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Abstract

A new algorithm for learning one-variable pattern languages from positive data is
proposed and analyzed with respect to its average-case behavior. We consider the total
learning time that takes into account all operations till convergence to a correct hypothesis
is achieved. For almost all meaningful distributions defining how the pattern variable is
replaced by a string to generate random examples of the target pattern language, it is
shown that this algorithm converges within an expected constant number of rounds and a
total learning time that is linear in the pattern length. Thus, our solution is average-case
optimal in a strong sense.

Though one-variable pattern languages can neither be finitely inferred from positive
data nor PAC-learned, our approach can also be extended to a probabilistic finite learner
that ezactly infers all one-variable pattern languages from positive data with high confi-
dence.

It is a long standing open problem whether pattern languages can be learned in case
that substitutions of pattern variables by the empty string can also occur. Qur learning
strategy can be generalized to this situation as well.

Finally, we show some experimental results for the behaviour of this new learning
algorithm in pratice.

1. INTRODUCTION

The formal definition of patterns and pattern languages goes back to Angluin [1]. Since
then, pattern languages and variations thereof have been widely investigated (cf., e.g., [18, 19]).
Patterns provide an intuitively appealing and natural way to define formal languages. Suppose
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you want to define the set of all strings of even positive length such that the first half is identical
to the second half. In that case, the wanted language follows the pattern 7 = xx. Here x
denotes a pattern variable, and the language generated by 7 is obtained by substituting any
nonempty string for z. Note that this language is not contextfree while the contextfree language
of the palindromes (the second half is the reverse of the first half) cannot be represented as a
pattern language. Thus, pattern languages are somehow orthogonal to the Chomsky hierarchy.

As far as learning theory is concerned, pattern languages have attracted considerable at-
tention during the last two decades (cf., e.g., [20], and the references therein). In particular,
pattern languages are a prominent example of nonregular languages that can be learned in the
limit from positive data (cf. [1]). The corresponding learning model goes back to Gold [10]. Let
L be any language; then a text for L is any infinite sequence of strings containing eventually
all strings of L, and nothing else. The information given to the learner are successively grow-
ing initial segments of a text. Processing these segments, the learner has to output hypotheses
about L. The hypotheses are chosen from a prespecified set called hypothesis space. The
sequence of hypotheses has to converge to a correct description of the target language.

Looking at applications of limit learners, efficiency becomes a central issue. But defining
an appropriate measure of efficiency for learning in the limit is a difficult problem (cf. [17]).
Various authors have studied the efficiency of learning in terms of the update time needed for
computing a new single hypothesis. However, processing all initial segments quickly is by no
means a guarantee to learn efficiently. What counts in applications is the overall time needed
by a learner until convergence, i.e., the total learning time. Daley and Smith [5] developed
general definitions for the complexity of inductive inference that essentially correspond to the
total amount of computation time taken by a learner until successfully inferring the target.
But if one allows the total learning time to depend on the length of all examples seen until
convergence, then even a polynomially bounded total learning time says fairly nothing about
the efficiency of learning, since one may delay convergence until sufficiently long examples have
been seen. On the other hand, the total learning time cannot be recursively bounded if it
shall exclusively depend on the length of the target, but one allows arbitrarily adverse input
sequences.

Valiant’s PAC model [21] has resolved this problem by requiring a learner to find, with high
confidence, a sufficiently good approximation from any randomly drawn sample of adequate
size. What is adequate depends on the approximation and confidence parameters as well as on
the VC dimension of the target class (cf. [2]). However, recently it has been shown that even
the class of one-variable pattern languages has infinite VC dimension (cf. [15]). Thus, these
languages are not PAC-learnable. As far as one-variable patterns are concerned, Kearns and
Pitt [11] have circumvented the problem of dealing with an infinite VC dimension by a priori
bounding the length of substitution strings. This approach also works if the overall number of
distinct variables occurring in a pattern is a priori bounded and if, additionally, the class of
distributions is restricted to product distributions (cf. [11]).

This paper makes a rather different approach to design an efficient one-variable pattern lan-
guage learner. Since the class of one-variable pattern languages is not PAC-learnable, we study
their learnability in the limit and analyze the total learning time. Moreover, this complexity
measure is taken with respect to the length of the target pattern. However, as the total learning
time is unbounded in the worst-case, we concentrate on the expected total learning time.



Let us shortly summarize what has been known concerning the limit learnability of pattern
languages. Angluin [1] provides a learner for the class of all pattern languages that is based
on the notion of descriptive patterns. Here a pattern m is said to be descriptive (for the set S
of strings contained in the input provided so far) if 7 can generate all strings contained in S
and no other pattern with this property generates a proper subset of the language generated
by m. Since no efficient algorithm is known for computing descriptive patterns, and finding a
descriptive pattern of mazimum length is NP -hard, its update time is practically infeasible.

Therefore, one has considered restricted versions of pattern language learning in which the
number k of different variables is fixed, in particular the case of a single variable. Angluin [1]
gives an algorithm for computing one-variable descriptive patterns. The resulting learner for
one-variable pattern languages has update time O(¢*log?), where £ is the sum of the length
of all different examples seen so far. Nothing is known concerning the expected total learning
time of her algorithm.

Erlebach et al. [6, 7] have presented a one-variable pattern learner achieving an average total
learning time O(|m|?log|r|), where |m| is the length of the target pattern. This result is also
based on finding descriptive patterns quickly. However, it is debatable whether descriptiveness
of intermediate hypotheses should really aimed for, since this may complicate the the learning
process and prevent an algorithm from processing the input sequences fast. Thus, we ask
whether there are other strategies to learn one-variable pattern language with a significantly
smaller expected total learning time — clearly, the best one can hope for is linear. Such a
learner would be more appropriate for potential application than previously obtained ones,
even if there are less properties guaranteed for the intermediately calculated hypotheses. With
high probability, it will already have finished its learning task before any of the previously
known learner has computed a single guess.

What we will present in this paper is an optimal one-variable pattern learner. Moreover, we
prove that our learner achieves an expected linear total learning time for a very large class of
distributions with respect to which the input examples are drawn. But there is still the problem
that, whenever learning in the limit is considered, the learner itself cannot decide whether or
not it has already found the correct target. If covergence were decidable one would achieve
finite learning (cf. [10]). But one-variable pattern languages are not finitely learnable from
positive data. We resolve this problem by establishing exponentially shrinking tail bounds for
the expected total learning time. Then, requiring a bit prior knowledge about the underlying
probability distributions, we naturally arrive at stochastic finite learning with high confidence.
Now, the learner gets a confidence parameter ¢ as additional input. Depending on 6 and
the information about the possible probability distributions it requests a certain number of
examples, computes a pattern 7 from them as its unique hypothesis, and stops thereafter. For
a suitable modification of our learning strategy, we will show that with probability at least
1 — 0 the hypothesis 7 is exactly correct for the target one-variable pattern language. The
total amount of time taken is linearly bounded in the length of the target pattern and log(1/4).

Note that stochastically finite learning with high confidence is different from PAC-learning.
First, it is not completely distribution independent. Thus, from that perspective, this variant is
weaker than the PAC-model. Nevertheless, some kind of distribution dependence is inevitable,
since one-variable pattern languages are not PAC-learnable. On the other hand, the hypothesis
computed is exactly correct with high probability. Moreover, the learner receives exclusively
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positive data while the correctness of its hypothesis is measured with respect to all data.
Hence, from that perspective, our model of stochastic finite learning with high confidence is
clearly stronger than the PAC-model.

2. PRELIMINARIES

Let N ={0,1,2,...} be the set of all natural numbers, and let N* = N\ {0}. For a real
number y we define |y|, the floor function, to be the greatest integer less than or equal to ¥ .
Let ¥ be an alphabet with s := |X| > 2. By X* we denote the free monoid over Y., and we
set Xt =3*\ {e}, where ¢ is the empty string. Let x be a symbol with z ¢ 3. Every string
over (X U{z})" is called a one-variable pattern. We refer to x as the pattern variable. Pat
denotes the set of all one-variable patterns. We write #(m,x) for the number of occurrences
of the pattern variable z in 7.

The length of a string w € ¥* and of a pattern m € Pat is denoted by |w| and |«|,
respectively. Let w be a string with ¢ = |w| > 1, and let ¢ € {1,...,¢}; we use w[i] and
w[—1] to denote the i-th symbol in w counted from left to right and right to left, respectively,
ie.,

w = w[l]w[2] ... w[f—-1] w[{]
= w[—fw[—L+1] ... w[-2] w[-1].

For 1 <i < j < { we denote the substring w[i]...w[j] of w by w[i...j]. Let m € Pat and
u € X ; we use 7[z/u] for the string w € X obtained by substituting all occurrences of z
in 7 by w. The string u is called a substitution. For every m € Pat we define the language
generated by pattern m by

Ln) = {yeXt|Fuelt, y=n[z/u]}

and set PAT = {L(w) | # € Pat}. Let, throughout this paper, the target pattern be grouped
in the following form
T = werwizwsy ... Wy 12" W,, .

