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On random orderings of variables for parity OBDDs

Petr Savicky *

Abstract

Ordered binary decision diagrams (OBDDs) are a model for representing Boolean
functions. There is also a more powerful variant called parity OBDDs. The size of the
representation of a given function depends in both these models on an ordering of the
variables.

It is known that there are functions such that almost all orderings of its variables yield
an OBDD of polynomial size, but there are also some exceptional orderings, for which
the size is exponential. We prove that for parity OBDDs, the size for a random ordering
and the size for the worst ordering are polynomially related.

More exactly, for every € > 0 there is a number ¢ > 0 such that the following holds.
If a Boolean function f is such that a random ordering of the variables yields a parity
OBDD for f of size at most s with probability at least £, then every ordering of the
variables yields a parity OBDD for f of size at most s°.

1 Introduction

Parity OBDDs were introduced by Gergov and Meinel [4] and simplified by Waack [11].
The structure of a parity OBDD depends on an ordering of the variables represented by
a permutation 7 of {1,2,...,n}. For a given permutation m, a parity 7-OBDD over the
variables z1, 3, ..., 2, means a directed acyclic graph with at most one source and at most
one sink satisfying the following. Every non-sink node is labeled by a variable z; for ¢ €
{1,2,...,n} and every edge is labeled by 0 or 1 or both. Moreover, it is required that if
an edge leads from a node labeled by z; to a node labeled by z;, then 7(i) < 7(j). If the
ordering of the variables is not specified, the structure is called just a parity OBDD.

Let an assignment a = (ay,as,...,a,) of the variables be given. An edge starting in a
node labeled by z; is called consistent with the assignment, if the set of its labels contains a;.
A path from the source to the sink is called consistent with the assignment, if all its edges
are consistent with it. The assignment is accepted, if the number of paths from the source
to the sink consistent with the assignment is odd. In particular, if the graph is empty then
no assignment is accepted and if the source coincides with the sink then all assignments are
accepted. A parity OBDD represents a Boolean function f, if it accepts an assignment a if
and only if f(a) = 1. Although the number of paths may be exponential, there is a simple
algorithm that decides if an assignment is accepted or not, which works in time linear in the
number of edges of the graph.

For a given ordering 7, any parity 7-OBDD with the minimal number of nodes among all
parity 7-OBDDs for a given function is called reduced. By a result of Waack [11], there is a
polynomial time algorithm transforming a parity 7-OBDD into a reduced one for the given
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ordering 7. If the ordering is not fixed, no efficient algorithm to minimize the size of a parity
OBDD is known.

The ordering of variables influences the size of a parity OBDD remarkably. For any two
0,1 vectors z and y of length n let g(2, y) be 1if and only if z = y. The function g can be repre-
sented by a parity OBDD of size polynomial in n for the ordering z1,y1, 22, ¥2, . . ., Zn, Yn, but
requires exponential size for the ordering z1,z9,..., 24, %1, Y2, ..., Yn. For more information
on parity OBDDs see [4], [11], [12].

Parity OBDDs were obtained as a generalization of OBDDs. The difference is that an
OBDD contains two sinks, accepting and rejecting, and for every non-sink node there is at
most one edge labeled by 0 and at most one edge labeled by 1 starting in the node. Hence,
for every input, there is exactly one path from the source to one of the sinks. The path
may be obtained by a deterministic step by step computation starting in the source and the
input is accepted or rejected according to the sink, where the path leads to. If an OBDD is
understood as a parity OBDD), it computes the same function, since every input has at most
one accepting path.

OBDDs are used in applications as a data structure for representing the Boolean functions,
since there are efficient algorithms for several required operations with the functions, if they
are represented by OBDDs, see e.g. [2], [12]. Analogous algorithms exist also for parity
OBDDs, see [4] and [11], however, some of them inlcude Gaussian elimination and hence,
these are less efficient that the corresponding algorithms for OBDDs, although they also
work in a polynomial time, see also [5].

From the point of view of the size of the representation, parity OBDDs are strictly more
powerful than OBDDs. There are functions for which the difference in the required size is
exponential, see [4], [11].

It is well-known that there are functions f such that for some orderings 7y, 79, the sizes
of the reduced 71-OBDD and 73-OBDD for f differ exponentially. We call an ordering 7
good for a function f, if it leads to a small size of a reduced 7-OBDD for f. The problem
of finding a good ordering is hard. In particular, it is NP-complete to test, if the size of a
given OBDD may be reduced by changing the variable ordering, see [1]. If the measure of the
quality of the ordering 7 is the size of the resulting 7-OBDD, then the best ordering cannot
be even approximated, see [8] and [9].

In order to get insight into the structure of the set of good orderings for a given function,
random orderings were investigated. Let us mention explicitly the following result [7], see
also [12]. There is a sequence of functions f,, of n variables such that the 7-OBDD size of
fn for a random ordering 7 is O(n®/?) with probability at least 1 — O(n~"/21log/?n), but for
every n, there is an ordering 7, such that the size of any 7,-OBDD for f, is exponential in
“12n. We prove that in the case of parity OBDDs, the size for a random ordering
and the size for the worst ordering are polynomially related.

