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Propositional Proof Complexity: Past, Present,
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ABSTRACT. Proof complexity, the study of the lengths of proofs in
propositional logic, is an area of study that is fundamentally connected
both to major open questions of computational complexity theory and
to practical properties of automated theorem provers. In the last decade,
there have been a number of significant advances in proof complexity
lower bounds. Moreover, new connections between proof complexity
and circuit complexity have been uncovered, and the interplay between
these two areas has become quite rich. In addition, attempts to extend
existing lower bounds to ever stronger systems of proof have spurred the
introduction of new and interesting proof systems, adding both to the
practical aspects of proof complexity as well as to a rich theory. This
note attempts to survey these developments and to lay out some of the
open problems in the area.

1. Introduction

One of the most basic questions of logic is the following: Given a uni-
versally true statement (tautology) what is the length of the shortest proof
of the statement in some standard axiomatic proof system? The proposi-
tional logic version of this question is particularly important in computer
science for both theorem proving and complexity theory. Important related
algorithmic questions are: Is there an efficient algorithm that will produce
a proof of any tautology? Is there an efficient algorithm to produce the
shortest proof of any tautology? Such questions of theorem proving and
complexity inspired Cook’s seminal paper on NP-completeness notably enti-
tled “The complexity of theorem-proving procedures” [35] and were contem-
plated even earlier by Godel in his now well-known letter to von Neumann
(see [86]).

The above questions have fundamental implications for complexity the-
ory. As formalized by Cook and Reckhow [37], there exists a propositional
proof system giving rise to short (polynomial-size) proofs of all tautologies
if and only if NP equals co-NP. Cook and Reckhow were the first to propose
a program of research aimed at attacking the NP versus co-NP problem by
systematically studying and proving strong lower bounds for standard proof
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systems of increasing complexity. This program has several important side
effects.

First, standard proof systems are interesting in their own right. Almost
all theorem-proving systems implement a deterministic or randomized pro-
cedure that is based on a standard propositional proof system, and thus
upper and lower bounds on these systems shed light on the inherent com-
plexity of any theorem-proving system upon which it is based. The most
striking example is Resolution on which almost all propositional theorem
provers (and even first-order theorem provers) are based.

Secondly, and of equal or greater importance, lower bounds on standard
proof systems additionally prove that a certain class of algorithms for the
satisfiability problem will fail to run in polynomial-time.

This program has led to many beautiful results as well as to new con-
nections with circuit complexity within the last twenty years. In this article,
we will try to highlight some of the main discoveries, with emphasis on the
interplay between logic, (circuit) complexity theory, and combinatorics that
has arisen. We omit all proofs; see [92] for a quite readable survey that
includes detailed proofs of many of the earlier results.

In section 2, we define various proof systems that will be discussed
throughout this article. In section 3, we review some of the main lower
bounds that have been proven for standard proof systems, emphasizing the
combinatorial techniques and connections to circuit complexity that have
been shown. Finally in section 4, we list some of the main open questions
and promising directions in the area.

2. Propositional proof systems

What exactly is a propositional proof? Cook and Reckhow were possibly
the first to make this and related questions precise. They saw that it is
useful to separate the idea of providing a proof from that of being efficient.
Since there are only finitely many truth assignments to check, why not allow
the statement itself as a proof? What extra value is there in a filled out
truth table or a derivation using some axiom/inference scheme? The key
observation is that a proof is easy to check, unlike the statement itself. Of
course we also need to know the format in which the proof will be presented
in order to make this check. That is, in order to identify some character
string as a proof we must see it as an instance of some general format for
presenting proofs. Therefore a propositional proof system S is defined to be
a polynomial-time computable predicate S such that for all F,

(1) F e TAUT <« 3p. S(F,p).

That is, we identify a proof system with a polynomial time procedure that
checks the correctness of proofs.! Property (1) ensures that the system S is

!Cook and Reckhow’s definition is formally different although essentially equivalent
to this one. They define a proof system as a polynomial-time computable onto function
f: X" >TAUT which can be thought of as mapping each string viewed as potential proof
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logically both sound and complete. The complexity compg of a propositional
proof system S is then defined to be the smallest bounding function b : N —
N on the lengths of the proofs in S as a function of the tautologies being
proved, i.e. for all F,

F € TAUT < 3p.|p| < b(|F|). S(F,p).

Efficient proof systems correspond to those of polynomial complexity; these
are called p-bounded.

Given these definitions, many natural questions arise: How efficient are
existing proof systems? How can one compare the relative efficiencies of
proof systems? Can one classify proof systems using reduction as we do
languages? Is there a proof system of optimal complexity (up to a polyno-
mial)?

The key tool for comparing proof systems is p-simulation. A proof sys-
tem T p-simulates a proof system S iff there is a polynomial-time computable
function f mapping proofs in S into proofs in T', that is for all ' € TAUT,
S(F,p) & T(F, f(p)). We use non-standard notation and write S <, T in

this case. Clearly, it implies that compy < compg(l). (One says that T
weakly p-simulates S iff we have this latter condition but we do not know if
such a reducing function f exists.) One says that S and T" are p-equivalent
iff each p-simulates the other. Obviously, two p-equivalent proof systems
either are both p-bounded or neither is.

2.1. Frege and extended-Frege proofs. Cook and Reckhow did more
than merely formalize the intuitive general notions of the efficiency of propo-
sitional proofs. They also identified two major classes of p-equivalent proof
systems which they called Frege and extended-Frege systems in honor of
Gottlob Frege who made some of the first attempts to formalize mathe-
matics based on logic and set theory [42, 43] (and whose work is now best
known as the unfortunate victim of Russell’s famous paradox concerning the
set of all sets that are not members of themselves).

A Frege system F is defined in terms of a finite, implicationally complete
(enough to derive every true statement) set Az of axioms and inference rules.
The general form of an inference rule is written as % where Ay, ..., Ag
and B are propositional formulas; the rule is an axiom if ¥ = 0. A formula
H follows from formulas G, ... , Gy using this inference rule if there is a
consistent set of substitutions ¢ of formulas for the variables appearing in
the rule such that G; = A fori =1,... ,k and H = B.

