Electronic Colloquium on Computational Complexity, Report No. 65 (1998)

On Some Tighter Inapproximability Results,
Further Improvements*

Piotr Berman' Marek Karpinskit

Abstract

Improved inaproximability results are given, including the best up
to date explicit approximation thresholds for bounded occurence sat-
isfiability problems, like MAX-2SAT and E2-LIN-2, and problems in
bounded degree graphs, like MIS, Node Cover and MAX CUT. We
prove also for the first time inapproximability of the problem of Sort-
ing by Reversals and display an explicit approximation threshold for
this problem.

Key words: Approximation Algorithms, Approximation Hardness,
Bounded Dependency Satisfiability, Breakpoint Graphs, Independent Set,
Node Cover, MAX-CUT, Sorting by Reversals.

*A preliminary version of this paper appeared in ECCC TR98-029 (1998).

Dept. of Computer Science, Pennsylvania State University, University Park, PA16802.
Supported in part by NSF grant CCR-9700053. Email: berman@cse.psu.edu

Dept. of Computer Science, University of Bonn, 53117 Bonn. Supported in part by
the International Computer Science Institute, Berkeley, California, by DFG grant 673/4-1,
ESPRIT BR grants 7079, 21726, and EC-US 030, by DIMACS, and by the Max—Planck

Research Prize. Email: marek@cs.uni-bonn.de

ISSN 1433-8092

1 Introduction

The paper studies explicit approximation thresholds for bounded depen-
dency, and bounded degree optimization problems. There was a dramatic
progress recently in proving tight inapproximability results for a number of
NP-hard optimization problems (cf. [H96], [HI7], [TSSW96]). The goal of
this paper is to develop a new method of reductions for attacking bounded
instances of the NP-hard optimization problems and also other optimization
problems. The method uses randomized reductions and applies to the num-
ber of problems including Maximum Independent Set in graphs of degree d
(d-M1S), bounded degree Minimum Node Cover (d-Node Cover), bounded
degree MAX CUT (d-MAX CUT) and bounded occurrence MAX-2SAT (d-
OCC-MAX-2SAT), (cf. [PY91], [A94], [BS92], [BF94], [BF'95], [AFWZ9I5]).
This yields also the first explicit approximation lower bounds for the small
degree graph problems, and the small dependency satisfiability. Indepen-
dently, we apply this method to prove for the first time approximation
hardness of the problem of sorting by reversals, MIN-SBR, motivated by
molecular biology [HP95], and proven only recently to be NP-hard [C97].
Interestingly, its signed version can be computed in polynomial time [HP95],
[BH96], [KSTIT].

The core of the new method is the use of restricted versions of the E2-
LIN-2 and E3-LIN-2 problems studied in [H97]. We denote by E2-LIN-2 the
problem of maximizing the number of satisfied equations from a given set of
linear equations mod 2 with exactly 2 variables per equation. E3-LIN-2 is a
similar problem with three variables per equation. E2-LIN-2 can be viewed
as a graph problem in the following way: each variable is a node, and an
equation @y = b is an edge {z,y} with label b. (Note that the special case
when all edges have label 1 constitutes MAX CUT problem.)

We denote by d-OCC-E2-LIN-2 and d-OCC-E3-LIN-2 the versions of
these problems where the number of occurences of each variable is bounded
by d (note that in d-OCC-2-LIN-2 can be also viewed as restricted to graphs
of degree d).

The rest of the paper proves the following main theorem:

Theorem 1. For every € > 0, it is NP-hard to approrimate

(i) 3-OCC-E2-LIN-2 and 3-MAX CUT within factor 332/331 — ¢;
(ii) 6-OCC-MAX 25AT within factor 668/667 — ¢;
(iii) 3-OCC-E3-LIN-2 within factor 62/61 — ¢;
(iv) 4-MIS within factor 74/73 — € and J-Node Cover within 79/78 — ¢;

(v) 3-MIS within factor 140/139 — ¢ and 3-Node Cover within 145/144 — ¢;

(vi) MIN-SBR within factor 1237/1236 — e.

Our proof can be easily extended to provide explicit inapproximability
factors for many other optimizations problems that are related to bounded
degree graphs. E.g. we get also 1.0149 lower bound for 5-MIS, 1.0138 lower
bound for 5-NodeCover, and 1.0005 lower bound for 3-OCC-MAX 2SAT.
We provide proof sketches in Sections 4, and 7.

The technical core of all these results is the reduction to show (i), which
forms structures that can be translated into many graph problems with the
very small and natural gadgets. The best to our knowledge gaps between

the upper and lower approximation bounds are summarized in Table 1. The
upper approximation bounds are from [GW94], [BF'95], [C98], and [FG95].

Problem Approx. Upper | Approx. Lower
3-OCC-E2-LIN-2 1.1383 1.0030
3-OCC-E3-LIN-2 2 1.0163
3-MAX CUT 1.1383 1.0030
3-OCC-MAX 2SAT 1.0741 1.0005
6-OCC-MAX-25AT 1.0741 1.0014
3-MIS 1.2 1.0071
4-MTS 1.4 1.0136
5-MIS 1.6 1.0149
3-Node Cover 1.1666 1.0069
4-Node Cover 1.2857 1.0128
5-Node Cover 1.625 1.0138
MIN-SBR 1.5 1.0008

Table 1: Gaps between known approximation bounds.

2 Sequence of reductions

We start from E2-LIN-2 problem that was most completely analyzed by
Hastad [H97] who proved that it is NP-hard to approximate it within a
factor 12/11 — €. In the sequel we will use notation of this paper. In this
problem we are given a (multi)set of linear equations over Zy with at most
two variable per equation, and we maximize the size of a consistent subset.

