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Abstract

For ordinary circuits with a fixed upper bound on the fanin of its gates it has been shown that
logarithmic redundancy is necessary and sufficient to overcome random hardware faults (noise). Here,
we consider the same question for unbounded fanin circuits which in the fault-free case can compute
Boolean functions in sublogarithmic depth. Now the details of the fault model become more impor-
tant. One may assume that only gates, resp. only wires may deliver wrong values, or that both gates
and wires may behave faulty.

The fault tolerance depends on the types of gates that are used, and whether the error probabilities
are known exactly or only an upper bound for them. Concerning the first distinction the two most
important models are circuits consisting of and- and or-gates with arbitrarily many inputs, and
circuits built from the more general type of threshold gates.

We will show that in case of faulty and/or—circuits as well as threshold circuits an increase of
fanin and size cannot be traded for a depth reduction if the error probabilities are unknown. Gates
with large fanin are of no use if errors may occur. Circuits of arbitrary size, but fixed depth can
compute only a tiny subset of all Boolean functions reliably.

Only in case of threshold circuits and exactly known error probabilities redundancy is able to
compensate faults. We describe a transformation from fault-free to fault-tolerant circuits that is
optimal with respect to depth keeping the circuit size polynomial.

1 Introduction

John v. Neumann [N56] was one of the first to consider reliability questions in large systems like circuits
and neural nets. Results of Dobrushin/Ortyukov [DO77a] and Pippenger [P85] have shown that loga-
rithmic redundancy is sufficient to achieve optimal fault tolerance in the standard circuit model with a
fixed finite set of basic gates. It is assumed that every element of the circuit works incorrectly with some
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2 R.Reischuk: Reliability of Unbounded Fanin Circuits

probability independently of the others and that there is an upper bound on these error probabilities.
Redundancy here means the factor by which the circuit size has to be increased to make a circuit designed
for a fault-free situation fault-tolerant, or more formally, the circuit size ratio between a fault-tolerant
circuit and an optimal circuit in case of no faults.

That this amount of redundancy is also necessary in general has later been proved rigorously in a sequence
of papers, which follow a previous attempt made by Dobrushin/Ortyukov [DO77b]. This was done by
Pippenger/Stamoulis/ Tsitsiklis [PST91], Gal/Gécs [G91,GG94] and Reischuk/Schmeltz [RS91]. These
results are essentially independent of the specific basis (for a detailed discussion see [P89]) and whether
errors are assumed to occur in the gates or in the wires. To prove the lower bound on the redundancy
it suffices to consider the restricted fault model in which all gates err with exactly the same probability
e > 0. We call this weak fault tolerance. The upper bound construction of [DO77a] and [P85],
however, works in the stronger fault model where the actual error probabilities of gates and wires are
unknown. These probabilities may even be chosen by an adversary.

In [RS89] we have described other constructions to make circuits reliable. These methods guarantee only
a small increase in the layout area of the circuits — in many cases only a constant factor.

Thus, for Boolean circuits with bounded fanin fault tolerance is quite well understood. Considering the
human brain and neural networks the fault tolerance of circuits with gates of large fanin is an important
question. Hajnal, Maass, Pudlék, Szegedy and Turin seem to be the only ones so far that have considered
this problem [HMP93]. In their error model faults only happen at the gates of a circuit. For and/or-
circuits they prove an upper bound exp O(dlogd) on the number of subcubes a function may depend on
if it can be computed reliably in depth d.

In this paper we investigate fault-tolerant circuits of sublogarithmic depth in more detail. We will
consider different bases of gates with arbitrarily large fanin and different fault models. For and/or—
circuits and faults at the wires a lower bound will be obtained for the number of input variables a
function may depend on if it can be computed reliably in bounded depth. This shows that only a small
number of nondegenerated Boolean functions have fault-tolerant circuits of bounded depth. Even allowing
depth o(logn/loglogn) most Boolean functions of n variables cannot be computed by a fault-tolerant
circuit based on unbounded fanin and- and or-gates. Our analysis also gives an upper bound on the
deterministic, resp. probabilistic complexity of functions that can be computed in the presence of faults
in bounded depth.

For threshold circuits and the weak fault model [HMP93] provides a construction to achieve fault tolerance
in weighted threshold circuits. Their method uses redundancy that grows exponentially with respect to
the circuit depth. Given a circuit of size g and depth d its fault-tolerant equivalent requires size go(dz) .
We will describe a different approach for standard threshold circuits that keeps this blowup much smaller,
in particular, independent of d.