For a Frege system F, a typical set of axioms Az might include the
axiom of the excluded middle 4 — or identity s—4 as well as the cut rule
Avi’v# or modus ponens A’AT_’B. A proof of a tautology F' in F consists
of a finite sequence Fi,... , F, of formulas, called lines, such that F' = F,

onto the tautology it proves. The analogous function f in our case would map (F,p) to
F if S(F,p) were true and would map it to a trivial tautology, (z V —z), otherwise. In the
converse direction one would define S(F,p) to be true iff f(p) = F.
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and each Fj either is an an instance of an axiom in Az or follows from some
previous lines Fj, ..., Fj, for 41,... ,i; < j using some inference rule of Ar.
An equivalent way of using a Frege system works backwards from —F to
derive a contradiction such as p A —p. The size of a Frege proof is typically
defined to be the total number of symbols occurring in the proof. The proof
can also be tree-like or dag-like: in the tree-like case, each intermediate
formula can be at used at most once in subsequent derivations; in the more
general dag-like case, an intermediate formula can be used unboundedly
many times. Kraji¢ek [60] has shown that for Frege systems, there is not
much loss in efficiency in going from a dag-like proof to a tree-like proof.

Various Frege systems (which have also been called Hilbert systems or
Hilbert-style deduction systems) appear frequently in logic textbooks. How-
ever, it is difficult to find two logic textbooks that define precisely the same
such system. Cook and Reckhow showed that these distinctions do not mat-
ter; namely, all Frege systems are p-equivalent. Furthermore, they showed
that Frege systems were also p-equivalent to another class of proof systems
appearing frequently in logic textbooks called sequent calculus or Gentzen
systems. These systems manipulate pairs of sequences (or sets) of formulas,
written as I' — A, where I’ and A are sequences of formulas with the in-
tended interpretation being that the conjunction of the formulas in I" implies
the disjunction of the formulas in A. Therefore to prove a formula F' in the
sequent calculus, one proves the corresponding sequent — F'.

In any sequent calculus system, there is an underlying basis set of connec-
tives, B. B can consist of unbounded fan-in or bounded fan-in connectives,
and the only requirement is that B be a complete basis. (Typically, B is the
standard basis consisting of A, V and —.) The only initial sequent is A — A
for any formula A defined over B.

Additionally there are three types of rules for deriving new sequents from
previous ones: (i) structural rules; (ii) logical rules; and (iii) the cut rule.
Structural rules do not actually manipulate the underlying formulas of the
sequent, but instead they allow one to operate on the sequences of formulas
as sets rather than sequences. A typical structural rule is contraction which
allows us to derive '’ A — A from I'; A, A — A. The logical rules allow
us to build larger formulas from previous ones, according to the truth-table
definition of each of the connectives in B. More precisely, for each connective
in B, there are two logical rules, one for introducing the connective on the
left and one for introducing the connective on the right. For example, if A
is in B, then the A-left rule would allow us to derive I'; AA B — A from
I'A, B — A, and the A-right rule would allow us to derive ' — A A B, A
fromT' - A,A and T — B, A.

Of particular importance for sequent calculi is the cut rule: From I'; A —
Aand I' — A A, derive I' — A. Gentzen showed that the cut rule is
unnecessary but it may have a huge impact on proof length. If the cut
rule is removed then one obtains a much weaker system than Frege systems.
This system is known as analytic tableaux or cut-free LK. While analytic
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tableaux are often more efficient than truth tables, somewhat surprisingly
they cannot even p-simulate truth tables because their worst-case complexity
is Q(n!) rather than O(n2") for truth tables (see [92]).

The other major class of proof systems identified by Cook and Reck-
how includes systems that permit one to extend Frege proofs by introducing
new propositional variables to stand for arbitrary formulas appearing in the
proof. All such systems, which are called extended-Frege, are p-equivalent
to each other. These systems appear to be much more succinct than Frege
proofs and can conveniently express many mathemtical arguments quite nat-
urally. It has been shown by Dowd (unpublished) and also by Krajicek and
Pudldk [61] that extended-Frege proofs are also p-equivalent to substitution-
Frege (sF) proofs. (In sF, one is allowed to use each line of a Frege proof
immediately as if it were an axiom; that is, new lines follow from existing
ones by substituting arbitrary formulas for their propositional variables.)

2.2. CNF refutations and Resolution. Using the construction of
the standard reduction from SAT to 3-SAT, one can take an arbitrary propo-
sitional formula F' and convert it to a CNF or 3-CNF formula in such a way
that it has only polynomially larger size and is unsatisfiable iff the original
formula was a tautology. To do this one adds new variables z4 to stand
for each of its subformulas A and clauses to specify that the value at each
connective is computed correctly as well as one clause of the form —zp. In
this way, one can consider any sound and complete system that produces
refutations for CNF formulas as a general propositional proof system.

In the 1960’s several such refutation systems were developed. The most
powerful of these systems is Resolution [84], which in its propositional form
is a very specialized form of a Frege proof system that can only manipulate
clauses and has only one inference rule, the resolution rule

AVz, BV -z
AV B

called resolution on variable x and is a special form of cut. The contradictory
formula to be derived is simply an empty clause (which can be seen as the
result of resolving on clauses p and —p).

Resolution was pre-dated by two systems known as Davis-Putnam proce-
dures which are still the most widely used in propositional theorem proving.
The general idea of these procedures is to convert a problem on n variables
to problems on n — 1 variables by eliminating all references to some variable.
The former [40] which we call DP does this by applying all possible uses
of the resolution rule on a given variable to eliminate it. The latter [39],
which we call DLL and is the form used today, branches based on the pos-
sible truth assignments to a given variable; although at first this does not
look like Resolution, it is an easy argument to show that this second form is
equivalent to the special class of tree-like Resolution proofs. As a proof sys-
tem, Resolution is strictly stronger than DP [50] which is strictly stronger
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than DLL [92]. The reasons for DLL’s popularity are related to its proof
search properties which we discuss below.

A more general but still restricted form of Resolution is called regular
Resolution, which was introduced and analyzed by Tseitin [89]. A regular
Resolution refutation is a Resolution refutation whose underlying directed
acyclic graph has the property that along each path from the root (empty
clause) to a leaf (initial clause), each variable is resolved upon at most once.
It is not too hard to see that any minimal tree-like Resolution refutation
is regular; also, the DP algorithm trivially produces a regular Resolution
proof. For a period of 15 years after Tseitin’s analysis, although there were
improvements in the bounds derived for regular resolution [49], understand-
ing general resolution seemed out of reach.

