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Abstract

The breakpoint distance between two n-permutations is the number of pairs that
appear consecutively in one but not in the other. In the median problem for break-
points one is given a set of permutations and has to construct a permutation that
minimizes the sum of breakpoint distances to all the original ones. Recently, the prob-
lem was suggested as a model for determining the evolutionary history of several species
based on their gene orders. We show that the problem is already NP-hard for three
permutations, and that this result holds both for signed and for unsigned permutations.

1 Introduction

The study of genome rearrangements has drawn a lot of attention in recent years. Large
amounts of genomic data on various organisms become available rapidly, and they make
possible for the first time a large scale study of evolutionary relations among species by
comparing the order of appearance of common genes in their chromosomes. Changes in
gene order are much less frequent than point mutations, and therefore, in principle, one
can elucidate the evolutionary history of speciation more precisely and further backwards
in time using gene orders. This is done by comparing gene orders in the studied species
and reconstructing the sequences of gene rearrangement events that led from the ancestral
genome species to the current species.

When restricting the discussion to only one chromosome, and assuming genes occur only
once, genomes are modeled as permutations. When taking into account the orientation of
the genes, the objects discussed are signed permutations. The case where all rearrangement
events are reversals (inversion of a chromosome segment) has been studied intensively in
recent years. For two species, this problem, of finding the reversal distance between two per-
mutations, is already NP-hard in case the gene orders are given as unsigned permutations [4],
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but it is polynomial if the permutations are signed [9, 2, 11]|. Finding a tree minimizing the
total number of reversals for three signed permutations is already NP-hard [3]. Other mod-
els of the genome [8, 12] or of the assumed events were also studied [10, 8, 14, 1, 6]. When
studying more than two species the key problem arising is to reconstruct the phylogenetic
tree achieving minimal total distance along edges (most parsimonious), given only permuta-
tions (gene orders) at the leaves (contemporary species). When the topology of the tree is
restricted to a star, this problem is known as the median problem [5, 6].

Recently, Sankoff and Blanchette [13] introduced a new model for studying the recon-
struction of evolutionary tree of more than two species. They argued forcefully that the
reversal distance and similar distance measures have certain weaknesses that render them
inappropriate for studying complex trees, and suggested a simpler criterion of breakpoint
distance, i.e., merely counting the number of breakpoints between every two permutations
connected by an edge of the tree. This number can be easily computed for a single edge, for
signed and unsigned permutations. Sankoff and Blanchette studied the median problem for
breakpoints, and developed several efficient heuristics for the problem. However, the com-
putational complexity of this problem was not determined. Here we settle that question by
showing that the problem is NP-hard already for three permutations. The hardness result
applies both to the signed and to the unsigned model. In a companion manuscript we give
a constant factor polynomial approximation algorithm for the signed model.

The paper is organized as follows: Section 2 recalls the standard notation in the field,
which we follow. Section 3 defines further terminology used throughout the paper. Section 4
defines a problem which is equivalent to the median problem for breakpoints, for 3 signed
permutations, and proves these problems are NP-complete. Section 5 extends the hardness
result also to unsigned permutations.

2 Preliminaries

Let d be a measure of genomic distance, namely an integer distance function on the space
of (signed) permutations. The (signed) median problem is defined as follows:

Instance: Three (signed) permutations mg, 71, 72, and an integer k&
Question: Does there exist a (signed) permutation 7 s.t. >, d(m;,7) < k ?

We denote a signed permutation m on n elements by the n-tuple (w(1),7(2),...,7(n)),
with 7(7) € {£1,...,+n}, and |7 (2)| # |7(j)| for  # j. We rescale a signed permutation on
n elements to an unsigned permutation on 2n elements, with each positive element 7(j) =4
mapped to the pair n(25 — 1) = 2t — 1,7(25) = 2: and each negative element w(j) =
—1 mapped to the pair m(25 — 1) = 2i,7(25) = 2¢ — 1. We further expand an unsigned
permutation by defining 7(0) = 0, and n(n + 1) = n + 1. We call this transformation of a



signed n element permutation into an unsigned 2n + 2 elements the standard augmentation
(see also [9]). Note that the range of the standard augmentation is a set of permutations
which is closed under composition.