Both constructions do not work for the stronger fault model. Our second lower bound shows that
fault tolerance cannot be achieved for bounded depth threshold circuits if the error probabilities are not
known precisely. In this case one faces similar restrictions as for unbounded fanin and/or—circuits. Only
a vanishing proportion of all Boolean functions can be computed reliably.

This paper is organized as follows. In the next section we define the fault models for unbounded fanin
circuits. Section 3 contains the lower bound for and/or—circuits. Then we will present the impossibility
result for strongly reliable threshold circuits. Finally, it will be shown how threshold circuits can be made
weakly reliable with only a polynomial increase in size.

2 The Model

For the basic circuit terminology see, for example, Wegener’s monograph [W87]. For an unbounded fanin
circuit C = (V, E) consisting of gates v € V' and wires e € E by size(C) we mean the number of wires
|E|. We will consider unbounded fanin circuits constructed from gates of the following type (the basis).
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Definition 1

e and/or—circuits: The basis contains and- and or-gates of arbitrary fanin; inputs of a gate may
be negated.

e threshold circuits: For each k,I € IN the basis contains the following (positive) monotone
threshold gate and its negation:

17 lf Z_ljzl .’L'] Z kv
0, else.

le(wl,..‘,arl) = {

To provide such a circuit with the values of the input variables, special input gates are given. We will
consider only circuits with a single output. Note that an and/or—circuit is a restricted form of a threshold
circuit. Since it can be helpful to weight signals differently, several wires may run in parallel connecting
the same pair of gates. Alternatively, one could assign weights to the wires. The fault tolerance of this
weighted threshold circuit model will be discussed at the end.

We formalize faults/noise in a circuit C' as follows.

Definition 2 Let C,(xz) and C.(x) be random variables that describe the Boolean value of the gates
v (resp. wires e) for input vector x. C(x) is a random variable specifying the output bit computed by
C on z. If the input vector z is fixed we simply write C, instead of C,(z), and similarly Ce .

Let v be a gate realizing the function ¢, , and let eq,...,e; be its input wires originating at gates
v1,...,U . Then,
Xy = @9u(Ceyy...,Cg)

defines the Boolean value computed by v. If all its input wires operate correctly then Ce, = C,, , thus
Xy = @u(Cyyy-..,Cy,) . Faults may change the value of a wire or a gate with a certain probability €.
For each gate v and each wire e there is a binary random variable B, (resp. B, ) with Pr[B, = 1] =€,
and Pr[B, = 1] = ¢, . All random variables B, and B, are assumed to be stochastically independent.
Then,

C, = X, ®B,, and foreach wire e originatingat v C, = C, ® B, .

Thus the distortion of C'is described by a vector of individual error probabilities (€,)ycc .- For an internal
gate v we get

Xy = ‘Pv(oe1a-~-acez) = pu(Cy, @Be“...,CleBBel)
(IQU(X‘IM GBB‘IH GaBeu'--aX‘Uz ®B'Ul EBBCI) .

For the lower bounds to be shown below it suffices to consider restrictions of this general fault model.
In the gate fault model only gates are assumed to be faulty, that means B, = 0 for all wires e.
Alternatively, only wires make errors ( B, = 0) in the wire fault model. 0

Input gates are assumed to be fault-free, otherwise there is no chance to compute a Boolean function
correctly. Thus, for an input gate v representing the input variable z; it holds B, =0 and C, = z; .

One may pose the question which of these restricted models is more appropriate. For the case of bounded
fanin circuits, the logarithmic lower bound on the redundancy already holds for the wire fault model,
and Dobrushin/Ortyukov have described a transformation technique from the gate fault model to the
general model. Their idea was to distribute portions of the error of a gate to its incoming wires. On the
other hand, the upper bound constructions achieve the same redundancy bound (up to constant factors)
and work for the general fault model. This shows that the wire and the gate fault model already require
maximal complexity. There is neither a qualitative, nor a quantitative difference.
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This property is not obvious for unbounded fanin circuits. In particular, the technique of Dobrushin/Or-
tyukov does not work for gates with unbounded fanin. Assuming only faults at gates with a fixed upper
bound on their probability independent of the size of the gate may be too unrealistic. The more complex
a gate is, i.e., the larger its fanin, the more likely one would expect faults to occur. In this respect the
wire fault model is more perceptive.

Definition 3 C is said to compute a function f weakly (e, d) —reliably if assuming that every faulty
circuit element has error probability exactly e, for every input vector x it holds that

Pr{C(z) = f(@)} > 1-3.