2.3. Circuit-complexity-based Proof Systems. One of the most
powerful insights that has developed in the study of propositional proof com-
plexity is that there is a parallel between circuit-based complexity classes
and propositional proof systems. This insight was first made by Cook [36]
where he established a close connection between polynomial-size extended
Frege proofs and proofs using “polynomial-time” reasoning. (In more famil-
iar terms, he showed that extended Frege proofs are the nonuniform analog
of polynomial-time proofs systems such as PV or Si, in the same way that
polynomial-size circuits are the nonuniform analog of the complexity class
P.) The same intuition (applied to other proof systems) was subsequently
used to obtain other important results by Ajtai [4, 1] and Buss [29]. More
generally, the parallel between circuit classes and proof systems has greatly
broadened the range of proof systems that are typically considered and has
led to new techniques for analyzing proof systems and circuit classes. We
first briefly outline the general form of this correspondence and then we
re-examine and refine some of the proof systems above in this light.

Typically, circuit-based complexity classes are defined by giving a struc-
tural characterization of a class of circuits and then placing some bound on
the size of the circuits involved. For many circuit-based complexity classes
C this size bound is polynomial. For any such class C we can consider a
Frege-style proof system whose lines are circuits with the same structural
characterization as the circuits defining C but which do not necessarily sat-
isfy the size bound. The set of circuits of this type must be closed under
substitution into any formula appearing in an axiom or inference rule of
the system. Although the notation is not precise in general, we call such a
proof system C-Frege. (Since we can always assume that our goal formula
is in CNF, there is no problem representing it in C-Frege for virtually any
non-trivial C.)

For example, the complexity class corresponding to the set of all polyno-
mial size propositional formulas is NC! so NC!-Frege would just be another
name for Frege. It is also easy to observe that the extension rule of extended-
Frege proofs builds circuits in terms of the original propositional variables
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in which the new variables give the values computed by sub-circuits. Thus
extended-Frege could also be called P/poly-Frege. Resolution is a Frege sys-
tem that manipulates simple clauses (or, alternatively, terms if one views it
dually as a proof system rather than a refutation system) but there isn’t a
convenient name for this complexity class of depth 1 formulas. Note that
with this intuition it is clear that extended-Resolution, the natural gener-
alization of Resolution that permits the introduction of new propositional
variables, is p-equivalent to extended-Frege since it clearly can generate any
circuit in P/poly with a polynomial number of extensions.

A very natural new proof system arising from this correspondence is a
generalization of Resolution to arbitrary constant-depth, unbounded fan-in
formulas/circuits (for constant depth there is no difference between polynomial-
size formulas and circuits). This new system, AC’-Frege, also known as
constant- or bounded-depth Frege, first arose from the study of bounded
first-order arithmetic (the word ‘bounded’ in that case derives from poly-
nomial complexity bounds rather than from the depth). AC’-Frege proofs
derive from translations of proofs in certain systems of bounded first-order
arithmetic [70, 28] which are restrictions/extensions of Peano arithmetic
that model feasible inference. Although these motivations are important
in the study of constructive logic, space considerations do not permit us
to go into detail about them; we refer the interested reader to [60] where
many of these connections are described in detail. Typically, lower bounds
on the size of AC’-Frege proofs can show that related first-order tautologies
are unprovable in a given system of bounded arithmetic. These transla-
tions are analogous to those of Furst, Saxe, and Sipser [47], and Sipser [87]
which convert oracle computations in the polynomial hierarchy to constant-
depth unbounded fan-in circuits. In addition to AC’-Frege, proof systems
for AC°[p]-Frege and TC%-Frege and their subclasses have also been studied
extensively.

The correspondence between circuit classes and proof systems has not
only been fruitful in developing ideas for new proof systems. It has also
been the avenue for applying circuit lower bound techniques to propositional
proofs. Some of the major progress of the last decade building on the original
insight due to Ajtai [4, 1], has been in achieving lower bounds for AC’-
Frege proof systems and their extensions. In general, the intuition for this
approach is that any tautology that needs to use in its proof some concept
that is not representable in complexity class C will not be efficiently provable
in C-Frege.

3. The State of the Art in Proof Complexity

We give a quick tour of the state of the art in propositional proof com-
plexity. As is always inevitable in a short survey such as ours, space consid-
erations do not permit us to do justice to the full range of results available.
Although we will not always emphasize the connections very strongly, many
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of these results have been inspired or derived from methods in circuit com-
plexity, and conversely lower bounds for particular proof systems imply lower
bounds for restricted families of algorithms for solving SAT. We expect this
cross-fertilization to continue.

In keeping with the general program of proving that proof systems are
not efficient, much work has been devoted to proving lower bounds on the
sizes of proofs of specific tautologies. One can broadly characterize several
classes of formulas for which these lower bounds have been shown. The
first two classes consist of the propositional translations of combinatorial or
counting principles. The first of these involves highly symmetric counting
principles. A canonical example here is the translation of the pigeonhole
principle, which prohibits 1-1 functions from m to n for m > n, as an unsat-
isfiable CNF formula —-PH P]* with mn atoms p;; denoting whether or not
i is mapped to j. Related principles include the counting principles Count;
for n # 0 (mod p) which express the property that n cannot be perfectly
partitioned into sets of size p and onto-PH P, which only prohibits bijec-
tions rather than all 1-1 functions. The second class consists of much less
symmetric counting principles, such as the ‘odd-charged graph’ principles for
bounded-degree graphs, one for each graph, which express the property that
the sum of the degrees in any of its sub-graphs is even; these are of partic-
ular interest when the underlying graph is a bounded-degree expander [91].
The third class of formulas are ‘minterm-maxterm’ formulas associated with
any monotone function, which express the fact that any minterm and any
maxterm of such a function must overlap; these are of particular interest
when the function is known to require exponential-size monotone circuits.
A related family of formulas is obtained by taking a language L that is in
NP N coNP, and writing the formula expressing the fact that any instance
z cannot have both a ‘yes’ witness and a ‘no’ witness. Finally, there are
k-CNF formulas randomly chosen from an appropriate distribution.

We summarize known bounds for these formulas by considering the var-
ious proof systems one by one. Four basic methods can be identified for
proving these lower bounds: (1) the bottleneck counting method; (2) the
method of restrictions; (3) the interpolation method; (4) algebraic methods.
The first three methods are quite specific whereas the last method is the
youngest, probably the most powerful, and already has many facets.

Some of the state of our knowledge of proof complexity lower bounds
can be summarized by the following chain

Resolution <, AC’-Frege <, AC’[p]-Frege <, TC’-Frege.

The separations match all the major circuit complexity separations known
with the notable exception of the last one. However, the prospect for proof
complexity seems better than that for circuit complexity: The results of [81]
indicate that to make further progress in circuit lower bounds will likely re-
quire very new, nonconstructive techniques. However such barriers do not
currently exist in proof complexity: that is, proving superpolynomial lower
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bounds for Frege systems might be no harder than what we currently know
how to do. The techniques used to obtain some of the most recent results
in proof complexity use insights from areas of mathematics apparently un-
related to those applied to show circuit complexity bounds.