In this paper, we prefer to interpret it as the following graph problem. Given
an undirected graph G = (V, I/, 1) where [is a 0/1 edge labelling function.
For S C V, Cut(S) is the set of edges with exactly one endpoint in S
(as in the MAX CUT problem). We define Score(S,e) € {0,1} as follows:
Score(S,e) = l(e) iff e € Cut(S). In turn, Score(S) = Y. cg Score(S,e).
The objective of E2-LIN-2 is to maximize Score(S).

Our first reduction will have instance transformation 7, and will map
an instance G of E2-LIN-2 into another instance G’ of the same problem
that has three properties: G’ is a graph of degree 3, its girth (the length of
a shortest cycle) is Q(logn), and its set of nodes can be covered with cycles
in which all edges are labeled 0. We will use 7 (E2-LIN-2) to denote this
restricted version of E2-LIN-2. The last two properties of 7 (£2 — LIN —2)
are important in the subsequent reductions that lead to MIN SBR problem.

We alter the reduction 7 in two ways. The first modification results
in graphs that have all edges labeled with 1, i.e. it reduces E2-LIN-2 to 3-
MAX CUT and allows to complete the proof of (7). The second modification
reduces E3-LIN-2 to a very special version of 3-OCC-E3-LIN-2, which we
call HYBRID, because a large majority of equations have only two variables.
This reduction instantaneously leads to (iii).

To show (i), we use an obvious reduction from 7y (E2-LIN-2): an instance
of K2-LLIN-2 can be viewed as a set of equivalence statements, and we can
replace each equivalence with a pair of implications. On the other hand, we
obtain (v) and (iv) using reductions from HYBRID.

Although HYBRID problem appears to be very “efficient”, we cannot
use it in the chain that leads to MIN-SBR. Instead, we use another reduc-
tion, with instance translation 7, that leads from 7y (E2-LIN-2) to 4-MIS.
This translation replaces each node/variable with a small gadget. The re-
sulting instances of 4-MIS can be transformed into the next problem that we
consider, which we call breakpoint graph decomposition, BGD. This problem
is related to mazimum alternating cycle decomposition, (e.g. see Caprara,
[C97]) but has a different objective function (as with another pair of related
problems, Node Cover and MIS, the choice of the objective function af-
fects approximability). An instance of BGD is a so-called breakpoint graph,
i.e. an undirected graph G = (V, E,[) where [is a 0/1 edge labelling function,
which satisfies the following two properties:

(i) for b € {0,1}, each connected component of (V,[7'(b)) is a simple
path;

(ii) for each v € V, the degrees of v in (V,17'(0)) and in (V,I7'(1)) are

the same.

An alternating cycle C' is a subset of E such that (V,C,l|C) has the
property (ii). A decomposition of G is a partition C of E into alternating
cycles. The objective of BGD is to minimize cost(C) = 1|F|—|C|.

By changing the node-replacing gadget of 7, and enforcing property (i) by
“brute force”, we obtain reduction 73 that maps 71 (E2-LIN-2) into BGD. The
last reduction, m, converts a breakpoint graph G into a permutation 7(G),
an instance of sorting by reversals, MIN-SBR. We use a standard reduc-
tion, i.e. the correspondence between permutations and breakpoints graphs
used in the approximation algorithms for MIN-SBR (this approach was ini-
tiated by Bafna and Pevzner, [BP96]). In general, this correspondence is not
approximation preserving because of so-called hurdles (see [BP96, HP95]).
However, the permutations in 7 (73(m (E2-LIN-2))) do not have hurdles, and
consequently for these restricted version of BGP, = is an approximation
preserving reducibility with ratio 1.

3 First Reduction

To simplify the first reduction, we will describe how to compute the instance
translation using a randomized poly-time algorithm. In this reduction, ev-
ery node (variable) is replaced with a wheel, a random graph that is defined
below (some parts of this definition will not be used to describe the reduc-
tion, but will be used later, in the proof of correctness). The parameter s
used here is a small constant; in this version of this paper we sketch the
proof that x = 9 is sufficiently large, in the full version we will show that
k = 6 is also sufficient.

Definition 2. An r-wheel is a graph with 2(k+ 1)r nodes W = Contacts U
Checkers, that contains 2r contacts and 2kr checkers, and two sets of edges,
C' and M. (' is a Hamiltonian cycle in which with consecutive contacts are
separated by chains of k checkers, while M is a random perfect matching
for the set of checkers (see Fig. 1 for an example).

For a set of nodes A C W let ay be the number of contacts in A, by the
number of contiguous fragments of of A in the cycle C' (i.e. by = |Cut(A)N
C/2) and ¢4 = [Cut(A) N M|.

We say that A is bad iff r > ayg > 2b4 + c4. A set B is wrong iff for some
bad set A we have B = AN Checkers. A set B C Checkers is isolated iff no
edges in M connect B with Checkers —B.

Consider an instance of E2-LIN-2 with n nodes (variables) and m edges
(equations). Let & = [n/2]. A node v of degree d will be replaced with a
kd-wheel W,. All wheel edges are labelled 0 to indicate our preference for
such a solution S that either W, C S or W, NS = 0. An edge {v, u} with
label [is replaced with 2k edges, each of them has label [and joins a contact
of W, with a contact of W,,. In the entire construction each contact is used
exactly once, so the resulting graph is 3-regular.