Here the «; denote positive integers (the multiplicity by which z appears in a row), and
w; € X* the separating constant substrings, where for 1 < i < m the w; are assumed to be
nonempty.

The learning problem considered in this paper is exact learning in the limit from positive
data. Since we exclusively deal with the learnability of one-variable pattern languages, we
specialize our definition of learning to this particular case. For a general definition of learning
in the limit, the reader is referred to Gold [10]. Note that we actually define a particular
form of the model introduced by Freivalds et al. [8]. There the examples are presented on-line,
and the learner has a long term and a short term memory. The new hypothesis is computed
by using the current example presented and what has been stored in its long term memory.
For computing its new guess, the learner may use its short term memory in addition. After
outputting a hypothesis, the learner decides what to remember in his long term memory. Then,
the short term memory is cleared before the next example is read.



DEFINITION 1. A sequence (¢;);,cn+ Of patterns converges to a pattern 7 if ¢; = 7 for all
but finitely many ¢ .
A concept class like PAT is said to be learnable in the limit iff there is a learner such that for
every I € PAT and any sequence Xi, Xs,... of example strings from L the following holds.
Having received X, the learner computes a hypothesis 1), € Pat such that the sequence of
guesses 1y, s, ... converges to a pattern ¢ with L(¢) = L.

Note that in the case of one-variable pattern languages, if L = L(w), convergence to a
correct hypothesis ¢ implies that 1) = 7. Some more remarks are mandatory here. Though
our definition of learning resembles that one given in Gold [10] and Freivalds et al. [8], there
is also a major difference. In [8, 10] the sequence (X;);cn+ is required to exhaust L(m) in the
limit, that is to fulfill {X; | € N*} = L(). Nevertheless, in real applications this requirement
will hardly be fulfilled. We therefore do not require this property here. Instead, we only assume
that the sequence (X;);en contains “enough” information to recognize the target pattern .
What is meant by “enough” will be made precise when discussing the set of all admissible
distributions with respect to which the example sequences are allowed to be randomly drawn.

We continue with the complexity measure considered in this paper. The length of the
pattern 7 to be learned is given by

n:i=MNy+n, Wwith n, :=Z|wi| and n, :=Za,~.

This parameter n will be considered as the size of problem instances, and the complexity
analysis will be done with respect to its value. We assume the same model of computation and
the same representation of patterns as Angluin [1], i.e., in particular a random access machine
that performs a reasonable menu of operations each in unit time on registers of length O(logn)
bits. The inputs are read via a serial input device, and reading a string of length ¢ is assumed
to require £ steps.

In contrast to previous work (cf., e.g., [1, 12, 22]), we evaluate the efficiency of a learning
algorithm by estimating the overall time taken by the learner until convergence (cf. [5]). This
time is referred to as the total learning time. We aim to measure the total learning time
with respect to the length of the target pattern. Of course, if examples are provided by an
adversary the number of examples one has to see before being able to converge is unbounded in
general. Thus analyzing the total learning time in such a worst-case setting will not yield much
insight. But such a scenario is much too pessimistic for many applications, and therefore, one
should consider the average-case behavior with respect to distributions that occur in practice.
Analyzing the expected total learning time of limit learners has been initiated by Zeugmann [23].
Since the average-case complexity in general depends highly on the distribution over the input
space we like to perform our analysis for a large class of distributions.

Our main result, an optimal bound of linear expected total learning time, is achieved for
basically all meaningful distributions. This linear bound can even be shown to hold with high
probability. Let

po BT —10,1]
be the probability distribution specifying how given a pattern 7 the variable z is replaced
to generate random examples 7[z/Z] from L(w). Here Z = Z, is a random variable with
distribution g .
Range(Z) := {we X" |u(w) >0}
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denotes the range of 7, i.e., the set of all substitution strings that may actually occur. From
this we get a probability distribution

pe @ ST = 0,1]

for the random strings generated by 7 based on p. Let X = X, , denote a random variable
with distribution pu,. The random examples are then generated according to X, thus the
relation between X and Z is given by X = wy 2% wy 2% wy ... Wy 1 Z*" w,, . Note
that p is fixed, and in particular independent of the special target pattern to be learned.

What we consider in the following is a large class D of distributions p that is defined by
requiring only very simple properties. These properties basically exclude the case where only
a small subset of all possible example strings occur and this subset does not provide enough
information to reconstruct the pattern. We show that there exists a single algorithm that
efficiently learns every one-variable pattern on the average with respect to every distribution
in D. Its strategy is based on a detailed analysis of the combinatorics of words generated by
one-variable patterns. It is not required that the algorithm itself has any information about
the underlying distribution, this will only be used in the analysis. On the contrary, as already
mentioned, for the extension of this algorithm to a stochastic finite learner, some information
about the distribution is necessary in order to compute the number of examples necessary.

By E[|Z]|] we denote the expectation of |Z], i.e., the average length of a substitution.
Then the expected length of an example string X for 7 is given by

EllX]] = nw+ne- E[|Z]] < n-E[Z]].

Obviously, if one wants to analyze the bit complexity of a learning algorithm with respect to
the pattern length n one has to assume that E[|X|], and hence E[|Z]], is finite, otherwise
already the expected length of a single example will be infinite.

Assumption 1. E|[|Z|] < oo.

Let X = Xi, X5, X3, ... denote a sequence of random examples that are independently
drawn according to p, . Note that the learner, in general, does not have information about u, a
priori. The bounds obtained by the average-case analysis of this algorithm, however, depend on
certain properties of the distributions. This cannot be avoided because one can construct very
biased distributions that hide information about the pattern as long as one likes, for example,
by making it extremly likely that the substitution starts with a specific letter. Thus, unlike
the PAC-model, the complexity bounds are not completely distribution-free. Nevertheless, the
parameters necessary to characterize a distribution g will turn out to be of a very simple
nature. Finally, let

L(m,p) = {y € X" | pa(y) > 0}

be the language of all example strings that may actually occur.

3. PROBABILISTIC ANALYSIS OF SUBSTITUTIONS

For obtaining most general results we would like to put as little constraints on the distribu-
tion u as possible. As already mentioned one cannot learn a target pattern if only example
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strings of a very restricted form occur. This will be in particular the case if Range(Z) itself is
contained in a nontrivial one-variable pattern language. For seeing this, suppose there exists
a pattern ¢ € Pat \ {z} such that Range(Z) C L(¢). Clearly, then the languages generated
by T = wor"®w x" ws . .. Wy_12"™w,, and 7 = wePp™wiP" w, . .. Wy, 19" w,, cannot be dis-
tinguished, since L(m, ) C L(n"). Thus, even from an information theoretic point of view the
learner has no chance to distinguish this case from the one where the pattern to be learned is
actually 7' and the examples are generated by the corresponding projection u' of u. Hence,
such a problem instance (m, ) should be regarded as the instance (7', u'). To exclude this

case, let us define
po = max  Pr[Z € L(¢)] .

¢ pattern, |¢|>1

and let us make
Assumption 2. py<1.

An alternative approach would be to consider the correctness of the hypotheses computed
with respect to the distribution g . The learner solves the learning problem if he converges to
a pattern v for which L(¢, ) = L(m,p). This model is equivalent, but conceptually more
involved and complicates the algorithm. Therefore we stick to the original definition. If py < 1
then the following quantities

Py = r(rfleag(Pr[Z[l] = o],
Pe = r(rfleag(Pr[Z[—l] =o],

are smaller than 1, too. Otherwise, for some ¢ € ¥ it would hold Range(Z) C L(oz) or
Range(Z) C L(xzo). To illustrate these quantities, consider the special situation of length-
uniform distributions, i.e., distributions where the lengths |Z| of the substitutions may
be arbitrary, but for each length ¢ all possible strings over ¥ of that length have the same
probability. Then it is easy to see that py < 1/s and p, =p. =1/s.

In general, define

p = max{p.,p} <1,
and for sequences of substitutions Z = Z;, Z,, Z3, ... the event
FylZ] = [(4l]l =%l =---=Z1]) V (Z1[-1] = Zo[-1] =--- = Z,[-1]) | .

Then
Pr[F,] < 2pg_1—p2(9_1).

Moreover, we define f(Z) := min{g | ~F,[Z]} .
LEMMA 1. The ezxpectation of f(Z) can be bounded as




Proof. Clearly, if m < min{g | —F,[Z]} then F,[Z] holds. Thus, we can estimate
Pr[f(Z) > m] < 2p™ 1 — p?™=Y) and a simple calculation yields

00 2 2
Bi(2)] = P2 >ml<2 42 Syt 4 S0 = oo -y

4. SYMMETRY OF STRINGS

We now come to the main technical tool that will help us to detect the pattern variable and
its replacements in example strings.