3.1. Resolution. Resolution is the most well-studied model. Expo-
nential lower bounds are now known for all of the major classes of formulas
listed above. The first superpolynomial lower bound for Resolution was ob-
tained by Tseitin in the 1960’s for the odd-charged graph tautologies in the
special case of regular Resolution [89]. Interestingly, obtaining an improve-
ment of this bound to an exponential one by Galil [49] was a driving force
behind some of the early work in the development of the theory of expander
graphs [48].

There was a 15+ year gap before the first superpolynomial lower bound
for proofs in general Resolution was obtained by Haken [52] who showed ex-
ponential lower bounds for the pigeonhole principle. Subsequently, exponen-
tial bounds have also been shown for the odd-charged graph formulas [91],
random k-CNF formulas with various clause/variable ratios [32, 46, 10, 9],
and minterm-maxterm formulas [75]. The proofs of all of the strongest forms
of these bounds for Resolution, other than those for the minterm-maxterm
formulas, involve a technique known as bottleneck counting due to Haken.

In this method, one views the proof as a directed acyclic graph of clauses
and views the truth assignments as flowing from the root of the directed
acyclic graph to a leaf, where an assignment flows through a clause C' if and
only if: (i) it flows through the parent clause of C' and (ii) the assignment
falsifies C. Each assignment can be seen to flow through a unique path in any
Resolution refutation. The idea is to show that for the formula in question,
there must exist a large set of truth assignments with the property that
each must pass through a large clause. Since a large clause cannot falsify
too many assignments, this implies that there must exist many large clauses
and hence the proof must be large.

An essential lemma in any bottleneck counting argument is to show
that any Resolution refutation of F' must involve a large clause. Recently,
it has been shown [17], using ideas from [33], that for a suitable choice of
parameters this lemma is also sufficient, namely any Resolution refutation
of small size can be converted into a refutation with only small clauses.

Another method used to obtain exponential Resolution lower bounds,
used for example for the minterm-maxterm formulas, is the method of in-
terpolation, which will be discussed in section 3.3.

In addition to lower bounds for general resolution, there is also practi-
cal interest in understanding the behavior of the special cases of DP and
DLL algorithms. (See [68, 34].) Random k-CNF formulas have been of
particular interest in this regard and there is a variety of results giving more
precise bounds on their properties both as proof systems and as satisfiability
algorithms at various clause/variable ratios [32, 46, 10, 9].
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3.2. AC’-Frege systems and their extensions. While Haken’s bound
for resolution was a major breakthrough, it is the paper by Ajtai [4] giving
super-polynomial lower bounds for proofs of the pigeonhole principle in AC’-
Frege systems that has formed the basis of much of the research in proof
complexity over the last decade. As mentioned above, this gave the first
connection between the techniques of circuit complexity and those of proof
complexity. Ajtai’s result has been improved to exponential lower bounds
and these apply to all the symmetric counting principles in the first class
above, e.g. [14, 74, 63]. Despite this success, no lower bounds are known for
ACP-Frege proofs of formulas in the other classes above although there are
certain other tautologies for which we know a superpolynomial separation
as a function of the depth [59].

The restriction method, by which the lower bounds above were shown
comes from Ajtai’s paper [4]. The essence of this idea is to apply restrictions
to try to simplify each of the formulas in the proof yet leave the input tau-
tology still highly non-trivial. Thus the basic method is very similar to the
random-restriction method, used to show that AC’ cannot compute parity.
However, it is necessarily more complex: Since the circuits appearing in a
sound proof always compute the constant function 1, the usual simplifica-
tion induced by restrictions applied to circuits must be replaced by one that
includes a form of approximation as well.? Using this method, one shows
that if the proof is too short, then there exists a restriction such that after
applying the restriction to the short proof, what results is a very trivial proof
of a formula of the same basic form, but on a reduced number of variables.
Then a contradiction can be reached by showing that such a trivial proof
cannot exist.

Once it is known that the pigeonhole principle is not provable in AC’-
Frege one can immediately obtain a stronger system by adding PHP?*! as
an axiom schema for arbitrary n; i.e., one is permitted to derive lines in the
proof by substituting arbitrary formulas for the variables of some PH P+,
Ajtai [5] showed that even in this stronger system County does not have
polynomial-size proofs. There is now some quite interesting structure known
about the relative proof strength of these augmented AC’-Frege systems in
which some axiom scheme is added to the basic system.

In the system above in which PH P! was added as an axiom schema,
all of the C'ount) principles in fact are now known to require exponen-
tial size proofs [15, 83]; conversely, given any County axiom schema, any

elogn

bounded-depth Frege proofs of PHP™! or onto-PH Py *? requires ex-
ponential size but onto-PHP?T! is trivial [11]. Thus PHP?*! is exponen-
tially stronger than onto-PH P?t1. Quite precise conditions are now known

2[4] used the language of forcing to describe this approximation; the cleanest way of
expressing this approximation is in terms of so-called k-evaluations which are described
in [13, 92, 11] and are a modification of the definitions in [63].
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under which exponential separations exist between the various Count; prin-
ciples in this context [23, 13, 11].

The proofs for these results begin with the same restriction method
strategy described above. However, with the additional axiom schema there
is the further requirement that each line in the proof where the axiom
schema is applied be simplified just as the rest of the proof is. The need to
prove this latter requirement motivated the introduction of Nullstellensatz
proofs [13] (see below) and the exponential separations are all derived from
lower bounds on the degrees of such proofs.

The method involving Nullstellensatz degree lower bounds is not the
only one that has been used for obtaining such separations. In proving the
first super-polynomial separations between the various Countg, Ajtai [2]
used certain properties of concisely represented symmetric systems of linear
equations [3] which he proved using structural results in the theory of repre-
sentations of the symmetric group [55] over GF(p) to show that the axiom
schemas are appropriately simplified. This technique has recently been em-
ployed to give super-polynomial lower bounds for very powerful algebraic
proof systems (see sections 3.4 and 3.5).

3.3. Cutting Planes and Interpolation. The method of using cut-
ting planes for inference in the study of polytopes in integer programming
was first described by Gomory [51], modified and shown to be complete by
Chviétal [30], and first analyzed for its efficiency as a proof system in [38].
It is one of two classes of proof systems developed by representing unsatis-
fiably problems as integer or 0-1 programming problems, the other being a
collection of systems due to Lovasz and Schrijver [64] which are described
in detail in the open problems section.