We need to elaborate this construction a bit to assure a large girth of the
resulting graph. First, we will assure that no short cycle is contained inside

4-whedl

o checker node
e COntact node

Figure 1: A small example of a gadget used by 7.

a wheel. We can use these properties of an r-wheel W: each cycle diferent of
length lower than 2kr must contain at least one edge of the matching M and
the expected number of nodes contained in cycles of length 0.2log,(xr) or
less is below (kr)~"® fraction). Thus we can destroy cycles of length below
0.2log, n by deleting matching edges incident to every node on such a cycle
and neglect the resulting changes in Score.

Later, we must prevent creation of short cycles when we introduce edges
between the wheels; this can be done using a construction described by
Bollobds [B78]. While Bollobds described how to build a graph of large
girth from scratch, his construction can assure the following: given a graph
of degree 3 with girth at least 0.5log, n and two n-element disjoint sets of
nodes of degree 2, each of size n, say A and B, one can increase the set of
edges by a perfect bipartide matching of A and B without increasing the
girth above 0.5log, n. Note that we are indeed replacing an edge of the
original graph with a perfect matching with at least n edges, which allows
us to use the construction of Bollobas.

The solution translation is simple. Suppose that we have a solution S
for a translated instance. First we normalize S as follows: if the majority
of contacts in a wheel W belong to S, we change S into S U W, otherwise
we change S into S — W. A normalized solution S can be converted into a
solution S’ of the original problem in an obvious manner: a node belongs to
S’ iff its wheel is contained in S. Assuming that G has m edges/equations,
we have Score(S) = 2k((3k + 2) + Score(S’)). Hastad [H97] proved that for
E2-LIN-2 instances with 16n equations it is NP-hard to distinguish those
that have Score above (12 — €)n and those that have Score below (114 €)n,
where the positive constant ¢ can be arbitrarily small. By showing that our
reduction is correct for kK = 6 we will prove

Theorem 3. For any ¢ > 0, it is NP-hard to decide whether an instance
of 71 (E2-LIN-2) € 3-OCC-E2-LIN-2 with 336n edges (equations) has Score
above (332 — €)n or below (331 + ¢)n.

The latter claim uses the assumption that Score(S) is not decreased by
the normalization. Because the reduction uses a random matching, it actu-
ally does not have to be the case, i.e. the normalization may fail. Obviously,
if the normalization fails, than one of its step, say dealing with wheel W,
fails. Let us inspect closer what such a failure means. For some d, W is a
kd-wheel, so it contains 2kd contacts. Let A be the subset of W consisting of
nodes that change membership in S during the normalization step. It is easy
to see that Score(S,e) changes iff e € Cut(A). According to our definition,
the size of Cut(A) is as + 2bs + c4. The edges counted by 2b4 and cy4 are
inside W, so their score is changed to 1 (from 0); the edges counted by a4 are
connecting the contacts in A with contacts of other wheels, pessimistically
we may assume that their score changes to 0. As a result, Score(S) decreases
by at most a4 — 2b4 — c4; the normalization step fails only if a4 > 2b4+ ¢4,
i.e. only if A is a bad subset of the wheel W. To show that our reduction
preserves the approximation with a high probablility we need to show that
the probablility that a wheel contains a bad subset is very low. Note that
when we try to find a bad set A in a wheel, it is very easy to obtain any
possible combination of the values of a4 and b4. However, the number c4
is established by a random matching, so we need to use the fact that with a
very high probability Cut(A) N M contains many edges. We start with the
following lemma.

Lemma 4. Assume that Q) is a cliqgue, P C Q, 2q = |Q| and 2p = |P|.
Choose, uniformly at random, a perfect matching M for (. Then the prob-
ability that Cut(P) N M is empty equals

()G =)

Proof. lLet u, be the number of perfect matchings in a complete graph
with 2r nodes. By an easy induction, u, = [[i—;(2i = 1) = (2r)!/(2"r!). The
probability of our event is
Fotg—p _ (2p)! (2(¢—p))! 2%¢' _ (2p)'(2p—2¢)' ¢
z 2vp! 207 (g — p)! (29)! (29! pig—p)!

The second part of the claim follows from Stirling formula.

Consider now a bad set A. Suppose that a node u € A has two neighbors
in W — A. Tt is easy to see that after removing u from A the expression
as — 2ba — c4 increases, so A remains bad. Similarly, if © € A has two
neighbors in A we may insert u and A again remains bad. Therefore W
contains a bad set only if it contains such a bad set A that neither A nor
W — A contains fragments of size 1.

Consider now set B C Checkers. Let B; be the set of contacts that have
exactly ¢ neighbors in B. According to our last remark, B is wrong iff for

some B’ C By the set A = BU By U B’ is bad. Clearly, whatever the choice
of B', we have a4 = |By| + |B|, ba = bpup, and ¢4 = c¢g. Thus if |By| > r
then B cannot be wrong, else if |By| 4 |By| > r we can assume that ay = r,
and in the remaing case we can assume that a4 = |Bz|+|Bi|. Later we will
use notation apg, bg and cp to denote these reconstructed values of a4, by
and cy.

The probability that W contains a bad subset can be estimated with a
sum, over every B C Checkers, of the probability that B is wrong. Instead
of computing this probability, we will estimate it, using three parameters of
this set.

The first parameter of B is «, defined by the equality ap = ar. Because
B is wrong only if ag < r, we may assume that a € (0,1]. The second
parameter is 3, defined by bg = par. Because B can be wrong only if
ap > 2bg, is a fraction in the range (0, %)

Before we define the third parameter, we will use the first two to count
then number of ways in which B can be generated. The sets B and
Checkers — B together contain 28ar fragments which can be described by
indicating, for each of them, the fist element (say, if we move in clockwise
direction). This description leaves ambigous which is set B and which is
W — B, this can be decided using the property ag < r. Thus we can

generate B in 5
2Kkr 28ar{ 1 2her
(2ﬂar> < (er)? (@) = ¢
many ways.