DEeFINITION 2. Let y = y[l]y[2]...y[f] € £t be a string of length £. If for some k
with 1 < k < £/2 the k-length prefix and suffix of y are identical, that is y[1...k] =
y[l—k+1 ...4], we say that y has a k —symmetry u = y[1...k] (or symmetry, for short).

A symmetry u of y is said to be the smallest symmetry if |u| < |i| for every symmetry 4 of
y with 4@ # u.

DEFINITION 3. Let u be a symmetry of y and choose ¢,d € Nt maximal such that
y = uf vy u?, for some string v, i.e., u is neither a prefix nor a suffix of v,. This includes
the special case vy = €. In this case, since ¢ and d are not uniquely determined, we choose
¢ > d such that their difference is at most 1. This unique representation of a string y will
be called factorization of y with respect to u or simply u —factorization, and u the
base of this factorization.

If all occurrences of u are factored out including also possible ones in vy one gets a repre-
sentation y = u® vy u® vy ...v, u’ with positive integers ¢; (co = ¢, ¢, = d) and strings
v; that do not contain u as substring. This will be called a complete u —factorization
of y.

Of particular interest for a string y will be its symmetry of minimal length, denoted by
mls(y), which gives rise to the minimal factorization of y. For technical reasons, if y
does not have a symmetry then we set mls(y) := |y|+ 1. Let sym(y) denote the number of
all different symmetries of y.

The following properties will be important for the learning algorithm described later.

LEMMA 2. Let k € N* and let u, y € Xt be any two strings such that u is a k —symmetry
of y. Then we have

(1) w is a smallest symmetry of y iff u itself has no symmetry.

(2) If y possesses the factorization y = wu° vy u® then it has k'-symmetries for k' =
2k, 3k, ..., min{c,d} k, too.
(3) If u® vy u? is the minimal factorization of y then, for all k' € {1, ..., max{c,d}mls(y)},

y does not have other k' -symmetries.



(4) sym(y) < |y|/2mlis(y).

Proof. If a symmetry u of a string y can be written as u = «’ v «’ for a nonempty string
u then obviously «' is a smaller symmetry of y. Hence, (1) follows.

Assertion (2) is obvious. If there were other symmetries in between then it is easy to see
that u itself must have a symmetry and thus cannot be minimal. This proves (3).

If vy contains u as a substring there may be other larger symmetries. For this case there
must be strings vy, vy such that y can be written as

y = u® v ul vy u® vy ul

where v; does not contain u as substring. Then gy has an additional symmetry for k&' =
(¢+d) k+ |v1|. There may be even more symmetries if vy is of a very special form containing
powers of u, but we will not elaborate on this further. The important thing to note is that
the length of such symmetries grows at least by an additive term k = mls(y). The bound on
sym(y) follows.

Assertion (4) of the latter lemma directly implies the simple bound

sym(y) < |y|/2,

which in most cases, however, is far too large. Only strings over a single letter alphabet can
achieve this bound. For particular distributions the bound is usually much better. To illustrate
this, we again consider the length-uniform case. Then, the probability that a random string y
has a minimal symmetry of length % is given by

Primls(y) = k] = Pr[|y| > 2k]-s 7" .

Furthermore, given that mls(y) = k the probability that it has at least ¢ symmetries is

bounded by )

Prlsym(y) = ¢ | mis(y) = k] < 572 o

Thus, the probability of having at least ¢ symmetries is at most
—2c+1

*k'(2071) < $
s < —m—— .
/; (1 — s 2c+1)2

Now, we consider the expected number of symmetries. To motivate our Assumption 3, we
first continue to look at the length-uniform case.

LEMMA 3. In the length-uniform case

S

Elsym(Z)] < m



Proof. Using the equality > .>;c-a¢ = ﬁ for o = s72?* in the estimation below one
gets
Elsym(Z)] = > Prmls(Z) =k]-> c-Pr[sym(Z) =c|mis(Z) = k]
k>1 c>1
1

< —k o~k 2(c-1) |
= kgls C;C § 1 — g—2ct1
S Z ZC 72k 1 —

k>1 o>l -

—2k
k.5 § —k

= < S

1— 8_1 1§1 — 572k)2 2(s—1) 1%1
B S
2(s—1)2

Thus, in this case the number of symmetries only depends on the size s of the alphabet
and therefore, it is independent of the length of the strings generated. Next, let us estimate
the total length of all factorizations of a string y, which can be bounded by |y| - sym(y). In
the length-uniform case, we get

E||Z]-sym(Z)] = Y_Pr[|Z|=4-¢ - > Primls(Z) =k | |Z| =
>1 k>1
- Y c-Prlsym(Z)=c|mis(Z) =k, |Z| =1 .
c>1

The estimation for E[sym(Z)] above is independent of the length of Z, thus the terms

N Prmls(Z) =k | |Z|=4]-> c-Prlsym(Z) = c|mis(Z) =k, |Z| = {]

k>1 c>1

can be replaced by the bound for

kX: Pr[mls(Z) = k] - ;c -Pr[sym(Z) = c | mis(Z) = k]
) ) 1

< Y sF N gk, e

k>1 e>1

This gives for E[|Z| - sym(Z)] the same bound as for E[|Z|] - E[sym(Z)].
For arbitrary distributions, we require
Assumption 3.  E[|Z| - sym(Z)] < c0.

Remember that we already had to assume FE[|Z|] to be finite. Trivially, the expectation of
|Z|-sym(Z) is guaranteed to be finite if F[|Z|?] < co, that means the variance of |Z| is finite,
but in general weaker conditions suffice.
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If 0 < E[|Z]-sym(Z)] < oo then we also have 0 < E[sym(Z)] < oo. Thus we can find a
constant ¢ such that

E[|Z] - sym(2)] < ¢- E[|Z]- Elsym(2)] = O(1).

Symmetries and factorizations should be computed fast; we thus show:

LEMMA 4. The minimal symmetry of a string y can be found in O(|y|) operations. Given
the minimal symmetry, all further symmetries can be generated in linear time.
From a symmetry, the corresponding factorization can be computed in linear time as well.

Proof. To find the minimal symmetry an iterative scanning of specific bit positions of ¥ is
done. Let ¢ denote the length of y.
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Algorithm 1.
For j=1,2,...,4—1, we will construct subsets I; of [1...¢] with the property:

tel; < y[t...t+j—1] = y[l...5].

The sets are initialized with I; = {1} for all j. Then I; := {t|y[t] =y[l]}.

Assume that I; ; has been constructed.

if j€I; 1 then
ylj...25—2]=y[l...j—1] implying
y[1...2 =2 =9y[1...7—-1]* .
V t e Ij_li
if t+7—-1¢€ Ij—l then t — Igj_g
if 27 — 1 > ¢ then stop and output FAILURE else j:=27—1

if ] Q_ﬁ Ij—l then
Vite Ij,1 :
if yt+75—1] =ylj] thent — I,
if{—j+1€l; then
stop with success and output y[1...7]
if 4 > £ then stop and output FAILURE else j:=j5+1

It can be shown that this procedure considers each bit position y[j] at most a logarithmic
number of times from which the bound O(£log/) follows easily. For most strings, however,
the complexity is linear since more than linear time is needed only for strings of highly regular
structure.
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Algorithm 2.

The second, and in the worst-case more efficient algorithm first computes a maximal overlap
of y, that is a substring w of maximal length such that

Yy = wry = w
for some nonempty strings vy, vp. If |w| < |y|/2 then y can be written in the form
Yy = wrw

for some string v, that means w is a symmetry of y. Since w was chosen maximal it is even
the maximal symmetry. If |w| > |y|/2 then in the representation y = w v; = vsw the string
w overlaps with itself, thus it cannot be used as a symmetry. However, let x denote the length
of the v;, r = £ — Kk the length of w, and ' := ¢ mod k. Then

wk+1...r] = w[l...r—x|,

which implies in particular w[l...x] = w[k+1...2k]. In the same way, wx+1...2x] =
w[2k + 1...3k], thus w can be written as

w = wl.. &' wi.. ] and oy = wl... k]I L,
where w[l...7'] is empty for ' = 0. Now define

w, it |w| <¢/2,
wy = S w[l...k], if 7' =0,
w[l...r], otherwise .

Note that wq is a symmetry of y. As already mentioned it is the maximal one in the first case,
whereas in the other cases the maximal one is w[l ...x]? and w[l...x]¢%)/2% w[1...+'], if
" =0 and forr’ > 0, respectively. Symmetries of size between w, and the maximal one are of
the form w(l...x]* w[l...7'] for some 1 < L < ¢/2k. Having obtained wy, iteratively in the
same way we first compute the maximal overlap of this string and from this a substring w; ,
and so forth until for the first time w; has zero overlap. Then w; is the minimal symmetry
of y.

