that we have @ > 7 and since we have
a(1 = F(t) + BF(t) = 1,

while F(t) = F;(t;) tends to 1 with i, we deduce that  has an upper bound
strictly smaller than 1. Since the maximum value of a bisection of G is at
least n?/4, this implies for S = S, that the the ratio

val(I"k, S,)
val (1], S,)

is bounded below by a strictly positive constant so that 4(S,) is also an
approximate solution for MAX-BISECTION on I”j. Thus, approximating
MAX-BISECTION on F enables us to approximate 0,1 MAX-BISECTION
on the graphs with densities (y;) and orders D;, under conditions (16) and
(17.) This clearly contradicts Theorem 7. O

7 Proof of Theorem 8

In order to prove Theorem 8, we consider only for each F' € F and each n,
the graphs GG, whose vertex set is contained in the first half of the vertex set
V, of the instance I;. Let us denote by .J# this restricted set of instances.
(G, Iy and I}, are as defined in the end of the previous section.) We are
going to show that, for each instance I, € Jx, we can easily deduce a nearly
optimal bisection from any nearly optimal cut. Now, reasoning as in the end
of the previous section, one can show that approximating MAX-BISECTION
on Jr amounts to approximate MAX-BISECTION on a non-dense set of 0,1
instances and Theorem 8 follows.

Using the sampling Lemma as in the proof of Theorem 7, it suffice to
prove the claim with Iy replaced by I. For S C V,,, we have

val(l, S) = a|0(S) NGyl + B(|0(S)]
= |6(S) N Grl)
val(I;,S) = (a—B)6(S) NGy
+ Blo(s)] (18)
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Because of our assumption on Gy, [§(S)NGg| can be maximised with |S| = 7,
and this choice maximizes also |§(5)|. We have thus

Opi(1}) = (0 = FOPHG) + 7P (19)

where Opt(I}) denotes the common maximum value of MAX-CUT and
MAX-BISECTION on I}. Let us write |§(S)| = [S|(n — |S]) = in? — m.
Put |S| =% —m. (18) gives also

2

val(1f, §) < (o = BYOpH(G) + B(7 = m?)

Thus, comparing with (19) and using the bound Opt(I}) <
that we have

2(3), we see

en?
2
for any S such that val(1],S) > Opt(I})(1 — €*).

Let §(S’) denote a bisection obtained from the cut §(S) by moving from
the biggest to the smallest side of §(S) m vertices incident only [-edges.
There are two cases (i) and (ii):

(i) If B > ¢, then the inequality

ng

val (I}, S") > val(1}, S) — m*

gives
5. €n?
val(l, §') = Opi(I;)(1 =€) = ==
> Opt(I})(1—2¢ — %),
(using again the inequality Opt(I}) > %) i.e. 6(5') is a bisection of I} with

approximation ratio 1 — ¢, where ¢ = 2¢ + €.
(i) If B < ¢, then we have

val(1;,S") > val(1},S) — %

which leads to the same conclusion as case (i).

8 Summary and Conclusions
With the aim of separating as sharply as possible the approximable from the

inapproximable families of weighted instances of MAX-CU'T', we have intro-
duced a notion of dense families of instances or, more precisely, a notion of
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dense families of weight distributions. We have shown that the correspond-
ing families of instances have the (intended) approximability property for
MAX-CUT.

In the other direction, we have shown inapproximability only when the
densities in the set of instances do not decrease too fast, and we believe that
this condition is not necessary. This is our first question.

A second question is: Does our density definition capture the approx-
imability of all MAX-SNP-hard problems in the weighted case? We know by
[AKK95] that all these problems are approximable in the dense unweighted
case.
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Appendix.

Proof of the Averaging Lemma (Lemma 7). We prove that, for every
€ > 0, for sufficiently large n,

Pr[mgx|val(G;L, S) = wal(Gp,S)| < em]
> 1l—e€.

We prove the inequality
Pr[mgx(val(G;, S) — wal(Gp,S)) < em]
> 1- <. (20)

We first get rid of the extreme values of F'. Define # = 8(¢) by

/0 sdF(s) = 6 (21)

Then the expectation of the total weight of the edges with weights > 8 is
equal to ”{—g. Markov inequality inequality implies that, with probability at
least 1 — 7, this weight does not exceed 7.

Let us fix a cut 6(S) with val(G,, S) = [6(S)UE(GR)| = ¢, say, with 1 <
¢ < m. The value val(G",, S) of this cut for G, is the sum of ¢ independent
r.v.’s with the common distribution . Call I} the distribution obtained
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from F by cutting the values > 6: Fi(s) = F(s)/(1 — F(0)), s < #. Let us
denote by K7 the expectation of F7. By what has just been proved, we have
with probability at least 1 — 7, and simultaneously for all S,

me

val(G,S) < 3(S) + T (22)

where ¥(5) is the sum of Am independent r.v.’s with the common distribu-
tion Fj. Using the fact that these r.v.’s are bounded above by # and the
martingale inequality of Azuma (see [ASE92], Appendix A3) , we obtain

€em

PAS(S) —gk1) > T
€2m2
< o0 (a7,

em
< exp ~3267 )

We have val(G,,S) = ¢ and E; < 1. The preceding inequality gives, with
(22),

e€em
Z_

Prival(G,,S) — wval(Gn,S) 2]

€2m
exp —3202 .

Since the total number of cuts is bounded above by 2", we obtain

Prlval (G, S) val(Gy, S) > %, vS]

n em
< 2"exp ~ 3202

€
< -
- 4

for sufficiently large n by our assumption on m = m(n). Since inequality
(22) is valid with probability at least 1 — %, inequality (20) is proved. The
proof of the reverse inequality is similar and is omitted.

O
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