If C yields the value f(x) with probability at least 1 — § for any vector of error probabilities with
entries from the real interval [0, €] then it is strongly (e, d) —reliable. 0

For the lower bounds we consider any pair of error/reliability probabilities €,d € (0,1/2). Unless one
restricts to wire faults only the positive results require ¢ > € since with probability e the final output
gate can be faulty and then change the result of the whole circuit. In general, these probabilities will be
treated as given constants. In some cases, to simplify the statements of the results we hide their influence
on the complexity bounds in the O -notation, in particular the dependence on the reliability parameter
6 will be neglected.

Definition 4 A class of Boolean functions is said to be computable strongly (resp. weakly) reliably
if for every small error probability € > 0 there exists a reliability value § < 1/2 such that for each ele-
ment f in this class one can find a circuit C' that computes f strongly (resp. weakly) (e,d)—reliably.
In addition, it is required that when e converges to 0 the sequence of §’s should also converge to 0.

One could also consider an intermediate model between strong and weak reliability where there is some
uncertainty a about the error probabilities, i.e., every probability lies in the interval [e — a,€]. The
lower bound for the strong model shown below can be extended to this case. Now instead of the maximal
error probability e the uncertainty « matters. This generalization is quite straightforward and we will
not further elaborate on it.

The main reason for distinguishing between weak and strong fault tolerance is the following property:

Lemma 1 Let C be an arbitrary circuit that computes a function f (e,0) —reliably in the strong sense
for some arbitrary € and some 6 < 1. Then in the fault-free case C is a deterministic circuit for f.

Proof: Consider the case where all individual error probabilities are set to 0. Then the output of C' is
a constant, and Pr{C(z) = f(z)} > 1—-46 >0 implies C(z) = f(z) . |

This property does not necessarily hold for weak fault tolerance since the random noise may be “misused”
to generate some kind of random bits (see [P85]). In this case, any Boolean function can be “computed”
with error probability close to 1/2 in a trivial way by just tossing coins (1/2 may not be achievable
exactly if € is not a multiple of a negative power of 2). Thus, for weak reliability one should restrict &
to values smaller than 1/2.

3 The Lower Bound for and/or—Circuits

Our first result will show that unbounded fanin and/or—gates are extremely sensitive to random faults.
Bounded depth circuits built from such gates can compute only very simple functions. Technically
speaking, large fanin gates of such type are of very little use in case of faults.
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Proposition 1 Let f be a Boolean function that in the wire fault model can be computed by o weakly
(€,0) —reliable and/or—circuit C' of depth d. Then, for every &' > 4, there exists a weakly (e,6') —reliable
and/or—circuit C' for f with the same depth, but fanin bounded by O(e ! (d logd — log(&' — §))) .
Proof: Let A be the smallest natural number larger than 1 satisfying

A=14"11-e* < §-6.

A simple calculation shows that A is bounded by

1 __ —1 _ 1 _
A< O d logd + log(é' — 9) <0 d logd — log(d' — 9) .
log(1 —¢)~t €

We replace each gate with fanin at least A by a constant gate with value 1 in case of an or-gate and
value 0 in case of an and-gate to get a new circuit C’.! For any input 2 it holds

| Pr{C(z) = f(x)} - Pr{C'(x) = f(x)}] < 6'—0.

To see this inequality, let v’ be a constant value gate in C’ replacing gate v of fanin [ > X in C. If v
is an and-gate then
Pr{C, =1} < (1—-¢) < (1-¢)*.

This holds because € < 1/2 and in order to produce a 1 at v, all incoming wires have to supply the
value 1. Each such event occurs with probability at most 1 — e. For the corresponding gate v’ in C',
this probability is 0.

Similarly, in case of an or-gate
Pr{C, =0} < (1—e),

while Pr{C), = 0} = 0. Let us say that v’ deviates from v if C, # C}, . Hence, the probability for
such an event is at most (1 —e€)*.

If gate v at depth h has fanin less than ) its corresponding gate v’ in C' is the same. v' has at most
(A —1)"=1 predecessor gates that have been set to a constant value. In order for v’ to compute a value
different from v at least one of these constant value gates must deviate from its original. This happens
with probability at most

A=D1 —e?.