A maximal overlap (sometimes also called a maximal border) can be computed in linear
time, see for example [4], Chapter 3.1, where an algorithm of complexity 2 |y| —3 is described.

Given the maximal overlap, the string w, can easily be obtained in a linear number of steps.
Since for all j the length of w; is at most half the length of w;_; the whole iterative procedure
stays linearly bounded.

Once we have found a symmetry u, computing the complete u—factorization of y is just
a simple pattern matching of u against y, which can be done by well established methods in
linear time.

From a complete minimal factorization based on wu; other symmetries can be deduced by
checking powers of u; and the equality of substrings between these powers. This can be done
in a linear number of operations. 1
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Let X1 ~ denote the set of all strings in ¥* that possess a symmetry and let

sym
Pym = Pr[Zex! 1.

sym

We require that the distribution is not restricted to substitutions with symmetries — with
positive probability also nonsymmetric substitutions should occur.

Assumption 4.  pg, < 1.

Now consider the event
Qg[z] = [{Zl, cee Zg} - E+

syml *

Q,[Z] means that among the first g substitutions all have a symmetry. Obviously,

Pr(Qy[Z]] < Py -
Define ¢(Z) := min{g| ~Qy[Z]} . Similarly to Lemma 1, one can show
LEMMA 5. E[q(2)] < 1/(1 — psym) -

5. BASIC SUBROUTINES: FACTORIZATIONS AND COM-
PATIBILITY

For a subset A of ¥* let PRE(A) and SUF(A) denote the maximal common prefix and suffix
of all strings in A, respectively. Let mpe(A) and mgus(A) be their lengths. The first goal of
the algorithm is to recognize the prefix wy and suffix w,, before the first and last occurrence
of the variable z, respectively, in the pattern 7. In order to avoid confusion, x will be called
the pattern variable, where variable simply refers to any data variable used by the learning
algorithm.

The current information about the prefix and suffix is stored in the variables PRE and SUF .
The remaining pattern learning is done with respect to the current value of these variables. If
the algorithm sees a new string X such that PRE({X, PRE}) # PRE or SUF({X,SUF}) # SUF
then these variables will be updated. We will call this the begin of a new phase.

DEFINITION 4. For a string Y € ¥ a (PRE, SUF)-factorization is defined as follows.
Y has to start with prefix PRE and end with suffix SUF. For the remaining middle part Y’
we select a symmetry u;. This means Y can be written as ¥ = PRE u,"! v, uldl SUF for
some strings ui,v; and ¢y, d; € NT.

If such a representation is not possible for a given pair (PRE,SUF) then Y is said to have
no (PRE, SUF)-factorization.

Moreover, Y’ may have other symmetries wus,us,... giving rise to factorizations Y =

PRE v/ v uidi SUF for ¢;,d; € Nt. For simplicity, we assume that the symmetries u;
are ordered by increasing length, in particular u; always denotes the minimal symmetry with
corresponding minimal factorization.

LEMMA 6. Let Y = PRE T u1d1 SUF be the minimal (PRE,SUF) ~factorization
of Y. Then, for every string Y of the form Y = PRE u; 0 uy SUF for some string v, the
minimal (PRE,SUF) —factorization of Y is based on w;y , too.

Proof. That u; gives rise to a factorization is obvious. There cannot be one of smaller length
because this implies that u; has a symmetry and contradicts that «; is minimal for Y . i

14



Though the following lemma is easily verified, it is important to establish the correctness of
our learner presented below.

LEMMA 7. Let m = wozvzw, be any pattern with #(w,x) > 2, let uw € X+, and let
Y =n[z/u]. Then Y has a (wy,w,,) —factorization with base w and its minimal (wg, wy,) —
factorization is based on the minimal symmetry u, of u.

The results of Lemma, 4 directly translate to

LEMMA 8. The minimal base for a (PRE, SUF)- factorization of a string Y can be
computed in time O(|Y]). All additional bases can be found in linear time. Given a base, the
corresponding (PRE, SUF) —factorization can be computed in linear time as well.

DEeFINITION 5. Two strings Y,Y are said to be directly compatible with respect to
a given pair (PRE,SUF) if from their minimal (PRE, SUF)—factorizations a single pattern
¥ = ¥ (Y,Y) can be derived from which both strings can be generated. More precisely, it has
to hold:

Y = PREvS v, u™ SUF  and ¥ = PREal! 4, ' SUF,

and for

Viia 1= uyl 1 o u1d1 -1 and Vinia = Gt 1 Uy ﬂldl -1
every occurrence of u; in Y;q — including further ones in v; — is matched in Ymid either by
an occurrence of 4; (which indicates that at this place m has a pattern variable) or by wu,
itself (indicating that the constant substring u; occurs in 7). In all the remaining positions
Yiia and Y;q have to agree.

We extend this compatibility notion to pairs consisting of a string ¥ and a pattern 7. Y
is directly compatible to 7 with respect to (PRE,SUF) if for the minimal symmetry w; of
the (PRE, SUF) factorization of Y holds w[z/u;] =Y .

The following lemma is easily verified.

LEMMA 9. Assume that (PRE,SUF) = (wo, w,,) has the correct value. If a string Y is
generated from w by substituting the pattern wvariable by a nonsymmetric string u then the
string wi; on which its minimal (PRE, SUF) —factorization is based equals w. Thus, Y is
directly compatible to .

Proof. Tt is easy to see that for a nonsymmetric string u the string
Y = wlz/u] = wou™ wy u®® wy ... Wy g u™ wy,

has u as the basis for its minimal (wg, w,,)—factorization. That u gives rise to a factorization
is obvious, and if there were a smaller one it would imply that » has a symmetry. Since the
constant substrings ws, ..., w,_1 may contain u as a substring the actual factorization may
show more powers of u, but it is unique since occurrences of u cannot overlap — again because
u is nonsymmetric. If the constant substring w; of 7 has a decomposition with respect to «
of the form ufi0 w; uPit ... w;,; uPini | where the Bi,; are integers and the w;; are substrings
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not containing w, then the middle part Yi;q of Y without prefix, suffix and first and last
occurrence of u looks like

o

L g fro w11 b W1l wPtnt g2

a3 am—1

uP?0 wa 1 uPr W n2 uP? .U
When checking direct compatibility of Y against 7 it becomes obvious whether a substring
u in Y corresponds to a variable or not. 1

If one of the substitutions u, @ for Y = n[z/u], resp. Y = [z /4] is a prefix of the other, let
us say % = uu’' for some nonempty string u’ then there may be an ambiguity if u u’ appears
as a constant substring in Yj,;q . If this is not followed by another occurrence of u’ it can easily
be detected. In general, if u «' is a constant in 7 then the number of occurrences following
this substring will be the same in the corresponding positions in Y;,;q and f/mid, otherwise it
has to be one more in Y .

Using this observation it is easy to see that even in such a case testing of direct compatibility
is easy.

LEMMA 10. Let the minimal factorizations of two strings Y,Y be given. Then by a single
joint scan one can check whether they are directly compatible, and if yes construct their common
pattern (Y,Y). The scan can be performed in O(|Y |+ |Y|) bit operations.

Moreover, for a pattern m it can be checked in time O(|Y|+ |n|) whether Y is directly com-
patible to .

The extra effort in the degenerated case of u being a prefix of @ can be omitted if in this case
the pattern matching is done from right to left since the procedure is completely symmetric.
This will only fail if « is both prefix and suffix of %, implying that & = u v’ . But this means
that @ has a symmetry and thus cannot derive from a minimal factorization of Y .

DEFINITION 6. A string Y is downwards compatible to a string Y with respect to a
given pair (PRE, SUF) if for some x > 1, from the minimal (PRE, SUF)—factorization of Y
and the r-th (PRE,SUF) factorization of Y a single pattern 1 = 9(Y,Y,x) can be derived
from which both strings can be generated. We also say that Y is upwards compatible to Y .

Again, these notions are extended to pairs consisting of a string and a pattern.

LEMMA 11. Assume (PRE,SUF) = (wq, w,,) having the correct value. Let Y = w[x/u] for
a nonsymmetric string u. Any other string Y in L(w) obtained by substituting the pattern
variable by a string u for which w is not a symmetry is upwards compatible to 'Y with respect
to (PRE,SUF).
The pattern (Y,Y) equals the pattern m to be learned.

Given the (PRE,SUF) ~factorization of both strings, (Y,Y) can be constructed in time
at most O((1 + sym(Y)) - (Y| + |Y|)), where sym(Y) := sym(@) denotes the number of
symmetries of the string @ that generates Y .