Cutting Planes proofs manipulate integer linear inequalities: One can
add inequalities or multiply them by positive constants but the truly pow-
erful rule is the rounded division rule:

ca1x1 + casry + ...capxy > b = a111 +asza + ... apzK > [b/c].

A refutation of a set of integer linear inequalities is a sequence of inequali-
ties, where each inequality is either one of the original ones or follows from
previous inequalities by applying one of the above rules, and where the final
inequality is 1 > 0. To refute a CNF formula, one first converts each clause
into an equivalent integer linear inequality. Cutting planes proofs can sim-
ulate Resolution efficiently and easily prove all of the symmetric counting
tautologies mentioned above.

Exponential lower bounds have been shown for cutting planes proofs of
the minterm-maxterm formulas using a method called interpolation. In this
method one begins with an unsatisfiable formula of the form F = A(z,z) A
B(y, z) where we view z and y each as a vector of ‘private’ variables, and
z as a vector of ‘shared’ variables. After any assignment 7 to the common
z variables is made, in the remaining formula A(z,7) A B(y,7), it must be
the case that either A is unsatisfiable or B is unsatisfiable. The associated
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interpolation problem for F' takes as input an assignment 7 to the common
variables, and outputs A only when A(x,7) is unsatisfiable, and outputs B
only when B(y, 7) is unsatisfiable. Of course, sometimes both A and B may
be acceptable answers. (This problem is called the interpolation problem
since it is equivalent to Craig Interpolation. In the typical formulation, G is
a tautological formula in the form A'(z,z) — B'(y,z). In our formulation
Fis -G, Ais A, and B is -B'.)

For arbitrary F, it may be very difficult to solve the interpolation prob-
lem associated with F: if L is a decision problem in NP N co-NP, then if
we define A(z,z) to be a formula stating that z is a ‘yes’ witness for the
instance z, and let B(y, z) state that y is a ‘no’ witness for z, then the ex-
istence of a polynomial time algorithm for the interpolation problem would
have surprising consequences for complexity theory! (See [69]). However it
might still be that, whenever F' (of the above form) has a short refutation
in some proof system S, the interpolation problem associated with F' has a
polynomial-time solution. This possibility was first suggested by Krajicek.
If this situation exists for proof system S, then we say that S has the fea-
sible interpolation property. There is also a monotone version of feasible
interpolation. Namely, F' = A(z, z) A B(y, z) is monotone if z occurs only
positively in A, and in this case the interpolation problem is monotone. S
has the monotone feasible interpolation property if whenever F' is mono-
tone and has a short S-proof, then the associated interpolation problem has
polynomial-size (uniform) monotone circuits.

Razborov [80] and independently Bonet, Pitassi and Raz [20] were the
first to use the above idea to obtain exponential lower bounds for certain
proof systems. In [80], a formula (formalizing that SAT does not have
polynomial-size circuits) is constructed with the property that the associated
interpolant problem has no polynomial-time circuits, under cryptographic
assumptions. [20] constructs a monotone formula with the property that
the associated interpolant problem has no monotone polynomial-time cir-
cuits (under no complexity assumptions). On the other hand they show
that small-weight Cutting Planes has monotone feasible interpolation, thus
implying exponential lower bounds. Pudlédk [75] significantly extended the
above ideas by showing that unrestricted Cutting Planes also has a form of
monotone feasible interpolation. This combined with new exponential lower
bounds for monotone real circuits [75, 53] gives unconditional lower bounds
for Cutting Planes.

Feasible interpolation can thus give very good lower bounds for many
proof systems (sometimes only under cryptographic assumptions). In addi-
tion to the unconditional lower bounds mentioned above, conditional lower
bounds have been shown for all of the following systems: Resolution, Cutting
Planes, Nullstellensatz [33], Polynomial Calculus [76], as well as any proof
system where the underlying formulas in the proof have small probabilistic
communication complexity [20]. Unfortunately there are strong negative
results, showing that the interpolation method cannot be applied to give
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lower bounds for the following proof systems, again under various crypto-
graphic assumptions: Extended Frege [62], Frege, TC%-Frege [21], and even
AC’-Frege [65, 19].

A disadvantage of the interpolation method for obtaining lower bounds
is that it applies only to formulas of a very special form. Thus, for example,
nothing is known about the length of the shortest Cutting Planes proofs for
either the odd-charged graph formulas or for random formulas.

3.4. Algebraic proof systems. The Nullstellensatz [13] and Polyno-
mial Calculus [33] proof systems are based on a special case of Hilbert’s
famous Nullstellensatz which relates the question of the non-existence of si-
multaneous zeros of a family of multivariable polynomials in certain fields to
the question of the existence of coefficient polynomials witnessing that 1 is in
the ideal generated by these polynomials. (In fact they use a generalization
of this special case to rings as well as fields.)

To use this relation one first expresses an unsatisfiable Boolean formula
as a system of constant-degree polynomial equations in some polynomial
ring. For the propositional versions of the symmetric counting principles,
these translations are quite natural, for example PHP" when translated
has polynomials ngn zij —1 =0 for each ¢ < m, as well as z;;x;; = 0 for
each i # ¢ < m and j < n. More generally, there are natural low-degree
translations of arbitrary CNF formulas that are similar to those used in
probabilistically checkable proofs (PCP) [8, 41]. To use these mechanisms
to detect 0-1 solutions only, we add the equations z> — z = 0 for each
variable z. Hilbert’s Nullstellensatz implies that such a system {Q(:i’) =0}
does not have a solution if and only if there exists a family of multi-variate
polynomials P such that Y Pi(@)Qi(Z) = 1. It is easy to see that the
z? — = 0 equations guarantee that degree at most n is sufficient.

The complexity in the Nullstellensatz proof system is simply the size of
the dense representation of the coefficient polynomials and thus of the form
n9@ where d is the largest degree required. In the Polynomial Calculus
proof system one does not need to explicitly write down these polynomials
all at once but rather one can give a derivation that demonstrates their
existence involving polynomials of low degree along the way. The size of
each of these polynomials is also based on this dense representation.

A variety of Nullstellensatz lower bounds are known for the symmetric
counting principles but no Nullstellensatz lower bounds are known for the
other formulas above. (For example, the odd-charged graph tautologies have
easy proofs over Z,.)