Thus, the output gate of C' deviates from that of C with probability at most

Pr{C(z) #C'(z)} < A=1)¥'1-e* < ¢ -5, and
Pr{C'(z) # f(x)} < Pr{[C'(z) # C(a)] V [C(2) # f(2)]}
< Pr{C'(z) #C(x)} + Pr{C(z) # f(x)} <. N

Treating the reliability parameters as constants, the depth and fanin bounds imply that the size of C'

is at most 4 o)
nle,d| := O (C—i logd> < (C—l) ,
€ €

in particular there are at most that many input gates that have a connection to the output gate. It is
not clear whether this size bound and the bound O(dlogd) for the fanin are best possible. We believe
that the fanin bound can be improved to O(d) .

1" can be further simplified since in an and/or—circuit constant gates can be removed: either they have no influence
on a successor or they set a successor to a constant value, too.
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If 0 is suitably larger than e then the error probability of C’ can be reduced from ¢’ to ¢ by standard
majority voting techniques. This gives a bounded fanin circuit that achieves the same reliability § as C
and for which the depth (resp. size) is larger only by a small additive constant (resp. a small constant
factor).

As discussed above, this result on weak reliabilty is only interesting for values § < 1/2. Thus, let us fix
such a 0. For the output gate of such a circuit and its direct predecessors one gets an even better fanin
bound. For example, the fanin [ of the final output gate has to fulfill (1—¢)! > 1—§ > 1/2, otherwise a
single fault on one of its input wires would already impose an incorrect result of the whole circuit. This
implies I < (log(1 —¢)™1) "t xet.

If a circuit has to achieve reliability less than 1/2 for a given function f any input that can influence
the value of f has to be connected to the output gate. Otherwise, changing this input bit in a critical
input vector? does not change the probability distribution of the result. Hence, on this input vector or
its companion the circuit computes a wrong result with probability at least 1 —§ > 1/2 > §. Hence,
Proposition 1 implies

Theorem 1 If a Boolean function f can be computed by a weakly (e,6) —reliable and/or-circuit of depth
d in the wire fault model with § < 1/2 then it can also be computed by a fault-tolerant circuit of depth
d, size nle,d|, and fanin O(e~'d logd) . In particular, f depends on at most nle,d| many arguments.

The construction in the proof of Proposition 1 also works for the strong reliability model. Construct C’
from a given circuit C' as above replacing gates of large fanin by constants. Given an arbitrary vector
of error probabilities for C' we have to show that the correct result will be obtained with probability at
least 1—¢'. Consider that fault vector for C' extended from the one for C' where wires running into a
gate of large fanin — those are missing in C’ — have maximal error probability e. By assumption, since
C' is strongly (e,d) -reliable it will compute the correct result with probability at least 1 — . Since
the deviation between C and C' is at most &' — 4§, C' achieves the required reliability. Thus we have
shown

Proposition 2 Let f be a Boolean function that in the wire fault model can be computed by a strongly
(€,0) —reliable and/or—circuit C of depth d. Then, for every &' > 0, there exists a strongly (e,0") —
reliable and/or—circuit C' for f with the same depth, but fanin bounded by O(e~1d logd) .

In the fault-free case, if a function f is computable by a circuit of depth d it can also be computed by
a formula, i.e. a circuit with fanout 1, of the same depth. The proof technique duplicating gates does
not simply work for faulty circuits because of dependencies/independencies. Proposition 2 together with
Lemma 1 yields

Theorem 2 A necessary condition for a Boolean function to be computable strongly reliably with respect
to wire faults by an unbounded fanin and/or—circuit in depth d is that it depends on at most exp O(dlogd)
arguments and has a fault-free circuit of depth d, fanin bounded by O(dlogd), and size exp O(dlogd) .
This fault-free circuit can even be chosen as a formula with the same complexity bounds.

In the case of weak fault tolerance we can show a corresponding result for probabilistic circuits.

Theorem 3 Let f be a Boolean function computable in case of wire faults by a weakly (e,8) —reliable
and/or—circuit C of depth d and let 6' > § . Then without any noise there exists a probabilistic circuit
C' of depth at most 3d, fanin O(dlogd) and size exp O(dlogd) with error probability bounded by ¢ .