Furthermore, given a pattern 1 and the factorization of a string Y it can be checked in time
O(|Y |+ |¢¥|) whether Y is upwards compatible to . For Y , downwards compatibility to 1
can be checked and (Y,1,-) can be constructed in linear time, too.

Proof. Let u be nonsymmetric, Y = «w[z/u], and let

Viniq = u® 1 yfro w11 ulrr W11 ubrnt 02 P20 Wa1 ubrr L oyomt
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If

~ Qi

17:71'[32/11] = w 4™ wy U wy ... Wy_1 W Wy,
then Y has a (wg,w,,)factorization based on . Note that this factorization will not be
minimal if % itself has symmetries. Since wq, ..., w,_; may contain % the actual factorization

may show more powers of .

By assumption, » is not a symmetry for % and since one may either work from left to right
or right to left we may assume that u is not a prefix of 4. When comparing Y4 to f’mld after
the first a; — 1 occurrences of u in Yp,;q4 have been read and matched against occurrences of
@ in Yyq the next occurrence of u in the substring 1A will be detected as a constant. This
is because this substring also occurs in Yiuq and u is not a prefix of @. The same holds for
the other occurrences of v in Y .

Given the corresponding factorizations, checking whether Y,,;q and Y,;q match can be
done by a single pass over the strings and has linear time complexity. However, one has to
find that factorization of Y that matches the one of Y. Considering the symmetries of ¥
in increasing length this will be symmetry sym(@). In the worst-case, if @ contains only one
symbol sym(@) can be as large as |%|/2, but such a case will be easier to handle.

This can even be sped-up. One observation is that a string with ¢ symmetries yields a least
by a factor ¢ more occurrences of its minimal symmetry in the minimal factorization. Thus,
once one output pattern 1 has been computed, which also gives the number of occurrences
of the pattern variable, strings ¥ with a much larger number of occurrences in the minimal
factorization based on a string #%; can simply be discarded unless ) itself contains lots of
substrings ;. More precisely, let

#(Y,u) := maximal number of nonoverlapping occurrences of v in Y.

Since w is nonsymmetric and Y = 7[x/u]

#Y u) = #(mx) + #(mu) .
For Y = n[z/4) and a symmetry 4; of a factorization of ¥ such that 4; is a substring of 4
it holds, B
#(Y,u;) = #(0, ;) - #(m,x) + #(m, @) -
Let ¢ a pattern that is supposed to equal the pattern 7 to be learned. Thus, to find the
right factorization of a string Y to check upwards compatibility against ¢ from the minimal
factorization one can compute R
#Y,0) — #(, W)
#(1, )

to get an estimate on #(@,%;). When all symmetries of Y are known it is then easy to find
that string @ directly that matches this value. However, when checking upwards compatibility
of a string Y to a string Y, we do not have a precise estimate on #(m, ), there is only the

upper bound #(Y,u) available from the factorization of Y. This implies a lower bound on
#(@, 1) of the form

o #(Y, 01) — #(Y, 1)
AT T R

Thus, unless #(m,u) is relatively large compared to #(m, ) this gives a good approximation
which symmetry of Y should be used.
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Note that one cannot decide whether a string Y was generated by substitution with a
nonsymmetric string by counting the number of its factorizations — which is likely to be one.
However, there are rare cases with more factorization than the one induced by the substitution
— for example, if oy and «,, have a common nontrivial divisor or even if a; = a,,, = 1, but
by chance w; = v u v and w,, ; =v" uv for some arbitrary strings v,v’,v" .

6. LEARNING ONE-VARIABLE PATTERNS

Now, we are ready to present our one-variable pattern language learners. First, we describe
the average-case optimal learning algorithm. Its correctness is established in Subsection 6.2.
Next, we analyze its expected total learning time.

6.1. The Algorithm

The learner may not store all example strings he has seen so far. Therefore let A = A, =
A (X) denote the set of examples he remembers after having got the first g examples of the
random sequence X = X;, X»,..., and, similarly, let PRE, and SUF,; be the values of the
variables PRE and SUF at that time. We will call this round g of the learning algorithm.

Let us first describe the global strategy of the learning procedure. When the pattern is a
constant m = w all example strings are equal to w and the variables PRE and SUF are not
defined. Thus, as long as the algorithm has seen only one string, it will output this string.

Otherwise, we try to generate a pattern from 2 compatible strings received so far. If this is
not possible or if one of the examples does not have a factorization then the output will be the
default pattern

o := PRE, x SUF, .

If a non-default pattern has been generated as a hypothesis further examples are tested for
compatibility with respect to this pattern. As long as the test is positive the algorithm will
stick to this hypothesis, else a new pattern will be generated. In the simplest version of the
algorithm we remember only a single example of the ones seen so far. Instead of a set A we
will use a single variable Y .
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The One-Variable Pattern Learning Algorithm

Y = Xq;
PRE = X;i;
SUF = X]_,
output Xi;
for ¢ = 2, 3,4, ... do

PRE' := PRE; SUF':=SUF;
1 := output of previous round;

read the new example X, ;

if X, =1 then output 9, else
PRE :=PRE({PRE, X,});
SUF := SUF({SUF, X,});
if PRE # PRE’' or SUF # SUF' then
compute the (PRE, SUF) —factorization of Y ;
Yy = PRE z SUF;
Y := 1) endif;

compute the (PRE, SUF) —factorization of X, ;

case 1: Y does not have a factorization
then output g :
case 2: X, does not have a factorization
then output 9y and Y := X,;
case 3: ¥ =1
if X, is downwards compatible to Y
then output ¢(X,,Y,-),
else output )y,
if X, is not larger than Y then Y := X;

case 4: X, is upwards compatible to v
then output v ;

case 5: X, is downwards compatible to 1)
then output (X, ¢,-) and Y := X ;

else if X, is not larger than Y then Y := X;
output 7y .
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6.2. Proof of Correctness

Since the example strings are generated at random it might happen that only “bad examples”
occur in which case no learning algorithm can eventually come up with a correct hypothesis.
Therefore, the following claims cannot hold absolutely in a probabilistic setting, but they will
be true with probability 1. Remember that 7 = woz*'wiz*?ws. .. wy_12%"w,, is the pattern
to be learned. Since not all substitutions start with the same symbol or end with the same
symbol (remember that we have assumed p < 1) with probability 1 a sequence X contains
strings X;, X, Xj,, where X, = n[z/u,| such that

u;[1] # u;[1] and wil—1] # uk[-1] .

Note that 5 may be equal to k. Let ¢ be the maximum of i, 7,k and consider a triple for
which ¢ is minimal. By the construction of the sets PRE and SUF round g will start a new
phase in which now the variables PRE, = wy and SUF, = w,, have the correct values.

We do not care about the output of the algorithm before this final phase has been reached.
It remains to show that the algorithm will converge in the final phase. For this purpose, let
us distinguish whether the pattern contains the variable only once, in which case there will be
examples without any symmetry, or more than once (the case that the pattern does not contain
any variable is obvious).

If m = worw, then with probability 1 there will be an example X, obtained from a sub-
stitution [z/u] with a nonsymmetric string w. Then X, does not have a (PRE,, SUF,)-
factorization and thus case 2 occurs. Since Y is set equal to X from then on always case 1
occurs. The algorithm will always choose case 1 and output 1y, which in this case is the correct
answer.

Otherwise, the pattern contains the variable at least twice and any example does have a
(PRE,, SUF,) —factorization. Lemma 11 shows that a nonsymmetric substitution generates a
string that is downwards compatible to any other string in L(w). Thus, as soon as X, is such
a string, which again happens with probability 1, the output 1), will equal the pattern .
Furthermore the algorithm will never change its output from this round on since case 4 “ X
is upwards compatible to 1 ” will hold for any ¢ > ¢g. Let us summarize these properties in
the following

LEMMA 12. After the algorithm has detected the correct prefiz and suffiz it will converge
immediately to the correct hypothesis m as soon it gets the first example generated by a non-
symmetric substitution.

For the case that substitutions with large symmetries occur very frequently the algorithm can
be modified to achieve convergence even before seeing a nonsymmetric substitution. For this
purpose we perform a complete compatibility test in cases 3 to 5 between the new example X,
and the string Y remembered, resp. the hypothesis 1. This may increase the computational
effort within one round, but reduces the number of rounds. This modification complicates the
complexity analysis, therefore we will stick to the original version in the estimations below. For
the experimental tests described in section 8, however, we have used an implementation of this
faster version in order to achieve convergence even for distributions with large symmetries, that
is for the case pgym =1.
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6.3. Pattern Languages with Empty Substitutions

It is a long standing open problem whether pattern languages with empty substitutions can
be learned in the classical sense. Angluin’s approach computing descriptive patterns does not
work in this case. Our algorithm, however, is flexible enough to disregard certain examples
temporarily and thus can solve this more difficult problem by the same strategy. The idea is
to postpone the shortest example among all seen so far. This will guarantee that an example
obtained by an empty substitution will never be processed, which otherwise would confuse the
learner and prevent him from finding the correct pattern.