For an unsigned permutation m, w(2) and (i + 1) are said to be successive in 7. For
a signed permutation 7', standardly augmented to an unsigned permutation m, m(2:) and
m(2¢ + 1) are said to be successive in 7'.

A pair of successive elements in m which are also successive in o is called an adjacency.
A pair of successive elements in m which are not successive in o is called a breakpoint in
m w.r.t. o. The number of breakpoints of 7 w.r.t. o is denoted by bp(w,o). Trivially,
bp(m, o) = bp(o, ).

For example, let 7’ = (1, —3, —2) be a signed permutation on three elements. It is rescaled
to the 6-permutation (1,2,6,5,4,3), and it’s standard augmentation is the 8-permutation
= = (0,1,2,6,5,4,3,7). The only breakpoints in = w.r.t. the identity permutation o are
(2,6) and (3,7), thus bp(w,0) = 2.

All graphs in this paper are finite, and unless specifically indicated otherwise, undirected.
They do not contain self loops, but may contain parallel edges: single, double or triple edges.
For a set of 2n vertices, a perfect matching is a set of n edges, incident on every vertex. A
Hamiltonzan cycle is a set of 2n edges, forming one cycle passing through all the vertices.

3 Definitions

Let V = {;}2%," be a set of 2n vertices. We call the perfect matching My = {(vaivai_1)} 0
the base matching on V (subscripts for V are calculated modulo 2n).

Let M; be the base matching on the set V' of 2n vertices. A perfect matching M on V is
called a Hamiltonian matching w.r.t. M, (or simply a Hamiltonian Matching) if MyUM forms
a Hamiltonian cycle. For a Hamiltonian matching M, let unsigned(M) be the permutation
on {0,1,...,2n — 1}, denoting the order of appearance of the vertices in V along the cycle
M, U M, starting from vy, and ending on vy, ;. Clearly, 2 — 1 and 2: are consecutive in
unsigned(M), for each 0 < 7 < n, hence, there exists a unique signed permutation denoted
signed(M) on n — 1 elements, whose standard augmentation into an unsigned permutation
on 2n elements is unsigned(M). Furthermore, for every signed permutation 7 on n — 1
elements, its standard augmentation into an unsigned permutation on 2n elements is «’,
and the edge set hmatch(r) = {voVw (1), Vn!(2)Vn'(3)s - - - » Vn'(2n—4)Vn'(2n—3) Vn/(2n—2)Van—1} 1S @
Hamiltonian matching w.r.t. the base matching on 2n vertices.

Let 7,0 be two signed permutations on n — 1 elements. Each adjacency between them
corresponds to an edge common to both hmatch(n) and hmatch(o) and, on the other hand,
each such common edge corresponds to such an adjacency.

Corollary 3.1 Let m and o be signed permutations on n — 1 elements. Then bp(m, o) =
n — |hmatch(w) N hmatch(o)|



4 The Consensus of 3 Hamiltonian Matchings problem

4.1 Problem Definition
We define the Consensus of 3 Hamiltonian Matchings(C3HM for short) problem as follows:

Instance: Three Hamiltonian matchings My, M;, M, w.r.t. the base matching M, on a
set V of 2n vertices, and an integer wigrget- My, Mo, M1, M, define a weight function w for
any Hamiltonian matching M, setting w(M) = Y; |M N M;|.

Question: Does there exist a Hamiltonian matching M w.r.t. My, s.t.

—

'LU(M) Z wta’rget

We extend the weight function to edges, by defining w(e) = |{¢|]e € M;}|. Then for a
Hamiltonian matching M, w(M) = ¥ .cpr w(e).

4.2 Equivalence to the Median Problem

Proposition 4.1 The instance (V, My, Mo, M1, My, Wiarget) of the CSHM problem and the
instance (signed(M,), signed(M;), signed(M3), 3| Mp| — Wiarget) of the signed permutations
median problem are equivalent.