2vector © = ¥1...x;...%p is critical for f and input bit i if f(z) # f(z1...%;...zn), where 2; denotes the
complement of x; .
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Proof: The idea is to simulate the weakly fault-tolerant circuit C' by constructing random bits that take
the value 1 with probability ¢’ ~ e. We start with the construction above to get an (e, d") —reliable
circuit C" with §" = 5+T‘5' and fanin at most I < O(dlogd). C" has at most O(I%) wires. Each
wire e of C'", which flips the value X, from its origin v with probability exactly €, is replaced by
two wires with a gate v, in the middle that computes the function X, & z where z is a random bit
with Pr{z = 1} = €. In order to turn this into an and/or—circuit we then may replace each v, by an
equivalent depth 2 circuit based on V,A. This defines a probabilistic circuit C' which deviates from
C" with probability at most O(I? - |¢ — ¢'|) . In order to achieve error probability &' for C’ it suffices
to bound this quantity by 5'2—"5 , that means

le—¢€| < 7 := (8'—30) exp—0(dlogd) .

€ can be approximated within this precision by tossing log1/m = O(dlogd) random coins. The result
of this experiment can then be computed in depth 2 using and- and or-gates with fanin bounded by
O(dlogd) . |

Unbounded fanin circuits have been introduced in order to compute Boolean functions in very small
depth. For the fault-free case it is well known that depth 2 is already sufficient. Our results imply that
circuits with faults cannot achieve such a speedup. The depth has to grow almost logarithmically with
respect to the number of arguments the function depends on. Since among all Boolean functions of n
arguments at most a fraction 2-2"7'+logn Joes not depend on all its arguments we get as a

Corollary 1 and/or-circuits with gates of unbounded fanin require depth at least Q(logn / loglogn) for
almost all n -ary Boolean functions for a weak (or strong) reliable computation in case of wire faults.

Since almost all n-ary Boolean functions require formula size (2" / logn) [We87], Theorem 2 implies
further

Corollary 2 Strongly reliable and/or—circuits require depth at least Q(n / logn) for almost all n -ary
Boolean functions even if we restrict to wire faults and put no bound on the maximal fanin.

Similar results can be obtained for the gate fault model. In this case the gates in depth 1, the first layer,
make an essential difference: each such gate has distortion e independent of its fanin. Note that a gate
in depth 1 computes a monomial or clause of the input variables. All claims above hold if we replace the
bounds on the number of arguments by a bound on the number of such monomials and clauses, and if in
the size bound we do not count wires from input gates (see [HMP93]). Equivalently, the size now refers
to the number of internal gates.

Again, a simple counting argument shows that only a tiny fraction of all n argument Boolean functions
can be computed by such circuits of depth o(logn / loglogn) .

In the gate fault model, a strongly reliable circuit of depth d can be replaced by a deterministic formula
of depth d, where the first layer has fanin up to n and the remaining ones at most O(dlogd). Counting
the number of such formulas shows that almost all n -ary Boolean functions require size 2(2"/n). Thus,
we get

Corollary 3 Strongly reliable and/or—circuits require depth at least Q(n / logn) for almost all n -ary
Boolean functions even if we restrict to gate faults and put no bound on the mazximal fanin.
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4 Strongly Reliable Threshold Circuits

A gate v of a circuit is considered to depend on an input variable z; if there is a path from the
corresponding input gate to v. For certain input vectors changing the value of x; may then lead to
a change of the value at v. A threshold gate with a large fanin may still have this property if one of
its input wires connects to that input gate. But it is very likely that a single change of z; will hardly
be noticed because of those many potential faults that may occur on the other wires running into v .
This means the probability distribution of the two random variables X,(x) and X,(z'), where z' is
obtained from z by changing the i-th coordinate, are almost identical.

We try to capture this property be defining the notion of strong dependence, which means that an input
x; is able to influence a gate substantially even when faults are present. It will be shown that a gate
cannot strongly depend on too many variables. Hence, a reliable threshold circuit can essentially be built
only from gates of moderately large fanin.

Definition 5 For the notion of strong dependence two parameters
L :=cylog(1/e) -d/e and ¢ =¢€/16

will be used, where the constant ¢; > 0 will be chosen later. An input gate strongly depends only
on the variable it represents. For an internal gate v of indegree [ let T'; be the number of direct
predecessors that strongly depend on ;. Then v strongly depends on z; iff I'; > 0, and in addition
l S L or Fz’ Z Cl 0

The intuition behind this definition says that if these properties are not fulfilled then there are many
wires running into v and almost all do not depend strongly on z; . Then, faults occurring on such wires
are very likely to outbalance the total number T'; of wires coming from gates that strongly depend on
ZTj .