Let size.(f) denote the number of nodes in a reduced parity 7-OBDD representing f.
Note that the number of edges is at most the square of the size. A parity OBDD is called
complete, if every path from the source to the sink in it tests all variables. The width of a
complete parity OBDD is the number of nodes on the largest level. Let width,(f) denote
the minimum width of a complete parity 7-OBDD representing f.

Every parity OBDD can be made complete by adding new nodes. This transformation

n'/?log

increases the size at most by a factor of n and the width of the new OBDD is at most the
size of the original one. Clearly, we have width,(f) < size,(f) < n - width,(f).

We prove that if width,(f) is polynomial for a random ordering 7 with probability at
least a positive constant, then width,(f) is polynomial for all orderings, see Theorems 2.7
and 2.10. Because of the inequality above, the same result holds for the size.



2 The result

Let us consider Boolean functions defined on a set of variables X = {z1,z3,...,2,}. Let
P(X) be the set of all subsets of X. It is convenient to consider P(X ) as a linear space over
the two element field, where the addition & means the symmetric difference.

By a subfunction of a Boolean function f on a set A C X, we mean any function obtained
from f by any setting of the variables in X \ A to constants. If the setting is denoted by ¢
then the subfunction is denoted by f|..

Definition 2.1 Let S(f, A) be the linear span over the two element field of the set of all
subfunctions of f on A. Moreover, let d( f, A) be the dimension of S(f, A).

By results of Waack [11], both size,(f) and width,(f) may be expressed in terms of the
dimension of linear spaces spanned by appropriately chosen sets of subfunctions of f. In
particular, for the width, we have

Lemma 2.2 For every f and m we have

width,(f) = z‘:lgl,.e.t.},(nﬂ A(f AT =13y, Ta=1(ig1)s - o> Ta=1(m) })-
Note that the set of variables used in the lemma is just the set of variables tested in the last
n — ¢ + 1 non-sink levels of a complete parity 7-OBDD.
By a random permutation or a random set we mean an element chosen from the uniform
distribution on the corresponding domain. We will need the following corollary of Lemma
2.2.

Corollary 2.3 Let 7 be a random permutation and let A be a random set of variables. Then,
for any f and w we have Pr(widths(f) < w) < Pr(d(f, A) < w).

Proof: Let A be a random set. Consider a random permutation of A and independently a
random permutation of X \ A. Then, construct an ordering 7 by taking the permuted X \ A
first and then the permuted A. For every k, the conditional distribution of the new ordering
under the condition |A| = k is uniform. Hence, also the unconditional distribution of the new
ordering is uniform. Since d(f, A) < widthz(f), the lemma follows. O

Let N(f, A) denote the number of subfunctions of f on A. In [10], it is proved that
N(f, X\ A) <2VEA) and N(f, An B) < N(f, A)N(f, B). We prove analogous statements
for d(f, A). In terminology of [10], the next lemma means that d( f, A) is operation continuous
with a(z,y) = zy and p(z) = z.

Lemma 2.4 For every Boolean function f on the variables X and for every subsets A, B C
X, we have

d(f, X\ A) = d(f,A),
d(f, AN B)
d(f, AU B)
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Proof: Let z denote a setting of variables in A and let y denote a setting of variables in
X \ A. Consider the function f(z,y) as a matrix, where z represents the row index and y
the column index. Then, the identity d(f, X \ A) = d(f, A) follows from the fact that the

dimensions of the spaces generated by rows and by columns in this matrix coincide.



Let us prove d(f, ANB) < d(f,A)d(f, B). Let a = d(f, A) and let ¢y, ¢q,...,c, be settings
to the variables in X \ A such that f|., forall i = 1,2,..., a generate S(f, A).

Let us consider a setting ¢ = ¢/¢’ of variables in X \ A, where ¢’ is a setting of variables
in X \ (AU B) and ¢” is a setting of variables in B \ A. Every subfunction of f|. on AN B
may be obtained by restricting an appropriate subfunction of f|+ on B by the setting ¢”.
Moreover, taking the restriction by ¢” is a linear map from S(f|~, B) onto S(f|., AN B).
Hence, d(f|., AN B) <d(f|.,B).

Clearly, every subfunction of f|. on B is also a subfunction of f on B. Hence, d(f|., B) <
d(f, B). Altogether, we have d(f|.,AN B) < d(f, B).

Let 5 = d(f, B). Consider some 7,1 < 7 < «a and the corresponding setting ¢;. By the
previous paragraph, there are settings d;1,d; 2, . ..d; 3 to the variables in A\ B such that the
functions (f|;)|a, ; generate S(f|.,, AN B).

Every setting of variables in X \ (AN B) may be written as a combined setting e¢d consisting
from a setting ¢ of variables in X \ A and a setting d of the variables in A\ B. The function
f|e may be expressed as a linear combination of functions f|.,, fley,-- -5 fle,- Hence, f|eq
may be expressed as a combination of functions f|.4. Since each of the latter functions may
be expressed as a combination of functions f. g4, for all i < a and j < 3, the required
inequality follows.