The modification uses an additional variable Z which stores the shortest string seen so far.
For initializaton the first two distinct examples X; and X; with j > 2 are needed. Z is
initialized to the shorter one, resp. to X; if both have the same length (in this case neither
X1 nor X; are generated from an empty substitution and thus one could use both as well).
Y, PRE and SUF are all initialized to the longer string, and then the for-loop starts with
the next example Xj;.;. At the beginning of each round the length of Z is compared with the
new example, and they are exchanged in case that the new example is shorter than Z. Up to
round 7 — 1, X; will serve as output. The hypothesis of the j-th round is Y .

The correctnes of this modified version follows easily from the analysis above. Since example
obtained from empty substitutions are never considered the modified algorithm will behave
in the same way as the original one for a slightly modified sequence of examples, namely
X1,Y, X010, Xjigy ..., where X7, denotes the result after comparing X;,; with Z. Since
this is a possible sequence for the case without empty substitutions, for which we have proven
correct convergence, this holds for the modified version as well. The round of convergence,
however, may be later. If the first nonsymmetric substitution X, happens to be the shortest
example seen so far it will be postponed. Thus we may have to wait for the second nonsymmetric
substitution or a shorter string than X, . Thus one can expect the modified algorithm to require

at least one more round.

6.4. Complexity Analysis of the Basic Algorithm

Let 1, denote the output of round g, and Y, the value of Y at the end of that round. Let
Timey(X) denote the number of bit operations in round g on example sequence X', and recall
that Z and X are defined as random variables for the substitutions and examples, respectively.

LEMMA 13. For each round g it holds

E[Time,(X)] < O(E[X]]- (1+ Elsym(Z2)]))
O(n- E[|Z])- (1 + Elsym(Z)))).

A

Proof. By Lemma 10 and 11 in each round ¢ the number of bit operations can be estimated
by

Timey(X) < O(|Yy-1|) + O(|Xy|) +
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max {O(([Yy-a| + |Xg]) - (1 + sym(Y,-1)),
O((Ithg—1l + [Xgl) - (1 + sym(Xy)), O(|ehg1| + [Xg[)}
O([Ygut| + [ X + [ogmt| + [Youi| - sym(Y,_1) +
[ Xgl - sym(Yg—1) + [g-1]-sym(Xy) + [X,|- Sym(Xg)) :
By construction of the algorithm and the fact that a pattern is never longer than an example
string it generates we can bound E[|X,|] as well as E[|Y,_1|] and E[|¢,_1|] by E[/X|]. More-

over, Assumption 3 directly implies that E[|X,|- sym(X,)] and E[|Y,_1|-sym(Y,_1)] are both
bounded by O(E[|X]|]- E[sym(Z)]). Note, that X, is independent of Y, ; and %, ;. Thus

EllXy| - sym(Yy-1)] = EllX[] - Elsym(Yy-1)] = E[|X]] - E[sym(Z)]  and
I < ]

Ellg1 - sym(X,)] = Ellthy1]]- Elsym(X,)] < E[| X|] - E[sym(Z)] .
This simplifies the expectation to
B[Timey(X)] < O(E[Yyal] + BIX,]| + Eljthga]]
E[|Yy] - sym( —1)] + B[ X,] - sym(Yp_1)]
g1l - sym(X,)] + E[X,]|- sym(X,)])
O(E[|IX]] + E[X|- Elsym(2)]) .

IN 4+ + IA
&

Now we can also bound the total learning time.

LEMMA 14. The expected total learning time is bounded by

0<E[\X|]-(1+E[sym(2)])-(1ip+ : ))

1- Psym

1 1
< O(n-E||Z||-(1+ E[sym(Z)]) - + )
(- BIZ11 1+ Eloym(2)) - (1 + =)
Since E[|Z|]), Elsym(Z)], p, and psym are characterized by the distribution for substituting
the pattern variable they are all independent of the problem size. This means the complexity
grows linear with the size of the problem.

Proof. The number of rounds can be bounded by the number of rounds to reach the final
phase plus the number of rounds in the final phase till ¢, = 7. By Lemma 1 and 5 the
expectation of both is a constant that only depends on the probabilities p and psym . Let G
be a random variable that counts the number of rounds till convergence. Then,

1 1
FlG] < O + ) . 1
6 < 0(p s+ )
Let Time;pq(X) denote the total number of operations on example sequence X' . Then
G t
Timespra(X) = ZTimeg(X) = ZPr[G =t - Z Timey(X) and
= t>2 =
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E[Timewa(X)] = E[Y_Pr[G =t]- Y Time,(X)|

t>2 g=1

O(B[YPrG =1 -t BIX[]- (1 + Elsym(2)])])

O (E[\XH - (1 + E[sym(Z)]) - E[; Pr[G =1t]- t])
= O(E[X]]- (1+ E[sym(2))) - E[G])

< 0 (n - E[|Z]]- (1 + E[sym(Z)]) - (1 ip 1 _t,sym))
= O(n).

IN

IN

Summarizing, we state the first main result of this paper.

THEOREM 1. One-variable pattern languages can be inferred in linear expected total learning
time for all distributions that fulfill the Assumptions 1 through 4 made above.

Clearly, the expected value of a random variable is only one aspect of its distribution. Look-
ing at potential applications of our learning algorithm, a hypothetical user might be interested
in knowing how often the total learning time exceeds its average substantially. For answering
this question we could compute the variance of the total learning time. Then Chebyshev’s in-
equality provides the desired tail bounds. However, in our particular setting, there is an easier
way to figure out how good the distribution of the total learning time is centered around its
expected value, that is, proving tail bounds.

THEOREM 2. For all 7 € N 4t holds:

Pr[Timetotal Z 2-T-E[Timet0tal]] S 27T, (2)

Proof. Our algorithm converges immediately when an example with a nonsymmetric re-
placement occurs. The expectation of this event is E[G], hence with probability at least 1/2
the algorithm converges within 2 E[G] rounds. If this has not happened no matter which
bad examples have occurred, again there will be convergence in the next 2 E[G]| rounds with
probability at least 1/2.

Since the distribution of Time;y, decreases exponentially, all higher moments of it exist.
In particular, we may conclude that the variance of Time;y, is small.

7. STOCHASTIC FINITE LEARNING

In this section, we convert the learning algorithm presented in Subsection 6.1 into a learner
that identifies all one-variable pattern languages from positive data in a bounded number of
rounds stochastically finite with high confidence. The additional ingredient needed is certain
amount of additional knowledge concerning the underlying class of probability distributions.
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Therefore, the resulting learning model is not distribution-free, and hence in this respect weaker
than Valiant’s [21] PAC model. On the other hand, one has to make certain assumptions on
the class of probability distributions, since the one-variable pattern languages are not PAC-
learnable (cf. [15]). But on the other hand, our model is stronger than the PAC model by
requiring the output to be ezxactly correct with high probability. Moreover, the learner has to
infer its hypotheses from positive data only, while the correctness of the output is measured
with respect to all data, positive and negative. We continue with the formal definition.

DEFINITION 7. Let D be a set of probability distributions on the learning domain, let
C a concept class, H a hypothesis space for C, and let 6 € (0,1). (C,D) is said to be
stochastically finite learnable with ¢ -confidence from positive data with respect to # iff there
is a learner that for every ¢ € C and every D € D performs as follows. Given a random
presentation X’ = (X;);jen for ¢ generated according to D, the learner stops after having seen
a finite number of examples and outputs a single hypothesis h € H . With probability at least
1 —0 (with respect to distribution D) h has to be correct, that is h = c.

If stochastic finite learning can be achieved with ¢ -confidence for every 6 > 0 then we say
that (C,D) can be learned stochastically finite with high confidence.

Next, we specify the additional knowledge the learner must possess for learning stochastically
finite with high confidence. Recall that the number G of rounds depends only on p and pgym -
Clearly, p and pgym themself are usually not known. But it is reasonable to assume the
knowledge of upper bounds for both parameters. We therefore define the class D[p*, p ] of
admissible probability distributions to be the set of all distributions fullfilling Assumptions 1
through 4 in a way such that p < p* and psym < pg,,. Then, the following can be shown.

THEOREM 3. Let p*,pl., < 1, and let D[p*,ps.,] be a class of admissible probability
distributions. Then (PAT,D[p*,p%,]) is stochastically finitely learnable with high confidence
from positive data using O(log(1/6) - |m|) many examples.