Lemma 2 A gate at depth h strongly depends on at most

max{¢ 1, L} < expO(h - log(d/e))
many input gates (input variables).
Proof: This bound can easily be shown by induction on h. Let v be a gate in depth h with fanin /. If
every predecessor strongly depend on at most m = max{¢~!, L}*~! many input gates and [ < L then v
strongly depends on at most L-m many inputs. Otherwise, there are at most [-m pairs of a predecessor

u and an input z; such that u depends strongly on z;. In order for v to depend strongly on z; the
number of such v ’s has to be at least ¢ [. Hence, there can be at most (~!-m many different such ;. il

Define
p 2\ 0@
nle,d| = max{¢ ', L}* < <—) .
€

Theorem 4 Strongly (e,0) —reliable threshold circuits of depth d can compute only functions that depend
on at most nle,d| many variables. This property already holds for the restricted wire fault model.®

3This impossibility result contrasts to Th. 5.8 in [HMP93], where a fault-tolerant transformation for the strong gate
fault model is indicated. However, this only works under the (unrealistic) assumption that the error probability decreases
with the fanin (as 1/X).
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Proof: Assume that f depends on more than nle,d| inputs and let C be a strongly reliable circuit
for f. According to Lemma 2, there is an input variable z; on which the output of the circuit does
not depend strongly. Let z and z' be two input vectors which differ only at position ¢ such that

flz) # f(").

Proposition 3 If a gate v at depth h does not depend strongly on x; then for any pair of inputs (%)
and =) that differ only in the i -th coordinate there exist error probabilities € for the wires running
into v and a Boolean value y, such that for both z(® and X2 := X,(2(®)) holds

Pr{X2 #y,} < pn = (¢/8)T 1.

This Proposition implies Theorem 4. For the output gate v of the circuit at depth d it means

€

Pr{Xv#yv} < pg = g

for both input vectors z and z'. But for one of them the value y, is wrong. Thus, for this input the
circuit gives the correct result with probability at most €/8 < % <1-94. |

Proof of Proposition 3: By induction on the depth h exploiting only wire faults.
Define T : =T}, and call a gate strong if it strongly depends on z; , otherwise weak. Let us denote
by Gt and G~ the set of strong (resp. weak) gates.

For weak input gates choose y, equal to the value of this input bit, which is different from z; and thus
equal for both z*. Then the probability Pr{X$ # y,} is actually 0.

Now, let v be a weak gate in depth A > 0 with threshold & and incoming wires ej,...,e; from
predecessors vy,...,v (with B,, =0). To simplify the notation we will write X§ instead of ng , Yj
instead of y,; , C; instead of C¢; and B; for the random fault on wire e;. Assume that every weak
predecessor v; satisfies

Pr{X] £y} < prot -

The output value of v is determined by the sign of
!
=Y XfoB —k= > XfeB+ » (Xfoy)o@y;eB;) — k.
j v;EGT v; EG™

From the definition of strong dependence it follows

< S = Y (Xf®Bj) < > 1=T<¢(l.

v, EGH v €EG+
For 0/1-values the identity z ®b = z + (—1)* b holds, or generalizing to larger sums
@eye@eb) =y+ (D" b+(-1)"*@ey).
Then, the sum over G~ in the expression for Y* can be split into 3 sums S; + S + .53 as
Sowi—k+ Y (CDWB + Y (-)EEE (X ey, .
v; €G- v; €G- v; €G-
The first term S; = > y; — k has a fixed value independent of the input and the error probabilities.

The third sum S3 can be bounded in absolute value by EXJ"‘ ® y; . By induction hypothesis, with
probability at most pp—1 the values X§ and y; are different, thus the expectation of this sum is
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bounded by |G~|-pp_1. For s > 1 let F; denote the event that the absolute value of S3 is bounded
by
S = | T omerxgey)| < 5167 pu
v; EG™
By Markov’s inequality,
Pr{-F,} < 1/s.

It remains to estimate the second sum S» = > (—1)¥ B;. It will be shown that it dominates the rest.
By choosing the error probabilities €; for the B; appropriately we will achieve that the whole expression
for Y* can be bounded away from 0 independent of a. For 8 € {0,1} let G; C G~ be the subset of
vj with y; = 8, and J be the larger of these sets. Thus [J| > |G~|/2. Weset ¢; =0 for v; € G~ \J.
Scenario 1: For v; € J the error probabilities €; are chosen as 0, too. Then S, =0 with probability 1.