After we generated a set B, we need to estimate the probability that it
is wrong. To do so, we need to make an assumption concerning its size. It
is easy to see that a fragment of B that contributes, say, a, to ag, must
contain @ — 1 complete chains of checkers, each of length «, so it contributes
at least (a — 1)k to the size of B. Additionally, this fragment may contain
two “fringe” chains, each of length between 0 and k — 1, so it contributes

less than (a 4+ 1)k to the size. After adding such inequalities together over
far fragments we see that

akr — fakr < |B| < akr + pakr

?

hence for some v € [—1,1] we have |B| = (1 4+ y8)axr. Note that B will
become isolated if we remove the endpoints of the matching edges that
connect B with W — B; if B is wrong, then the number of such endpoints is
at most cg < (1 — 28)ar. We can estimate the probability that B is wrong
by multiplying the number of ways in which we can remove (1—23)ar nodes
(call it p) with the probability that the result is isolated. The former can
be estimated as

(1-28)ar
(1+vB)asr er)(1-28)ar 1+96 _
((1—2ﬂ)ozr)§() 1-23 = ¢

8

To express the latter, we define §(3,7) so that the size of each of our
candidates for an isolated set is 26(8,v)ar, one can see that 6(8,v) =
[(14+78)k— (1 =2p)]/2 and the probability that the candidate set is indeed
isolated is below

(5(/3,7)@) omer (5(/3,7)0«)5” e s

2KT 2K

We need to show &(7p << 1; it suffices to show that (£¢%)"(*") < 1. We

easily can compute that

(€cp) e = %(1)w (1 - vﬂ) 0 (5(/3, 7)04) o

Ba 1-283 2k

One can quickly check that the above formula is an increasing function of
a (because 28 < 1 < (k—1)/2 < §(8,7)). Since we want to estimate it
from above, we can put @ = 1. Now it remains to check that the simplified
function is always smaller than 1 for g € (0, % and vy € [—1,1]. Using the fact
that the partial derivative is bouded, one can accomplish it by evaluating
this function in a limited number of points. For k = 9 we checked that 0.72
is an upper bound. With a more complicating argument, and more accurate
estimates than LLemma 4, one can also show that x = 6 is sufficient as well.

Remark 1. One can modify reduction 71 as follows. We replicate the set of
equations even number of times, as before, so the number of occurences of
each variable is sufficiently high. On each r-wheel the nodes are labeled with
a and b, labels alternating. When we select the random matching between
checkers, we choose only from perfect matchings in a full bipartite graphs
formed by a-checkers and b-checkers (rather than a random perfect matching
from the full graph). One can easily show that this restriction makes almost
no difference in the probability calculations. Moreover, when we connect
the contacts of two wheels, we do it in two ways. If the edge between the
respective original variables is labeled with 0, we connect a-contacts with
b-contacts, and vice versa. If this edge is labelled with 1, we connect a-
contacts with a-contacts and b-contacts with b-contacts. This allows us to
convert all labels in the new graph to 1, and as a result, we obtain a graph
which is simultaneously an instance of E2-LIN-2 and MAX CUT (and is
3-regular). Let 7{ be the new reduction. We obtain the following:

Theorem 5. For any e > 0, it is NP-hard to decide whether an instance of
71 (E2-LIN-2)€3-MAX CUT with 336n edges has Score above (332 — €)n or
below (331 + ¢)n.

Remark 2. We can translate MAX CUT into MAX 2SAT by replacing
each edge with two clauses, i.e. and edge {z,y} is replaced with zVy, V.
This reduction allows to prove Theorem 1(ii).

o 0-node

e 1-node

Figure 2: Consistency wheel for 4-MIS problem. The gadget used to replace
a contact node is shown in the upper right corner. The lower right corner
shows a way to avoid a dirty hexagon.

Remark 3. We will also use another modification. We can start from an
instance of E3-LIN-2 with 2n equations. (Recall that Hastad has shown
that it is NP-hard to distinguish instaces where (2 — €)n equations can be
satisfied from those where we can satisfy at most (1 + €)n.) We modify it
to an instance with in which each variable occurs in at least n equations,
again, by replicating the equations. Next, each variable is replaced by a
r-wheel, where r is the (increased) number of occurences. The original
equations are left same as before, but occurences of a variable are replaced
with occurences of its contacts. Now we have a new system where each
variable occurs exactly three times, and consisting of 2kn equations with 3
variables (replicated original equations) and (1.5k + 1)6kn equations with
2 variables (inside the wheels). We take k = 6, so we have 60kn equations
inside the wheels. It will be convenient to view the resulting structure as
a hypergraph that has 60kn normal edges and 2kn hyperedges (of size 3),
6kn contact nodes and 36kn checker nodes.

We can modify the last reduction in a similar manner as in Remark 1.
In each chain of 6 checkers (separating two contacts) we label 3 of them
with @ and 3 with b; then we choose a random bipartite matching between
a-checkers and b-checkers. The set of resulting instances of E3-LIN-2 will be
later called HYBRID (this name refers to the fact that we have a mixture of
equations with 2 and 3 variables). Observe that the reduction from E3-LIN-2
to HYBRID allows to prove Theorem 1 (iii).

4 From HYBRID to 4-MIS and 3-MIS

Given an instance S of HYBRID, we will form graph G of degree 4, an
instance of 4-MIS. Each variable/node z of S will be replace with a gadget
A, which is an induced subgraph of G. Every gadget contains a hezagon, i.e.
a cycle of length 6 in which nodes with labels 0 and 1 alternate. Hexagons

10

Figure 3: Equation gadgets for 4-MIS.