One drawback of the Nullstellensatz system (although not Polynomial
Calculus) is that a simple chain of inference of length n using modus ponens
requires non-constant degree ©(logn) [26]. It is even possible that certain
principles may be proved using degree 2 using Polynomial Calculus but
require degree Q(y/n) Nullstellensatz proofs [33].
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Although it is trivial to prove Count] in constant degree in Z,, degree
lower bounds of n() have been shown in Z, for PHP™ [12], Count? for

most s # r [23] and onto—PHP,?”w(l) [11]. So far, all of the Nullstellensatz
bounds mentioned were shown using the notion of a dual design [12, 25].
This is typically a combinatorial construction that guarantees that one can
derive a solution to a set of dual equations that express the coefficient of
the constant term in ), P; - @; as a linear combination of higher degree
coefficients in the indeterminate coefficients of the P;. Since ), P; - Q;
is supposed to represent the polynomial 1 this would be impossible. [23]
introduced a nice technique (used in [11]) that makes such designs easier to
construct.

Using a more general class of designs the degree bounds for PHP;" were
were improved to degree n/2+1 by Razborov [77]. Remarkably, Razborov’s
result also applies to the Polynomial Calculus proof system and was not
only the first non-trivial lower bound shown for that system but also is one
of strongest known for the Nullstellensatz system. It involves an explicit
computation of the Groebner basis of the ideal generated by the PHP"
equations. Razborov also extends this lower bound to obtain stronger, nearly
linear, degree lower bounds in Polynomial Calculus for related tautologies
as a function of the number of variables.

Recently, Krajicek [58] has shown non-constant degree lower bounds for
Count? in the Polynomial Calculus proof system over Z, by extending the
results of Ajtai regarding symmetric linear equations and the structure of
representations of the symmetric group [3] mentioned earlier.

3.5. ACO[T]—Frege systems. We have already seen how one can extend
AC°-Frege proofs by adding axioms for counting modulo r. A far more gen-
eral, and in some sense, more natural way to add the power of modular
counting to a proof system is to include it fundamentally in the structure of
the objects about which one reasons; that is, to introduce modular count-
ing connectives into the lines of the proofs themselves and new inference
rules for manipulating these formulas. ACO[T]-Frege is precisely such a sys-
tem. Even the Polynomial Calculus proof system modulo 7 may be viewed
as a subsystem of an ACO[T]-Frege proof system in which all the modular
connectives are at the top [72].

At present there are no lower bounds known for AC%[r]-Frege, even when
r is a prime. One program for obtaining such bounds was laid out in [23].
where it is shown how to convert an AC°[p]-Frege proof of F to a Polynomial
Calculus proof of a system that involves the polynomials for F' plus certain
low degree extension polynomials (which mimic the low degree approxima-
tions used by [78, 88] for AC°[p] lower bounds).

3.6. Frege systems and TC’-Frege systems. Just as AC’[r]-Frege
proofs include counting modulo 7 as a first-class concept, so TC’-Frege proofs
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include counting up to a threshold as a first-class concept. Loosely speak-
ing, TC%-Frege proofs are proofs where the underlying class of formulas are
small-weight, constant-depth threshold formulas. Thus, for example, Cut-
ting Planes proofs can be viewed as a special case of restricted TC%-Frege
proofs.

We only have partial results on TC’-Frege proofs. Maciel and Pitassi [66]
have shown proof-theoretic analogues of circuit complexity constructions [7]
to relate TC%- and ACO[p]-Frege proofs. In particular they show how one can
convert polynomial-size ACO[Q]—Frege proofs into restricted quasipolynomial-
size depth 3 TC°-Frege proofs.

The potential list of candidate hard problems for TC’-Frege is quite
short, in part because there are efficient TC°-Frege proofs for so many for-
mulas for which lower bounds are known in other systems and because the
basic techniques for dealing with these formulas fundamentally break down.
There are polynomial-size TC’-Frege proofs of all of the symmetric count-
ing principles [29] as well as the odd-charged graph principles [91]. And,
as mentioned above, the interpolation method cannot apply to TC’-Frege
assuming that factoring Blum integers is hard [21]. Since TC%-Frege proofs
are special cases of Frege proofs, the same problems apply to Frege proofs
as well. Some candidates for hard tautologies for these systems have been
suggested in [18].

3.7. Optimal proof systems. Research in proof complexity was orig-
inally motivated in part as a way of proving NP # co-NP, by proving su-
perpolynomial lower bounds for increasingly powerful proof systems. An
important question is whether such a chain of results will ever actually lead
us to a proof of NP # co-NP. In other words, is there an optimal proof
system? This question is quite important and is still open. However, some
partial results have been obtained [67, 61, 16] relating this existence to the
equivalence of certain complexity classes.

3.8. Proof Search. While lengths of proofs are important, it is also
important to be able to find proofs quickly. Clearly, if we know that a
proof system S is not polynomially-bounded, then no efficient deterministic
procedure can exist that will produce short proofs of all tautologies. But is
it possible to find short proofs of all tautologies that have short proofs? To
this end, [21] defines a proof system S to be automatizable if there exists a
deterministic algorithm that takes as input a tautology F', and outputs an
S-proof of F' in time polynomial in the size of the shortest S-proof of F'.

Automatizability is very important for automated theorem proving, and
is very similar to an older concept, k-provability. The k-provability problem
for a proof system S is as follows. The input is a formula F', and a number
k, and the input should be accepted if and only if F' has an S-proof of size at
most k. Clearly a proof system S is not automatizable if the k-provability
problem cannot be approximated to within any polynomial factor.
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Which proof systems are automatizable, and for which proof systems is
k-provability hard? It has been shown [6, 22, 54] that the k-provability
problem is NP-hard for essentially every standard propositional proof sys-
tem, and furthermore using the PCP theorem, that the k-provability prob-
lem cannot be approximated to within any constant factor, unless P = NP.

The above hardness results show that finding good estimates of the proof
length is hard, even for very simple proof systems such as Resolution. But
it may still be that most proof systems are automatizable. However, under
stronger assumptions, one can show that many proof systems are not au-
tomatizable. These results are shown by exploiting a connection between
interpolation and automatizability. In particular, it can be shown that if a
proof system S does not have feasible interpolation, then this implies that S
is not automatizable. Thus, feasible interpolation gives us a formal tradeoff
between the complexity/strength of S and the ability to find short proofs
quickly. Using this connection, it has been shown that AC’-Frege proofs as
well as any proof system that can p-simulate AC%-Frege, is not automatiz-
able, under cryptographic assumptions. (See [62, 21, 65, 19].)