Proof: Follows directly from corollary 3.1. ]
Note that the transformation in the other direction, i.e., from signed permutations median
to C3HM, is also immediate.

4.3 NP-completeness
Theorem 4.2 C3HM is NP-complete.

Proof: Membership in NP is trivial.

We prove NP-hardness by reduction from the Hamiltonian cycle problem, restricted to
3-regular graphs. This problem is well known to be NP-complete [7]. Let G(N, A) be a
simple 3-regular input graph, with n = |N|. We construct, in polynomial time, an instance
I = (V, My, Mo, M1, M3, Wiarget) of C3HM, of linear size in n, s.t. [ is a “yes” instance iff G
admits a Hamiltonian path. To avoid confusion, we refer to G as a graph on the set N of
nodes with the set A of arcs, reserving the terms vertez and edge for the graph constructed
as a C3HM instance.

We first give an overview of the reduction. We build a node component for each node
of G. There are edges between these components, some of them correspond to the arcs of
G. Our construction maps Hamiltonian cycles in G to Hamiltonian cycles M U M, in the
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Figure 1: The whole node component. Each pair of tangent discs denotes a pair of vertices
ut (matched by M;). In such a pair @ is the bottom disc (in the J groups) or the disc
closer to the center (along the double path) Solid, dotted and dashed lines denote edges
of My, M, and M, respectively. Arrows downwards denote dangling edges, while arrows
upwards denote arc-representing edges.



constructed graph, with M being a large-weight Hamiltonian matching. We can force specific
properties of such Hamiltonian cycles in our construction, and urge them to pass through
certain edges, by using double edges, with which M must concur, in order to maximize its
weight. In this way, we construct, for each node, a component all of whose vertices must
be visited consecutively by MU My, and the order in which the different node components
are visited by MU M, corresponds to the order of the nodes along a Hamiltonian cycle in
G. We make sure that a Hamiltonian cycle M U M, in our construction can visit two node
components consecutively if and only if the two corresponding nodes in GG are adjacent.

We now start describing our construction in detail. For each node v € N, we build a
node-component C(v) of 32 vertices. See figure 1 for the outline of a full component. We
will now describe the construction of the node-component. We explicitly specify the vertices
of such a component, and some of the edges. The other edges in the constructed graph are
either:

o Arc-representing, and will be explicitly specified in a later stage.

e Dangling edges, which will be constructed implicitly. When describing the node com-
ponent, we only specify:

— On which vertices are the dangling edges incident.

— To which of the three matchings these edges belong.

The component C(v) is composed of two (not fully symmetrical) halves, whose vertices and
vertex-groups will be superscripted with + and —, respectively.
The 32 vertices in C(v) are divided into four groups:

o A half-path P*(v) of 10 vertices {pf (v)}L, and {p} (v)}i,.
o A half-path P~(v) of 10 vertices {p; (v)}., and {p; (v)}i,.
o A junction J*(v) of 6 vertices {j;f (v)}2, and {jif (v)}2,.
o A junction J~(v) of 6 vertices {ji (v)}2, and {ji (v)},.

Note that vertices in our construction come in pairs (u(v),%(v)), where u(v) and %(v)
are always in the same component half and in the same group. Our base matching M, is
simply the set of all edges u(v)u(v). Whenever the node v or the +/— superscript are clear
from context, we omit them.

The edges in a component C include:

e Double (path) edges:

— Between the component half paths : ﬁ}% € My N M.



— In each half path: pop; € My N M,, and for each 2 = 1,2,3: p;pir1 € My N M,.

We call the path in M, U U;M; between pj (v) and p; (v), using the path edges, the
double path of v.

o Bypassing edges: The edges Jips € My and jopo € M for each half, and the edges
3Pl 32 P2, P3Py € Mo.
o Junction edges (see Figure 2):

— The edges psj; € M; for each 0 < < 2 and for each half.
— The edges jajo, joj1 € M and 717, € My for each half.
— The edges joj» € M for each half, and the edge j;j; € Mo.