Proof. First note that the learner gets ¢ as additional input. In addition to the limit
learner, it uses a counter for memorizing the number of examples already seen. The expected
number of rounds is estimated by evaluating Formula 1 for p* and p,,. Let G be this
estimate. Furthermore, the learner computes the least m such that 27™ < §, and runs teh
basic algorithm for 2-m - G rounds. While doing this, no output is provided. After having
finished these rounds, the learner outputs the last guess 7 made by the original algorithm, and
stops thereafter. Now, using the same argument as above for proving (2), one easily sees that
m will be the correct target with probability at least 1 — ¢ . By construction the total learning
time remains linear in the length of the pattern and log,(1/6). i

Finally, it should be noted that the number of rounds performed by our stochastic finite
learner does not depend on the actual target to be learned but only on p*, p,,, and log,(1/0).
Thus, though our definition of stochastic finite learning with high confidence is not requiring
this additional feature; it can be achieved for the one-variable pattern languages. Thus, we
have a further resemblance to the PAC model.

8. Test Results
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Based on an implementation of the learning algorithm described and analysed above and
variants of this algorithm we have run a large amount of tests. For each choice of an instance
of the 1-variable pattern language learner, that is for each pair of pattern and probability
distribution for substituting the pattern variable, 100 experiments have been conducted.
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pattern 2] | distribution | average | bound | dominance | maximum
length-uniform

varying the pattern length

azh 1 1,10] 256 | 417] 2 (57%) | 5 (4%)

arbrab 4 [1,10] 2,80 | 4,17 2 (48%) 6 (2%)

abrbrrcrzdrarzrbr | 4 [1,10] 2,50 | 4,17 2 (59%) 6 (1 %)

azbazb ) [1,10] 3,73 8,00 3(20%) | 9(1%)

arzbrrrazr 2 (1,10] 416 | 8,00 4 (29%) | 10 (1%)

arbrzbarbaxbaxs - | 2 (1,10] 3,74 | 8,00 3 (36%) 8 (1 %)
baxbrzbazbazb

varying the alphabet size

arzbrrrar 3 [1,10] 3,04 | 5,00 2 (39%) 8 (1%)

arzbrrras 4 [1,10] 2,74 | 4,17 2 (56%) 6 (2%)

arzbrrrar 10 [1,10] 2,34 | 3,35 2 (76%) 6 (1%)

varying the example length

arzbrrrazr 2 [5,5] 3,57 | 8,00 3(38%) | 12 (1%)

arzbrrrar 2 [10,10] 4,00 | 8,00 3 (27%) 8 (4%)

arxbrrrar 2 [20,20] 3,39 | 8,00 2 (33%) 9 (1%)

arxbrrTar 2 [11,20] 3,97 | 8,00 3 (35%) 12(1%)

very regular pattern

az%h 2 [5,5] 3,02 800] 3(30%) | 15 (1%)

az'h 2 [0,10] 3,66 | 800| 3(27%)| 9 (1%)

az'2b 4 [5,5] 268 | 417| 2(56%) | 8 (1%)

az'?b 4 [0,10] 2,63 | 4,17 2 (54%) 6 (1%)

Table 1: Number of rounds for the learning algorithm to converge:
length-uniform distributions
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probability of occurencein % probability of occurence
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0p | average
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Figure 1: Complete distribution for test instance 3 and 5 of table 1: on the left pattern
abrbrxcxrdrarraxbr with the [1,10[-length-uniform distribution over the 4 letter alphabet, on
the right pattern axxbrxraz with the [1,10]-length-uniform distribution over 2 letters.
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The experimental results are given as tables. These should be read as follows. Column 1
specifies the pattern. The 2. column gives the size s of the alphabet ¥ used to replace the
pattern variable. ¥ was chosen as {a,b,...}.

The 3. column specifies the details of the distribution. For length-uniform distributions
the notation [v,u] means that from the interval of natural numbers ranging from v to u
each number was chosen with equal probability to be the length ¢ of the substitution. Then,
according to the definition of length-uniform, with equal probability for all strings in 3¢ one
was selected.

Y

Figure 2: Uniform Markov chain distribution for alpabet size 4
In every node all outgoing edges have the same probability of being chosen.

For distributions with symmetries [v, 4] means that for the pattern variable x a string
w = yFzyF ey

was randomly generated. Hereby, k is uniformly distributed in the interval [v,u]. Indepen-
dently, the substrings y and z are selected length-uniformly. For the length of y the values
from 1 to 5 are chosen with equal probability, for the length of z the values range from 0 to
5. However, in the case kK = 0, that is w = z, z has to be nonempty in order to avoid empty
substitutions. The notation [3;4;6] means that the number % of symmetries is chosen equally
likely among the values 3, 4 and 6.

Finally, for Markov chains, the substitution string w is generated by a random walk in the
alphabet. In the uniform case the first symbol is chosen with equal probability 1/s among the
elements of ¥. In the following steps of the random walk with probability 1/(s + 1) either
another letter from 3 is chosen or the walk terminates. It is easy to see the expected length of
w equals s+ 1 in this uniform setting. We have also tested nonuniform random walks where
some letters are much more likely to be the first, resp. the last symbol of w, while others may
not occur at all. For the distributions named skewed 1 to 4 see the appropriate figures below.

The distribution in figure 3, for example, has the property that substitutions beginning with
the letters ac are very likely, while letter ¢ will never occur at the beginning. At the end letter
b is most likely, whereas a does not appear. Furthermore, a b will never be followed by a c.
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Figure 3: Markov chain distribution of type skewed 1.
The probability in a given node to chose a particular edge is given by
its weight divided by the sum of all weights of edges leaving this node.

In figure 7, in addition, the subsequence abc is most likely, that is a in most cases will be
followed by a b and a b will be followed by a c. The distribution in figure 8 has the property
that most substitutions start with an a, a b will appear somewhere in the middle with high
probability, if a d occurs than this most likely terminates the substitution string, and for the
letter ¢ there is a good chance that it is followed by another c.

Figure 4: Markov chain distribution of type skewed 2.

The 4. column gives the average number of examples the learning algorithm reads until
its hypotheses have converged to the correct pattern, that is the average when observing the
random variable G as defined in the proof of Lemma 14. Excluding the case of a trivial pattern
without any variable, GG is at least 2, and this value typically also occurs with high frequency.

The column labelled bound gives the numerical value of the upper bound estimation on
G provided by Lemma 1 and 5. The 6. column labelled dominance gives the most frequent
value of G that has occured and its frequency in paranthesis, while the last column shows the
maximal value of G and its frequency among the 100 test runs for this particular instance of
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the problem. If two values have occured with the same frequency both values are listed (see
the entries 2;3 in the table). For some cases we also give the complete distribution of G in the
following figures.

These data allow the following interpretation. First of all, the average number of rounds
tend to be less than our estimated guarantees, in some cases much less. This can be explained
by the fact that considering the probability pey., is quite pessimistic. To receive an example
with a nonsymmetric substitution is a sufficient condition for the algorithm to converge, but
not a necessary one. If 1/pem is large the actual behaviour is significantly better than the
upper bound derived from pgym, .

For alphabet size at least 3, the average of G is around 3 or less for uniform distributions.
This value is relatively independent of the pattern — its structure and length — and whether
short examples (obtained by single letter substitutions) occur or not — compare the length
uniform case where substitutions of length 20 only perform better compared to the case [1,10]
and [5,5] for example. Even highly symmetric patterns like az'?b are recognized very fast.
Increasing the alphabet reduces the number of rounds slightly as should be expected.

For alphabets of size 2, however, about 1 additional example is needed, in particular for
patterns like axzbrzzax , where it is difficult to locate the positions that represent constants
in the pattern. From the testing of many different patterns we got the impression that this
pattern with an alphabet of size 2 belongs to the most difficult ones for the learning algorithm.