In order to prove d(f,AU B) < d(f,A)d(f,B) note that d(f,X \ (AU B)) = d(f,(X \
A)N (X \ B)) and use the inequalities for the complement and intersection. O

Definition 2.5 A family of sets A C P(X)is called K-complete if every set A C X may be
expressed from sets in .4 and their complements by an expression using N and U of depth at
most K.

In order to extend bounds on d( f, A) from sets A € A to all subsets A, we use a variant of
Lemma 3.5 from [10]. The proof may be done by a straightforward induction on the depth.

Theorem 2.6 ([10]) Let a function ¢ : P(X ) — R be given such that for every sets A, B C
X we have (AN B) < $(A)p(B) and $(X \ A) = ¢(A). Let A be a K-complete family such
that for all A € A, we have ¢(A) < w. Then, for every A C X, we have ¢p(A) < w?™

Theorem 2.7 Let f be a Boolean function and w an integer such that the random ordering
7 satisfies Pr(widthz(f) < w) > 3. Then for every ordering ©, we have width,(f) < w*.

Proof: Let A = {A;d(f, A) < w}. By Corollary 2.3, a random set A satisfies Pr(d(f, A) <
w) > 1 and, hence, |A| > 2"~!. Then, it is easy to see that every A € P(X) is expressible
as A = Ay @ Ay, where Ay, Ay € A. Clearly, A = (A; N (X \ 42)) U ((X \ A1) N Ay). This
implies that A is 2-complete. Together with Theorem 2.6, this implies d( f, A) < w* for every
A. The proof may then be finished using Lemma 2.2. O

For the proof of a stronger bound, we need a bound on the covering radius of binary
linear codes defined as follows. For a binary linear code C of length ¢, let cov(C) =
max,¢ g1} dist(u, C'), where dist(u, (') = min,ec dist(u,v). The following theorem may
be found e.g. as Theorem 8.1.21 in [3].

Theorem 2.8 ([3]) Let C' be a binary linear code of length £, minimum distance at least
3 and codimension n. Then, cov(C) < k, where k is the mazimal integer satisfying k —

llogg k| < n — |log, £].



Corollary 2.9 For every ¢ > 0 let k(e) be the mazimal integer k such that k — |logy k| <
logy 1 + 2. Let A C P(X) be such that |A| > e2X1. Then, for every subset A € span(A),
there are sets Ay, Ag,..., Ay € A such that A=Ay § As @ ... D Ay and k < k(e).

Proof: W.l.o.g., we may assume that span(.A) = P(X), otherwise, we can consider span(.A)
as P(X') for an appropriate X' smaller than X.

Let £ be the number of nonempty setsin A. Let M be an n times £ matrix, whose columns
are the characteristic functions of the nonempty elements of A. Since span(A) = P(X), we
have rank(M) = n. Let C = {u; Mu = 0}. Clearly, C is a linear code of length £, minimum
distance at least 3 and codimension n. Since £ > €2" — 1, we have n — [log, ¢] < log, % + 2.
Hence, by Theorem 2.8, we have cov(C') < k(¢).

Since A € span(A), there is a vector z such that Maz = A, where we identify set A
and its characteristic function. Since cov(C') < k(e), there is a vector u € C such that
dist(z,u) < k(e). Finally, since M(2z & u) = A, the nonzero entries of 2 & u determine the

selection of elements Ay, Ag, ..., Ar € A, such that £ < k(¢) and A; @ Ay ® ... A = A. O
It is easy to verify that k(c) < log 1 4 loglog 1 + O(1).

Theorem 2.10 Let f be a Boolean function and let w > 2 and e, 0 < ¢ < % be such that the
random ordering 7 satisfies Pr(widths(f) < w) > e. Then, for every ordering , we have

width,(f) < wOllog® 1)

Proof: Tet A= {A;d(f,A) < w}. By Corollary 2.3, a random set A satisfies Pr(d(f, A) <
w) > ¢ and, hence, |A| > €2". The dimension of the space generated by subfunctions on
a one-element set of variables is at most 2. Hence, for every i, we have {z;} € A. Tt
follows that span(A) = P(X). Let A be any subset of X. By Theorem 2.9, there are sets
Al,AQ,...,Ak(E) € A such that A = A1 @AQ &, @Ak(a)

Represent the expression of A in terms of Ay, Ay, ..., Ay as a binary tree of depth
[log k(e)] with inner nodes labeled by @&. Then, starting from the subtrees of depth 1 replace
each subtree with @& in its root using the identity A® B = (AN (X \ B))U((X\ A)N B).
Finally, propagate the complement operation to the leaves using de Morgan rules. The depth
of the obtained expression is at most 2[log k(¢)]. Hence, A is 2[log k(e)]-complete. Together
with Theorem 2.6, this implies d(f, A) < wO k() for every set A. Hence, by Lemma 2.2,
width,(f) < wP*©) o
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