Scenario 2: Alternatively, if we choose €; = ¢ maximal for all v; € J then the expectation of the
absolute value of Sy is at least

Zej =e€|lJ| > €e|GT|/2.
v; €J
Let F denote the event that the absolute value of Sy is bounded as follows:
) 7 |G
2l = | 3 (1B > el
’UJ'EG_

Using the Chernoff Bound one can deduce for a suitable constant ¢ > 0
15
Pr{-F} < exp(—ce-|G7|) < exp(—ce-(1=()I) < exp (—c 16 € L)
15 1 re\d
exp (—c 16 & log(8/¢) - d) R (g)

if ¢1, introduced in the definition of strong dependence, is chosen sufficiently large. If we set s :=
5¢/32pp—1 then

IN
IN

- -F} < = - 2 (=
Pri=F, v =F} < == 5\8 e \8

Thus, if Fy; A F' holds then we can bound the sum Sy + S; + S3 by
S1=8-1G7|-pp—1 < So+S51+83 < (l+S1+s|G7| pa-1 -

32pp—1 1 (e)d < 8 (e)d*h+2 —

In other words, the range of this sum is bounded by

€ 5 €

251G -pp_1 < — 2 -
Cl4+2s-|G7| - pr-1 < 16l+16ph,1
On the other hand, S, satisfies the lower bound

G-| _ 7 15 3
> — — .
5 21616 ~ 5°¢

If the critical value 0 is not in the range of Sy + S; + S3 then we use scenario 1. Thus, independent
of a with probability at least 1 — p; the value Y¢ lies in an interval that does not contain 0. As the
value y, for gate v we choose the result computed by v in these cases.

3
lepp1 = gel.

7

— €

8
If the range of Sy + S1 +S3 contains 0 then we apply scenario 2. It shifts the range of Y* away from
0. Choose y, correspondingly. This proves Prop. 3. |

Corollary 4 Almost all n -ary Boolean functions require strongly fault-tolerant threshold circuits of depth
at least Q(logn / loglogn) .
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5 Weakly Reliable Threshold Circuits

The case of weakly reliable threshold circuits differs from all previously studied situations. In this model,
arbitrary circuits can be made reliable with a moderate amount of additional hardware. Let us first
restrict to the wire fault model.

Theorem 5 Let f be a function that is computable in the fault-free case by a threshold circuit of at
most g gates, e wires and fanin X . Then for the wire fault model with any € < 1/4 and arbitrary § >0
there exists a weakly (e,08) —reliable threshold circuit for f of the same depth and number of gates. The
number of wires and the fanin increase by a factor O(Alogg) .

Proof: The idea is to duplicate each wire r times for a suitable redundancy factor r < O(Alogg) . Let
v be a gate with fanin [ and threshold k& and yi,...,y; be the outputs of its direct predecessor gates
V1,...,v; . The fanin increases by the factor r when feeding the r copies of each wire from v; to v.
This way we get the new fault-tolerant gate v'. The summation of the input signals at v’ gives

! r
S') = ZZ Yi® B,
i=1 j=1

where B;; =1 iff a fault occurs in the j-th wire from v; to v'. For a given input z let m denote the
number of predecessors with y; = 1. Then the expectation of S(v') can be estimated by

ESW)] = r-(ml—e)+(I—-m)e) = - (m+ (I —2m)e) .
In the critical region around the threshold % this expression evaluates for m =k —1 to
E,y =r-(k—1+(1-2k+2)e),

resp. to
Ey, = r-(k+ (I —2k)e)

for m = k. Thus, the difference is
Ey,—Ep1 = A := r(1-2¢).

To define the threshold &' for v’ we select the middle between the two expectations, that is
1
Er1+A/2 = E,—AJ2 = r- <k+(l—2k)e— (5 —e)) ,

and set k' := [Ej_1 + A/2]. Now in order to guarantee error probability at most §/g at gate v’ it
suffices to achieve

pe{ls-Bls)> 5} < 2.

For a € {0,1} define

Sa = Z Zyi@Bi,j-

it yi=a j=1
So as the sum of r(I—m) independent and identically distributed binary variables, which take the value
1 with probability €, is binomially distributed with expectation E[Sy] = r(l —m)e. Similarly, r-m — Sy
consists of rm terms and has expectation r m €.
We will guarantee
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By Chernoff’s bound, choosing r = ¢ llog(g/d) for a suitable constant ¢ > 1 makes this probability that
small since

A A2 r (1—2e¢)?
— > — 5 < —_—— ] = — - .
Pr{|50 E[So]| > 4} < 2€Xp< 48E[So]> 2 exp (l—m - )
Thus,
Pr{Cy (z) # Cy(z)} < d/g.
Summing up over all gates of C' gives Pr{C(z) # f(z)} < §. |

This result implies in particular that functions like MAJORITY can be computed reliably in constant depth
and polynomial size. It has been shown for the fault-free case that and/or—circuits require exponential
size to perform this task in constant depth (see, for example, Corollary 3.12 in [BS90]) . Theorem 2 implies
that in case of faults and/or—circuits cannot solve this task at all, they require depth Q(logn / loglogn) .