For heavily skewed distributions the number of rounds increases, which has to be expected.
Even then, among the several thousands of runs conducted the maximal value having ever
occured was about 35 rounds, unless extremly biased distributions were chosen.

pattern X] | distribution | average | bound | dominance | maximum |
symmetries
azrbrrzar | 2 [0,2] 3,74 | 7,00 3 (26%) 9 (1%)
axzbrrrar | 2 [0,5] 3,57 | 10,00 3 (34%) 8 (1%)
axzbrrraxr | 2 [1,3] 4,03 oo | 2;3(23%) | 11 (1%)
arxbrzrar | 2 [3;4;6] 3,80 00 3(33%) | 11 (1%)
arxbrrrazr | 4 0,2] 3,74 | 7,00 3 (26%) 9 (1%)
arzbrrrar | 4 [0,5] 3,57 | 10,00 3 (34%) 8 (1%)
arzbrrrar | 4 [3;4;6] 2,69 00 2 (56%) 8 (1%)
az*?b 2 [0,2] 5,72 7,00 2 (21%) | 21 (1%)
az*?b 2 [0,5] 5,93 | 10,00 3 (25%) | 25 (1%)
az*?b 2 1,3] 5,44 00 3 (18%) 16 (2%)
Table 2: Number of rounds till convergence: distributions with symmetries

For this testing we have used an implementation of the algorithm that performs complete
compatibility checking between pairs of strings. This increases the time within each round
slightly if examples are highly symmetric, but will reduce the number of rounds. Even for
certain distributions that generate only patterns with symmetries (the case [1,3] and [3;4;6])
this version is able to learn the pattern. For such cases our analysis above could not give any
guarantee for convergence — indicated by the value oo in the column labelled bound.
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Figure 5: Complete distribution for test instance 9 and 4 of table 2: on the left pattern ax'?b
for the distribution with a [0,5]-symmetry over the 2 letter alphabet, on the right pattern
axxbrrrax with a [3;4;6]-symmetry over 2 letters.

pattern ©] | distribution | average | bound | dominance | maximum |
Markov chain
arzbrrrar 2 uniform 3,84 | 8,00 3(27%) | 13 (1%)
axrbrrrax 4 uniform 2,70 4,17 2 (51%) 5 (4%)
abrbrrcxrdrarzabr | 4 uniform 2,56 | 4,17 2 (56%) | 4 (12%)
arrbrrrax 3 skewed 1 6,02 | 11,02 2 (24%) | 33 (1%)
arzbrrrar 3 skewed 2 592 | 11,36 3(17%) | 16 (1%)
arzbrrrar 3 skewed 3 3,84 | 6,00 3 (24%) 9 (2%)
arzbrrrar 4 skewed 4 4,50 | 9,10 2 (29%) | 14 (2%)
Table 3: Number of rounds till convergence: Markov chain distributions

The last table lists experimental results for a modified version of the learning algorithm that
can also handle empty substitutions. Due to disregarding the shortest example this modified
version requires at least one more round. In addition, one has to take into account the prob-
ability for the learner to receive the empty substitution. We have included this delay in the
upper bound estimations.

Now, in the length-uniform case the value 0 for the length parameter ¢ is also possible, and
similarly for symmetric distributions. In the Markov chain model we add an edge that leads
directly from the start node to the end node. The numerical data shown in table 4 shows the
expected behaviour when comparing it to the case without empty substitutions.
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Figure 6: Complete distribution for test instance 4 and 1 of table 3: for pattern arzbrxxaz
on the left the uniform Markov chain over the 2 letter alphabet, on the right the distribution

given in figure 5 for 3 letters.
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Figure 7: Markov chain distribution of type skewed 3.
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Figure 8: Markov chain distribution of type skewed 4. Edges without a number have weight 1.
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pattern X | distribution | average | bound | dominance | maximum |
length-uniform
azh ) [0,10] 192 909 4(30%) | 10 (2%)
azbzab 2 [0,10] 475 909 5% | 9(2%)
arrbrrrar 2 [0,10] 4,98 | 9,09 4 (25%) | 12 (1%)
arrbrrrar 2 [0,5] 534 | 9,17 4 (25%) | 17 (1%)
arrbrrrar 2 [0,20] 4,57 | 9,05 4 (34%) | 12 (1%)
arzbrrrar 2 [10,10] 4,61 | 9,00 4 (37%) | 11 (2%)
azbzab 1 [0,10] 358 5261 3(55%) | 6 (2%)
arzbrrrar 4 [0,10] 3,82 | 5,26 3 (49%) | 12 (1%)
az % 2 [5,5] 197 900 5(33%) | 9 (4%)
az'2b 2 [0,10] 486 | 909| 4(33%) | 13 (1%)
az'2b 4 [5,5] 368 | 517 3(1%) | 8 (1%)
az'?b 4 [0,10] 371 526| 3(53%) | 7(1%)
Markov chain
arxbrrrazx 2 uniform 530 | 9,33 4 (28%) | 13 (1%)
arxbrrrar 4 uniform 3,72 | 5,37 3 (55%) 7 (2%)
az'?b 4 uniform 3,73 | 5,37 3 (47%) 6 (2%)
abrbrrcrrdrarxrbr | 4 uniform 3,89 | 5,37 3 (42%) 7 (3%)
arzbrrrar 4 skewed 4 6,23 | 10,53 | 3;4 (26%) | 22 (1%)
symmetries
azrbrrrax 2 [0,2] 468 | 8,07 4 (32%) 9 (2%)
arzbrrrax 2 [0,3] 4,71 | 11,05 3 (26%) | 10 (1%)
arxbrrrar 2 [1,3] 4,78 00 4 (32%) | 12 (2%)
arxbrrrar 2 [3;4;6] 4,75 00 3(27%) | 10 (2%)
az'2h 2 0,2] 503 | 8,07| 4(24%) | 10 (1%)
az'?b 2 [1,3] 4,62 00 4 (29%) | 12 (1%)

Table 4: Number of rounds till convergence of the extended algorithm with complete compati-
bility checking and empty substitutions.
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9. CONCLUSIONS

We have shown that one-variable pattern languages are learnable for basically all meaning-
ful distributions within an optimal linear total learning time on the average. The algorithm
obtained is quite simple and is based on symmetries that occur in such languages. Thus, our
approach to minimize the expected total learning time turned out to be quite satisfactory.

Additionally, our learner requires only space for its long and short term memory that is
linear in the length of the target pattern. Therefore, it is not only faster than the algorithms
presented by Angluin [1] and Erlebach et al. [6] but also more space-efficient. The only known
algorithm using even less space is Lange and Wiehagen’s [12] learner. But their algorithm is
only successful for a much smaller class of probability distributions, since it requires shortest
examples in order to converge. As a matter of fact, our algorithm does not need shortest
examples at all to achieve convergence. Its convergence is quite independent of the substitution
length, which is further confirmed by our experiments.

On the other hand, our learner can easily be modified to maintain the incremental behavior
of Lange and Wiehagen’s [12] algorithm. Instead of memorizing the pair (PRE, SUF), it can also
store just the two or three examples from which (PRE, SUF) has been computed. While it is no
longer iterative, it is still a bounded example memory learner. A learner is called iterative, if it
uses only its last guess and the next example in the sequence of example strings for computing
its actual hypothesis. A bounded example memory learner is additionally allowed to memorize
an a priori bounded number of examples. For more information concerning these learning
models, we refer the reader to Lange and Zeugmann [14].

Moreover, our algorithm does not only possess an expected linear total learning time, but
also very good tail bounds. Note that, whenever learning in the limit is considered one cannot
decide whether or not the learner has already converged to a correct hypothesis. If convergence
is decidable, we arrive at finite learning. It is easy to see that one-variable pattern languages
are not finitely learnable. On the other hand, a bit of prior knowledge about the underlying
probability distributions nicely buys a stochastically finite learner with high confidence (cf. The-
orem 3).

Note that stochastically finite learning with high confidence is different from PAC-learning.
First, it is not completely distribution independent. Thus, from that perspective, this variant is
weaker than the PAC-model. On the other hand, since the one-variable pattern languages are
not PAC learnable (cf. [15]), one has to restrict the class of admissible probability distributions
in one way or the other. Our restriction emerged quite naturally and comprises a huge class of
probability distributions. Furthermore, the hypothesis computed is ezactly correct with high
probability. Moreover, the learner receives exclusively positive data while the correctness of its
hypothesis is measured with respect to all data. Hence, from that perspective, our model of
stochastically finite learning with high confidence is stronger than the PAC-model.

Our approach also differs from U-learnability introduced by Muggleton [16]. First of all, our
learner is fed with positive examples only, while in Muggleton’s [16] model examples labeled
with respect to their containment in the target language are provided. Next, we do not make
any assumption concerning the distribution of the target patterns. Furthermore, we do not
measure the expected total learning time with respect to a given class of distributions over the
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targets and a given class of distributions for the sampling process, but exclusively in dependence
on the length of the target. Finally, we require exact learning and not approximately correct
learning.

Our implementation of the algorithm is available for public use through the WEB. The reader
is referred to

http://www.itheoi.mu-luebeck.de/pages/reischuk/Algorithmen /PatLearn.html
for getting access to the resulting Java-applets.

Next, we shortly discuss possible directions of further research. An obvious extension would
be to consider k-variable pattern languages for small fixed £ > 1. Already for &k = 2 the
situation becomes considerably more complicated and requires additional tools.

Another direction to pursue would be to learn languages that are the union of at most /¢
one-variable pattern languages for some fixed /.

Finally, the approach presented in this paper seems to be quite suited to tolerate errors in
the example data. Let us assume that there is some (small) probability € that

error model 1: in an example string X[1]...X|[l] a symbol X[i] is changed to a different
one,

error model 2: X|[i] is changed to a different symbol or removed or replaced by two symbols
X|ilo for some o € 3.

A property of the pattern language like the common prefix of all strings now is only accepted
if it is supported by a large percentage of examples. The details and modification of the
algorithm will be given in another paper.
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