Figure 4: Consistency wheel for 3-MIS.

Figure 5: Equation gadgets for 3-MIS.

11

will have two types: a-hexagons, with 2 chords, and b-hexagons, with 1
chord.

If © and y are connected by an edge (equation with two variables), the
hexagons of A, and A, will share a pair of adjacent edges; this edge of
G corresponds to the equation/edge z = y. A checker gadget is simply a
hexagon: 3 edges edges of equations connected by three other edges, and
one or two diagonals. A contact gadget consists of a hexagon fused with a
square; 3 such gadgets are connected by an equation gadget that contains 4
nodes that do not belong to gadgets of nodes/variables. Fig. 2 and 3 show
these gadgets in detail.

Given an independent set (a solution) I in graph G we form a solution
of S as follows. If AN consists of one type of nodes only (i.e. only 0-nodes
or only 1-nodes), we assign to z the value equal to this type. In this case,
we say that A, is pure. If A, is dirty, we must purify it without decreasing
the size of I.

Suppose first that a hexagon H is dirty (a checker gadget or a part of
a contact gadget). It is easy to see that H can be dirty in one way only:
H N1 is a pair of nodes that forms a “missing diagonal” of H. In the lower
right part of Fig. 2, we assume that {a, b} is this pair. The construction of
G assures that in this case there exists a quadrilateral (¢, d, e, f) as in this
figure, either because {e, f} is a diagonal of an adgacent hexagon, or because
hexagon H is a part of a contact gadget and this quadrilateral is the square
included in this gadget. One must observe that in the cases we consider
nodes adjacent to ¢ and d are either adjacent to @ or b (and consequently
they cannot be in I) or belong to {e, f}. If e € I, we can purify H removing
a from I and inserting ¢, if f ¢ I, we do it by removing b and inserting d.
One can see that one of these two cases must hold. Moreover, if the edge
{¢,d} is shared with another gadget, we can always choose the replacement
in such a way that we do not make the other gadget dirty when we purify
H.

Once we made all hexagons pure, we can make every contact gadget
pure as well. Suppose that the gadget from the upper right corner of Fig. 2
is dirty. There are two cases: if @ € I, then the hexagon (c,d, e, f,g,h) is
0-pure and we can replace a with A; the case when b € [is symmetric.

Now we can modify I so that each edge corresponding to an equation
with two variables contains a node of [iff the respective equation is true. If
such an edge contains a b-node (6{0,1}), than both gadgets containing this
edge must be b-pure; if both of them are b-pure, we can insert the b-node of
this edge to I.

If we partition G into gadgets coresponding to equations, that a gadget A
of an equation with three variables consists of 16 nodes: a square contained
in a gadget of each participating (contact) variable and four special nodes
corresponding to four legal combinations of variable values. Our goal is to
assure that if the this equation is true, A N [contains 7 nodes and 6 if the

12

equation is false. Clearly, we can place two nodes of I in each square, so
A N1 always has at least 6 nodes. We consider three cases, according to
the number of special nodes in A N I. If this number is 0 and the equation
is false, we are done. If it is 0 and the equation is true, then we can insert
the special node corresponding to the combination of the values of the three
variables. If this number is 1 and the equation is true, again, we are done. If
the equation is false, than one of the special node p contained in [wrongly
describes one of the variable values, and so it is connected to a node ¢ in
the respective contact gadget that has the type equal to the value of this
variable; clearly we can replace p with ¢. Now suppose that this number is
2. Because the equation gadget is very symmetric, it suffices to consider one
case, e.g. that the two special nodes in I are 000 and 011. In this case the
squares of y and z contain only one node of I each, thus we can replace 000
and 011 with nodes from these two squares.

To finish our reasoning, it remains to perform the accounting. We start
with an HYBRID instance with 60kn equations with two variables and 2kn
equations with three variables, and the difficult question whether we can sat-
isfy at least (62— ¢)kn equations, or at most (614 ¢)kn. Each of 2kn gadgets
corresponding to equations with three variables contributes 6 nodes to an
independent set, even if they are false. Morover, each gadget contributes a
node if the respective equation is true. As a result, the new difficult question
is whether the maximum independent set contains at least (12 + 62 — e)kn
nodes, or at most (12 + 61 4 ¢)kn.

Theorem 6. For any ¢ > 0, it is NP-hard to decide whether an instance of
4-MIS with 152n nodes has the mazimum size of an independent set above

(74 — €)n or below (73 + ¢)n.

Suppose now that we can reduce the size of the gadget corresponding
to an equation with three variables so it consists of 10 nodes rather than
16, and it contributes 4 nodes to an independent set if the equation is false,
and 5 if it is true. In this case the above accounting would show that for
graphs with 140n nodes it is difficult to distinguish between those that have
a maximum independent set with at least (68 — ¢)n nodes and thoses that
have at most (67 + ¢)n nodes. We can achieve this by constructing the
gadget for replacing contact nodes that has two nodes less than the one in
Fig. 2. However, some nodes in this gadget have degree 5 (see Fig. 6 and
hence the improved result, mentioned in Table 1, applies to 5-MIS (and, by
extension, 5-Node Cover). Because in these instances only 12n nodes out of
140n have degree 5, we believe that this result should be easy to improve.