Corollary 5 In the weakly fault-tolerant constant depth circuit model and/or—circuits cannot simulate
threshold circuits.

Extending this construction gives an upper bound for the general fault model. Again redundancy r =
O(Alog g) will be used, now for fanin and gates.

Theorem 6 Let f be a function that is computable in the fault-free case by a threshold circuit of at
most g gates, e wires and fanin A . In the general fault model, for any € < 1/8 and arbitrary 6 > 0
there exists a weakly (e,€+ 8) —reliable threshold circuit for f of the same depth with O(\glogg) gates
and fanin O(\%logg) .

Proof: 1If also gates may become faulty the events that different wires originating from the same gate
supply wrong values are quite dependent. Thus, instead of simply duplicating wires we make r copies of
each gate. If in the original circuit u is connected to v in the fault-tolerant design there is a wire from
every copy of u to every copy of v. Again, the fanin of gates increases by the factor r. Now consider
the values y;; computed by the copies v;; of a direct predecessor gate v; of v. Then a copy v, of v
will receive the value

Yi,j © Bi,j ® Bi,ja

from v;;, where B;; models the fault at v;; and B;;, the fault on the connecting wire. Let us say
that gate v; is okay if all the » values y;; equal C,, and at most a fraction 2¢ of the v;; gates are
faulty, that is B;; = 1. Assume that all predecessors v; of v are okay. Then similar to above choosing
r slightly larger one can guarantee that v is not okay with probability less than /g, that is a copy of
v will receive too many wrong values from its input wires with probability less than &/gr. Thus, all
gates will be okay simultaneously with probability at least 1 — . To estimate the fault tolerance of this
circuit one has to add the error probability € of the final output gate, which proves the claim. |

Note that this construction increases the number of wires by a factor of r?. For the gate fault model
[HMP93] give a different analysis how to achieve weak reliability. The redundancy there grows exponen-
tially with the depth.
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6 Conclusion And Open Problems

Making circuits with large fanin gates fault-tolerant has turned out to be more complicated than in the
case of small fanin. In most variations of the model reliable constant depth circuits can compute only
very simple functions. For and/or—circuits of depth d there is a limit O(e"'dlogd) on the fanin that
can effectively be used in case of faults. We conjecture that this bound can be lowered further. So far,
we have not found an example where fanin larger than O(e™!) helps significantly.

For strongly reliable threshold circuits we have got the bound exp O(dlogd) on the number of input
variables on which the circuit may depend on even if only wires may be faulty. We believe that a similar
bound holds for the restricted gate fault model.

One may also consider a model in which wires, in addition, carry weights (weighted threshold circuits). For
polynomially bounded weights the analysis above can be extended to yield the same lower bound (up to
constant factors). In the case of arbitrary weights the analysis seems to be significantly more complicated.
Hofmeister has recently described a simple construction that replaces exponentially bounded weighted
threshold circuits by polynomially bounded at the expense of increasing the depth by 1 [H96], which
simplifies previous work [GHR92,GK93]. However, this construction does not seem to translate directly
into fault-tolerant circuit designs.

Finally, in the weak model threshold circuits can be made arbitrarily fault-tolerant by moderate redun-
dancy. This indicates a fundamental difference between both fault models, which has not been observed
for bounded fanin circuits.

Extending these results to other kind of gates, one first notices that all we have exploited to make
threshold gates weakly reliable is the following. They are symmetric and counting the number of 1-inputs
they have a range of certain size where on the one half the output is 0 and on the other half it is 1.
The other extreme of symmetric gates are mod m gates for some constant m , where the output value
alternates in a continuous fashion. We conjecture that they are also useless for reliable computation
within small depth. In particular, parity gates just by themselves or in combination with and-/or--gates
seem to be of little value. Even in combination with threshold gates it is not clear whether a large fanin
mod m gate can be exploited in case of faults.

From a practical and biological point of view this may indicate that mod m -, and--, and or--gates of
large fanin are not advantageous computing devices because of the incapability to handle statistically
distributed noise. Threshold gates, however - even with some imprecision at the threshold - can be used
to compensate such faults.
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