Are there any proof systems that are automatizable? Both the Nullstel-
lensatz and Polynomial Calculus proof systems as well as DLL are actually
search procedures as well as nondeterministic algorithms. But, unlike DLL,
the Nullstellensatz and Polynomial Calculus algorithms are guaranteed to
find short proofs if they exist [13, 33]; that is, they are automatizable. (Any
proof of degree d in n variables may be found using linear algebra in time
n9@)) Nullstellensatz proofs may be exponentially smaller than bounded-
depth Frege proofs, but they also may be exponentially larger than Resolu-
tion proofs [33]. Polynomial Calculus proofs are at worst quasi-polynomially
larger than the best proofs under any DLL algorithm and from this one can
derive a method of searching for short DLL proofs that is guaranteed to
succeed [33]. In [10], this algorithm is converted to a direct search proce-
dure for such proofs. It appears fruitful to investigate Polynomial Calculus
proofs as a theorem-proving tool to see if they can be refined to compete
with DLL algorithms. Preliminary results of this form appear in [33].

4. Open Problems

FIND HARD TAUTOLOGIES FOR TC’-FREGE AND FREGE. No examples of
tautologies are known for which Frege proofs even require a super-linear
number of distinct subformulas. One difficult problem that is faced when
trying to prove lower bounds for Frege or Extended Frege systems is that
there is a surprising lack of hard candidate tautologies. Most of the lower
bounds proven thus far have been for various counting principles, all of
which have polynomial-size TC’-Frege or Frege proofs. (Even the minterm-
maxterm formulas can be viewed as an application of a counting principle.)

Some candidate hard examples have been suggested in [18] including
random k-CNF formulas. Another family of examples that is of particular
interest for complexity theory, are at least as hard to prove as many of
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the classes of formulas discussed in this paper, but are only believed to be
tautological are particular formulas given by Razborov [80] stating that NP
is not contained in P/poly.

There is an even larger gap in tautologies that seem to separate extended

Frege from Frege systems. In fact, we know of no convincing combinatorial
tautologies that might have polynomial-size extended Frege proofs, but re-
quire exponential-size Frege proofs. In [18], several tautologies based on
linear algebra are suggested to give a quasipolynomial separation between
extended Frege and Frege systems. A very simple such example, suggested
by Cook and Rackoff, is the propositional form of the Boolean matrix prod-
uct implication AB=1= BA=1.
How HARD ARE RANDOM k-CNF FORMULAS? The only lower bounds
known for unsatisfiability proofs of random formulas are for forms of Resolu-
tion. What about other proof systems such as: bounded-depth Frege proofs?
cutting planes proofs? Nullstellensatz or polynomial calculus proofs? The
absence of random unsatisfiable formulas in the list of lower bounds for sys-
tems other than Resolution is quite noteworthy, especially given the lack
of good upper bounds for proofs of these formulas in any system, even
extended-Frege.

Many NP-complete graph problems are easy on the average for the natu-
ral random graph probability distributions. Random k-CNF formulas under
the analogous probability distributions seem surprisingly hard in the region
of probabilities for which the formulas are likely unsatisfiable [32, 9]. Is
k-UNSAT hard on the average in this sense?

For example, the best upper bound for any search algorithm for unsat-

isfiability proofs of random m-clause n-variable 3-CNF formulas is 20(n?/m)
with probability 1 — o(1) in n and this is tight for a class of DLL al-
gorithms [9]. For Resolution the lower bound for this problem is nearly
292(n*/m%) with probability 1 — O(1) in n [9]. Can these be improved?
SUPERPOLYNOMIAL LOWER BOUNDS FOR AC’[r] FREGE?. Studying AC"[r]-
Frege is a natural next step in proving lower bounds for proof systems,
in particular when r is a prime. We already mentioned the program for
obtaining such lower bounds in [23]. For this system we do have a natural
candidate for a hard tautology, namely County for prime p # r. Such
a lower bound would further the circuit/proof system correspondence by
extending proof complexity lower bounds to the natural analogue of the
Razborov-Smolensky circuit lower bounds [78, 88|.
PoLyNOMIAL CALCULUS IN A THEOREM PROVER? BETTER RESOLUTION
PROOF SEARCH? Designing efficient theorem provers for the propositional
calculus is an important practical question. To date, DLL algorithms are
the champion theorem provers although they are theoretically quite weak as
proof systems. A recent challenger seems promising: A variant of the Groeb-
ner basis algorithm has been used to find Polynomial Calculus proofs [33]
and build a fairly efficient theorem prover. Can this be tuned to compete
with DLL algorithms?
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Clegg et al. [33] also give simulations of DLL and Resolution by the
Polynomial Calculus. One method of improving the competitiveness of Poly-
nomial Calculus as a theorem prover would be to improve these simulations.
This is also related to the question of improving the more direct methods for
proof search for Resolution and DLL [10, 17] that were inspired by these
Polynomial Calculus simulations.

NEW PROOF SYSTEMS FROM NP-COMPLETE PROBLEMS. An appealing di-
rection in proof complexity is the possibility of using natural domains that
contain NP-hard problems to seek out new and interesting proof systems
which reason about objects from radically different domains from Boolean
formulas. Cutting planes come from integer programming, Nullstellensatz
and Polynomial Calculus systems come from systems of polynomial equa-
tions. Pitassi and Urquhart [73] considered the Hajos calculus for non-3-
colorability which they found, surprisingly, to be equivalent to extended-
Frege proofs. It is likely that there is more to be mined in this search.
WEAK PIGEONHOLE PRINCIPLE AND THE LIMITS OF RESOLUTION. It is
known that for n < m < n?/logn, PH P’ requires superpolynomial-size
Resolution proofs [52, 27]. Originally it was conjectured that for any m > n,
any Resolution refutation of PHP!" would require size exponential in n.
However, this conjecture was shown to be false for large enough m [24].
Moreover, it appears that the standard method, the bottleneck counting
technique, cannot be applied to obtain lower bounds for m > n?. An inter-
esting open problem is to prove lower bounds for PHP™ for m > n?. This
would likely give rise to a new lower bound method for Resolution. Ad-
ditionally the complexity of the weak pigeonhole principle in various proof
systems is interesting in its own right: it is known [71] that one can prove the
existence of infinitely many primes in systems as weak as polynomial-size,
bounded-depth Frege, assuming the weak-pigeonhole principle as an axiom
schema. More generally, the weak pigeonhole principle can be used to carry
out most combinatorial counting arguments, and is closely connected to
approximate counting.