We can describe a similar reduction from HYBRID to 3-MIS. Given a
HYBRID system of equations S, we form a graph G of degree 3. Again,
each variable z of HYBRID is replaced with a gadget A,; the gadget of a
checker variable is a hexagon, and a gadget of a contact variable is a hexagon

13

Figure 6: Contact gadget for 5-MIS.

augmented with a trapesoid, a cycle of 6 nodes that shares one edge with the
hexagon. The hexagons used here have no chords. If two variables/nodes
z,y are connected by an equation/edge, x = y, we connect their hexagons
with a pair of edges to form a rectangle in which the edges of the hexagons
and the new edges alternate. The rectangle thus formed is a gadget of this
equation. If three variables are connected by an equation/hyperedge, say,
r@ydz =0, the trapesoids of A, A, and A, are connected to four special
nodes of the gadget of this equation. As a result, the gadget of this equation
consists of 3 trapesoid and 4 special nodes, for the total of 22 nodes. The
details are shown in Fig 4 and Fig. 5.

Given a solution of the new problem, and independent set I of G, we
translate it into a solution of S in the same manner as before. Again, if some
variable gadget are dirty, we need to purity them, so that this translation
will be well-defined. The beginning of the purification is same as before: we
purify dirty hexagon using the method illustrated in the lower right corner
of Fig. 2. As a result, all checker gadgets become pure. We can also insists
that if a checker variable z is connected to a contact y, I contains a node in
the intersection of the gadget of this equation (a rectangle) with A,.

Now we consider a contact gadget A,. Of H, is the hexagon of A,, we
will say that A, — H, is the front piece of A, and we use I}, to denote it.
Before we proceed, we make the following observation:

Observation. Assume that |F,NI| =7 and that A, and A, are the adjacent
checker gadgets. We can modify I so that A, becomes pure, 4, N [and
A, N1 do not change, and the size of A, increases by 2 — 3.

Now we can return to the gadget of 2 &y & z = 0. Our goal is that after
all stages of the purifications, each variable gadges is pure, each trapesoid
contains 3 nodes of I and if the equation is satisfied (we can decide that once
the the gadget variables are pure and the value translation is defined) its
gadget contains the special node described by the triple of values of x,y and
z; otherwise no special nodes belong to I. As a result, a satisfied equation
corresponds to 10 nodes in [and an unsatisfied equation corresoponds to
10. Morever, a satisfied equation with two variables corresponds to 2 nodes
in I. This will lead to the following accounting: the question whether we
can satisfy at least (62 — €)kn equations or at most (61 4 €)kn, where 60kn

14

equations have two variable translates into the question whether the maxi-
mum independenet set has at least (2 x 60+ 20 — e)kn elements or at most
(2 x 604 19+ €)kn. This will lead to the following theorem:

The first case that we consider during the purification of an equation
gadget is when I contains all 4 of its special nodes. In this case, |F,N 1| =0
for v = z,y, z; according to the Observation, we can remove 4 special nodes
form I, make all the participating contact gadgets pure and increase the size
of I by at least 6-4. The second case is when [contains 3 of the special
nodes; then |F, NI < 1 for v = z,y, z; now throwing away the special nodes
and purifying the contact gadgets increases the size of I be at least 3 — 3.
Lastly, when I contains two special nodes, we can remove one of them and,
by Observation 1, purify one of the variable gadgets and restore the size
of I (one can inspect all 6 cases to prove it). Thus at the end we need to
consider only cases when [contains at most one special node (from a given
equation gadget).

Theorem 7. For any e > 0, it is NP-hard to decide whether an instance of
4-MIS with 284n nodes has the mazimum size of an independent set above

(140 — €)n or below (139 + ¢)n.

5 From E2-LIN-2 to 4-MIS

An instance of 4-MIS can be modified to became an instance of BGD in a
simple manner: each node can be replace with an alternating cycle of length
4; adjacent nodes will be replaced with a pair such cycles that have an edge
(or two) in common. If we are “lucky”, after the replacement we indeed
obtain a breakpoint graph. Unfortunately, it is not possible to apply such
transformation consistently to a graph from Fig. 3. We did not find other
gadgets that can replace an equation with three variables and can later be
replaced with a fragment of a breakpoint graph. Therefore we will be using
a translation from 7y (E2-LIN-2), shown in Fig 7.

fragment of awheel of gadgets
one of the gadgetsis shaded
its contacts are darker

O 0-node ® 1-node

Figure 7: A part of 4-MIS instance obtained from 7 (E2-LIN-2).

It is easy to see that the size of the resulting 4-MIS graph is 9n, and that
the correspondence between the size of the pure solution and the score in the

15

original 7 (E2-LIN-2) instance is ¢ = 3n+s. The “purifying” normalization
has to proceed somewhat different, however. We do it in two stages. The
result of the first stage is that gadgets are either pure, or contain no nodes
of I in their contacts.

If an impure gadget contains only 4 nodes of I (or less), we replace these
nodes with the (unique) independent set of size 4 with no contact nodes
(i.e. contained in the light gray area of Fig. 2b). A gadget that contains 6
nodes of the independent set is already pure. If an impure gadget contains
5 nodes of I, then it must contain one of the two “central” points (note that
the non-central nodes form a cycle of length 10). Suppose that this central
node has label 0. Then I cannot contain neither of the 4 adjacent 1-nodes,
and the remaing 7 nodes form two isolated 0-nodes and a chain of the form
0-1-0-1-0, where the final 0-1 is a contact. If the chain contains 3 nodes of
1, the gadget is pure. Otherwise we can set the intersection of I with this
chain to contain two 0-nodes that do not belong to the contact; afterward
the gadget becomes pure.

At this point, we have “pure” gadgets, with 0 or 1 values, and at least
5 nodes of I, and “undecided” gadgets that contain only 4 nodes of . If
an undecided gadget is adjacent to two gadgets that are either 0-pure or
undecided, then we can incease I by increasing the number of nodes of I to
5, all of them 0. There is also symmetric case for 1, and one of the two cases
must hold.

6 Reduction to BGD

The idea of reducing MIS problem to BGD is very simple and natural.
Observe that the set F of all edges forms an alternating cycle (AC for
short), a disjoint union of ACs is an AC, and a difference of two ACs, one
contained in another is also an AC. Thus any disjoint collection of ACs can
be extended to a decomposition of AC. Consequently, the goal of BGD is to
find a collection of disjoint ACs as close in size to the maximum as possible.

Second observation is that the consequences of not finding an AC dimin-
ish with the size of AC. Suppose that the input has n breakpoints (edges of
one color), and that we neglect to find any AC’s with more than & break-
points. The increase in the cost of the solution is smaller than n/k, while
the cost is at least n/2. Thus if k£ = Q(logn), such oversight does not affect
the approximation ratio.

The strategy suggested by these observation is to create instances of
BGP in which alternating cycles that either have 2 breakpoints, or Q(logn).
Then the task of approximating is equivalent to the one of maximizing the
size of independent set in the graph G of all ACs of 4; we draw an edge
between two ACs if they share an edge.

More to the point, we need to find a difficult family of graphs of degree

16

4 which can be converted into breakpoint graphs by replacing each node
with an alternating cycle of size 4. To this end, we can use the results of
the second reduction described in the previous section. Fig. 3 shows the
result of this replacement applied to the long cycles of gadgets. T'he union
of ACs used in the replacements is also a disjoint union of 5 ACs (in Fig. 3
these ACs are horizontal zigzags). To apply the resoning of the previous
sections, we need to establish that no cycles of length larger than 4 have to
be considered. In the short version we only sketch this argument.

The cycles in question fall into three categories. The first kind of cycles
are included in an adjacent pair of gadgets, identified on their diagonally
placed corners. By an easy case analysis one can show that we can replace
such cycles with a larger collection of cycles of size 4. The second kind
traverses a collection of gadgets that is cycle-free (if each gadget is considered
to be a node). Such a cycle has a defined interior; the union of the cycle
with its interior can be easily decomposed into 4-cycles. The third and last
kind traverses a cycle of gadgets. Then it must be at least as long as such
a cycle, i.e. Q(logn).

At this point the translation is still not correct, as the resulting graphs
MUST violated property (i) of BPG: edges of one kind form a collection of
cycles: in Fig. 3 such edges form diagonal lines consisting of 5 edges each;
such a line crosses to another strip of gadgets and then proceeds without end.
However, these cycles induce cycles of gadgets, hence have length Q(logn),
moreover, they are disjoint. Therefore we can remove all these cycles by
breaking O(n/logn) contacts between the strips.

Fragment of a wheel of gadgets,
one of the gadgets is shaded,
its contacts have darker shade,
dash lines show the contact with
another wheel

Figure 8: Gadget for breakpoint graphs.

Given and instance G of 7 (E2-LIN-2) with 2n nodes and 3n edges, this
construction creates BGD instance G’ with 20n breakpoints (edges of one
color), and the correspondence between the cost ¢ of a cycle decomposition
in G’ and s, Score of the corresponding solution of G is ¢ = 20n — 3n — s.
Together with Theorem 3 this implies

Theorem 8. For any ¢ > 0, it is NP-hard to decide whether an instance of
BGD with 2240n breakpoints has the minimum cost of an alternating cycle
decomposition below (1236 + €)n or above (1237 — €)n.

17

7 Reduction of 3-MAX CUT to 3-OCC-MAX
2SAT

In order to translate an instance G =< V,E > of 3-MAX CUT into a
set of disjunctive two clauses, we create a separate set of 4 propositional
variables for each edge {u,v} and 4 clauses, ~ u§ V u§, ~ v§ V0§, uf VvV v§
and ~ ufV ~ v{. Morever, for each node incident to edges e, f and g we add
clauses ~ u V ul, ~ ul v ud and ~ uf v ug. Thus, if |V| = 2n and |E| = 3n
we have 12n propositional variables and 18n clauses.

To describe a solution translation, consider a valuation of propositional
variables, say [. Before we translate [into a partition of V', we will normalize
I without decreasing the number of satisfied clauses. We do it in three stages.

(i) We eliminate cases when for some e = {u, v} we have I(u§) = 0 and
I(u§) = 1. In every such situation we change I(u§) to 0. Afterwards
all 3 clauses where u{ occurs are true: two of them contain ~ uf, and
the other one contains ~ uf. Clearly, the number of true clauses could
not decrease.

(i) We eliminate cases when for some e = {u, v} we have I(ug) # I(uj) =
1. Because we performed 1), this means I(u§) = 1 and [I(u§) = 0.
Consider I(v§), if it is 1, then we change I(uf) to 0. It results in
~ ug V uf becoming true, uf V v§ and remaining true, so the number
of true clauses cannot decrease. On the other hand, if 7(v§) = 0, then
because of 1) we have I(v]) = 0. In this case we change I(uf) to 1.

(iii) We eliminate cases when for some u, e, f,i,7 we have I(u§) # [(u{)
In such a situation, pairs of the form uf, u§ have equal values of I, thus
among 3 such pairs there must be exactly one minority pair, say the
one that cooresponds to edge e. We convert this pair to the majority
value; as a result we gain one clause in the ring of implications of «
and loose at most one clause in the gadget of e.

After the normalization, every 6-tuple of propositional variables that corre-
sponds to a node u of G has the same valuation, which we may denote I(u).
We define C' as the set of those nodes that have I(u) = 0. It is easy to see
that CUT(C') = k iff for our set of 18n clauses, I satisfies 15n — k& (6 clauses
for every of 2n nodes, 1 clause for each of 3n edges and one extra clause for
every edge in CUT(C)).