Partial results for the weak pigeonhole principle have recently been ob-
tained [82]. There is a very tight connection between regular Resolution
refutations and read-once branching programs which generalizes the equiv-
alence between tree resolution and DLL mentioned earlier. Let F' be an
unsatisfiable formula in conjunctive normal form. The search problem as-
sociated with F' takes as input a truth assignment 7 to the underlying vari-
ables of F', and outputs a clause in F' that is set to false by 7. Krajicek [60]
has shown that for any F', the minimal size Resolution refutation of F' is
essentially equivalent to the minimal size read-once branching program to
solve the related search problem. This idea was exploited in [82] to obtain
some restricted lower bounds for Resolution proofs of weak versions of the
pigeonhole principle.
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Another, even older, principle for which no superpolynomial Resolution

lower bounds are known is the domino-tiling principle. More details about
this old problem can be found in [90].
LOVASZ-SCHRIJVER PROOF SYSTEMS. A variety of inference systems for
01-programming are described by Lovasz and Schrijver [64] in a paper that
is primarily concerned with their implications for linear programming. Like
cutting planes these proof systems represent statements using systems of
linear inequalities, but unlike cutting planes, they replace rounding by an
ability to take linear combinations of derived degree 2 terms in intermediate
steps obtained by multiplying certain inequalities and including the equa-
tions 2 = x provided all degree 2 terms cancel. (There are several versions
depending on whether one can (1) add the squares of arbitrary linear terms
to the appropriate side of the inequalities or (2) multiply inequalities by
z or 1 — z or, more generally, (3) multiply by any linear term previously
shown to be positive.) Lovasz and Schrijver prove a number of properties of
their systems that allow one to precisely determine the depth of the proofs
involved but they do not consider the issue of proof size directly.

It turns out that, despite the absence of the rounded division of cutting
planes, one can easily simulate Resolution and prove the pigeonhole principle
in polynomial size in their weakest system. (To see an example of the system
in action consider that if 1 —a—5>0,1—a—¢c>0,1—5b— ¢ > 0 holds
for0<a<1,0<b<1,0<c<1 then at most one of a,b,c is 1 and so
a+b+c < 1. This is obtained by computing 0 < a(l—a—b) = a—a’? —ab=
—ab,0<a(l—-a—-c)=a—-a’—ac=—ac,and 0 < (1 —a)(1—b—c) =
1—a—b—c+ab+ ac. Adding these inequalities leads to the desired result.)

However other problems are less clear. In particular, Lovasz (private
communication) suggested the problem of deriving the maximum indepen-
dent set size of graphs that can be expressed as the line graphs of odd cliques.
One can easily show that this problem is completely equivalent to the parity
principle and requires linear depth in the number of vertices, but this is
far from either an algorithm or a lower bound. This question is intimately
tied to the question of whether these systems can simulate cutting planes
efficiently. Assuming that they cannot, it may be even more interesting to
consider what the combination of these new systems with cutting planes is
capable of.

ODD-CHARGED GRAPHS HARD FOR ACC-FREGE? Urquhart has suggested
that a study of Tseitin’s odd-charged graph tautologies [89] for appropriate
graphs [91] in bounded-depth Frege systems might also lead to lower bounds
for random formulas since it appears very difficult to apply Ajtai’s program
to them. No results are know for these even on depth 2 Frege systems.

MORE GENERAL LOWER BOUND TECHNIQUE FOR CUTTING PLANES? The
interpolation method has been successfully applied to obtain unconditional
lower bounds for Cutting Planes proofs. However, we are quite far from un-
derstanding more generally what types of tautologies are hard for Cutting
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Planes. In particular, are random formulas hard? Other families of tautolo-
gies possibly hard for Cutting Planes are the odd-charged graph tautologies.
EXPONENTIAL BOUNDS FOR County,/ONTO-PHP IN POLYNOMIAL CAL-
cuLUs The lower bounds of [58] are barely super-polynomial and it seems
unlikely that the methods used can produce much larger lower bounds. The
lower bounds of Razborov [77] involve a direct computation of the low degree
elements of the Groebner basis of the PH P polynomials. This computa-
tion relies heavily on the independence of the degree one PH P} polynomi-
als. All the other counting principles above do not have this property and
it does not appear that the same method can be applied to them. Is there a
more general methodology that does not require direct computation of the
basis?

PROBABILISTICALLY CHECKABLE ALGEBRAIC PROOFS. The Nullstellensatz
and Polynomial Calculus proof systems use the dense representation of mul-
tivariate polynomials. What happens if one modifies these proof systems to
manipulate polynomials as straight-line programs that compute them rather
than writing them out explicitly? One difficulty is that testing the equality of
polynomials represented this way is not known to be efficiently computable
deterministically. However, there are efficient probabilistic algorithms to do
this check [85]. Such a proof system would lie outside our proof system
definition since the verification predicate S would only be probabilistically
checkable. See [72] for more details.

UNSATISFIABILITY THRESHOLD FOR RANDOM k-SAT. Although this is not
a proof complexity question per se it is of interest in understanding the
proof complexity of random k-CNF formulas. There have been a number of
papers analyzing the satisfiability properties of these formulas as a function
of their clause-variable ratios. Recently, it has been shown that there is a
sharp threshold behavior for such formulas [44] but it is not known precisely
where such a threshold lies or even if it approaches some fixed limit. In
general it is known that it lies between 2%/k and 2¥In2 [32, 31] and for
k = 3 it is known to lie between 3.003 and 4.598 [45, 57] and is conjectured
to be around 4.2 [56]. A related question is whether or not the satisfiability
problem is easy right up to the threshold.

NATURAL PROOFS IN PROOF COMPLEXITY? In circuit complexity, Razborov
and Rudich [81] suggest that, subject to some plausible cryptographic con-
jectures, current techniques will be inadequate for obtaining super-polynomial
lower bounds for TC%-circuits. To this point, proof complexity has made
steady progress at matching the superpolynomial lower bounds currently
known in the circuit world (albeit using different techniques), and the ma-
jor remaining analogous result (a lower bound for AC%[p]-Frege proofs) also
may be within reach. Unlike the circuit world, however, there is no ana-
logue of Shannon’s counting argument for size lower bounds for random
functions and there does not seem any inherent reason for TC%-Frege to be
beyond current techniques. While it is true that one can show the failure of
TCFrege interpolation (also depending on cryptographic conjectures), this
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applies to AC%-Frege as well for which we do have lower bounds. Is there
any analogue of natural proofs in proof complexity? (Razborov [79] has
looked at the quite different question of examining particular proof systems
and showing that any efficient proofs of lower bounds for circuits using such
systems automatically naturalize.)
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