By applying this reduction together with Theorem 5 we can show that for
any € > 0 it is NP hard to decide whether an instance of 3-OCC-MAX 2SAT
with 20167 clauses has a truth assignment that satisfies at least (2012 —¢)n
clauses, or it can be at most (2011 + €)n.

18

8 Reduction to MIN-SBR

Our reduction from BGD to MIN-SBR is straightforward, in particular we
can use the procedure GET-PERMUTATION of Caprara [C97, p.77] to
obtain permutation 7 (&) from a given breakpoint graph G. It is easy to show
that if G is the result of reduction 74, o 71 applied to E2-LLIN-2, then 7 has
o(n) hurdles. The basic reason is that all ACs of length 4 that may belong
to a normalized solution (decomposition into ACs) for a single connected
component in the interleaving graph (cf. [BP96, HP95]), because the number
of longer cycles in a cover is O(n/logn), this implies that the total number
of connected components of the interleaving graph is O(n/logn). Because
hurdles are defined as connected components with a special property, we
can conclude that there are O(n/logn) = o(n). As a result, the number of
reversals needed to sort 7 is exactly equal (modulo lower order terms) to the
minimum cost of a decomposition of G into alternating cycles. Therefore
Theorem 8 apllies also to MIN-SBR.

9 Further Research and Open Problems

It would very interesting to improve still huge gaps between approximation
upper and lower bounds for bounded approximation problems of Table 1.
The lower bound of 1.0008 for MIN-SBR is the first inapproximability result
for this problem. The especially huge gap between 1.5 and 1.0008 for the
MIN-SBR problem reflects a great challenge for future improvements. A
similar gap exists also for 3-OCC-MAX 2SAT.

Acknowledgements

We thank Johan Hastad and Luca Trevisan for stimulating remarks on the
preliminary version of this paper.

References

[AFWZ95] N. Alon, U. Feige, A. Wigderson and D. Zuckerman, Derandom-
ized Graph Products, Computational Complexity 5 (1995), pp. 60-75.

[A94] S. Arora, Probabilistic Checking of Proofs and Hardness of Approwi-
mation Problems, Ph. D. Thesis, UC Berkeley, 1994;
available as TR94-476 at ftp://ftp.cs.princeton.edu

[ALMSS92] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy,
Proof Verification and Hardness of Approzimation Problems, Proc. 33rd
IEEE FOCS (1992), pp. 14-23.

19

[BP96] V. Bafna and P. Pevzner, Genome rearrangements and sorting by
reversals, SIAM J. on Computing 25 (1996), pp. 272-289.

[BF95] P. Berman and T. Fujito, Approzimating Independent Sets in Degree
3 Graphs, Proc. 4th Workshop on Algorithms and Data Structures,
LNCS Vol. 955, Springer-Verlag, 1995, pp. 449-460.

[BF94] P. Berman and M. Fiirer, Approzimating Maximum Independent
Set in Bounded Degree Graphs, Proc. 5th ACM-SIAM SODA (1994),
pp. 365-371.

[BH96] P. Berman and S. Hannenhali, Fast Sorting by Reversals, Proc. Tth
Symp. on Combinatorial Pattern Matching, 1996, pp. 168—-185.

[BS92] P. Berman and G. Schnittger, On the Complexity of Approzimating
the Independent Set Problem, Information and Computation 96 (1992),
pp. 77-94.

[B78] B. Bollobds, Extremal Graph Theory, 1978, Academic Press.

[C97] A. Caprara, Sorting by reversals is difficult, Proc. 1st ACM RECOMB
(Int. Conf. on Computational Molecular Biology), 1997, pp. 75-83.

[C98] D.A. Christie, A 3/2-Approzimation Algorithm for Sorting by Rever-
sals, Proc. 9th ACM-SIAM SODA (1998).

[CK97] P. Crescenzi and V. Kann, A Compendium of NP Optimization
Problems, Manuscript, 1997;
available at http://www.nada.kth.se/theory/problemlist.html

[FGI95] U. Feige and M. Goemans, Approzimating the Value of Two Prover
Proof Systems with Applications to MAX-25AT and MAX-DICUT,

Proc. 3rd lIsrael Symp. on Theory of Computing and Systems, 1995,
pp- 182-189.

[GW94] M. Goemans and D. Williamson, .878-Approzimation Algorithms
for MAX CUT and MAX 2SAT, Proc. 26th ACM STOC (1994),
pp- 422-431.

[H96] J. Hastad, Clique is Hard to Approzimate within n'~¢, Proc. 37th
IEEE FOCS (1996), pp. 627-636.

[H97] J. Hastad, Some optimal Inapprozimality results, Proc. 29th ACM
STOC, 1997, pp. 1-10.

[HP95] S. Hannenhali and P. Pevzner, Transforming Cabbage into Turnip
(Polynomial time algorithm for sorting by reversals), Proc. 27th ACM
STOC (1995), pp. 178-187.

20

[KST97] H. Kaplan, R. Shamir and R.E. Tarjan, Faster and simpler al-
gorithm for sorting signed permutations by reversals, Proc. 8th ACM-
SIAM SODA, 1997, pp. 344-351.

[PY91] C. Papadimitriou and M. Yannakakis, Optimization, approzimation
and complezxity classes, JCSS 43, 1991, pp. 425—440.

[TSSW96] L. Trevisan, G. Sorkin, M. Sudan and D. Williamson, Gad-
gets, Approximation and Linear Programming, Proc. 37th IEEE FOCS
(1996), pp. 617-626.

21

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