Arc-representing edges
To other J group

Jo

Jo

Figure 2: Zoom in on one J group. Only junction edges are drawn.

o Dangling edges: As explained, at this stage we only specify the incidence of a dangling
edge, without explicitly specifying the edges.
— Dangling edges of M, are incident on py, p3 for each half, and to IE and ;f
— Dangling edges of M; are incident on p; for each half.
— Dangling edges of M, are incident on pg for each half.




We now describe the arc-representing edges. For each node v € N, arbitrarily number its
three arcs ao(v), a;(v), aa(v). For an arc vv’ = a;(v) = as(v') € A add the edge j;' (v)jz (V')
to My. Note that the edge j3 (v')j; (v) will also be added to Mp.

We will now describe some simple properties of our construction so far:

Property 4.3 FEach bypassing or dangling edge is incident on at least one vertex along the
double path, which is not an endpoint of this path.

Property 4.4 For each matching M;, let M] be the subset of M; excluding all dangling edges
Observe that each of My U M| and M, U M, is a collection of |[N| (disjoint) paths, and each

such path passes through all the vertices of some node component C(v) (see Figure 3 and
Figure 4).

p; OO _00 00 00 00 00 00 00 00 00

Dangling

\/ edges \/

Figure 3: My U M; forms a path in each component.

Denote the paths described in property 4.4 PATH;(v) and PAT H»(v), respectively.
Both endpoints of such a path are vertices where dangling edges are incident on and both

are along the double path of v, one in P*(v) (called head) and the other in P~ (v) (called
tail)

Property 4.5 M, U M is a collection of 2|A| (disjoint) paths, each passing through one
arc-representing edge j; (v)ji (v') (see Figure 5).
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Figure 4: My U M, forms a path in each component.
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Figure 5: M, U M, forms a path in through each arc-representing edge.




Denote the paths described in property 4.5 PAT Ho(v,v'). This path has its endpoints on
two vertices along the double paths of v and v/, respectively, with a dangling edge incident
on each of them. The lengths of such paths may vary between 4 and 8 vertex pairs.

We now describe how to connect the vertices on which dangling edges are incident, thus
constructing the dangling edges themselves. Number the nodes vg,v1,...,vn 1,V = vy in an
arbitrary order. For each: =1,2and k = 0,...,n—1, add to M; a dangling edge connecting

the tail of each PAT H;(v) to the head of PAT H;(vk+1).

—

Let D(N, A) be a directed graph formed by replacing every arc vv' of A by a pair of anti-
parallel directed arcs vv' and v'v. Clearly, D is Eulerian. Let T be an arbitrary directed Euler
tour of D. For every two consecutive directed arcs vv' and v'v" in T', the paths PAT Ho(vv')
and PAT Hy(v'v") each have one endpoint in C(¢'). Connect these two endpoints by a My
edge. All the dangling edges are constructed by this process, since every node v’ is visited
exactly 3 times by T', with each of the six dangling edges endpoints in C(v') visited once.

Note that no dangling edge thus constructed is parallel to any other edge in any M;.
Therefore, each dangling edge is single, and no double or triple edges are generated when
determining the dangling edges.

We set wignger to be 25m.

Clearly, the reduction is polynomial. We prove now the validity of our construction.

Claim 4.6 [ is an instance of C3HM.

Proof: My is a perfect matching. For each 2 = 0,1, 2, every vertex in V is incident to exactly
one edge of each M;, so also M; is a perfect matching. The construction of the dangling
edges connects all the paths { PAT H;(v)|v € N} into one Hamiltonian cycle, whose edges
are exactly My U M;. Similarly, M, U M, is a Hamiltonian cycle. Also, the construction of the
dangling edges connects all the paths {PAT Ho(vv')|vv' € A} into one Hamiltonian cycle,
whose edges are exactly My U My. Hence, M; is a Hamiltonian matching for 2 =0,1,2. =

Claim 4.7 If there is a Hamiltonian cycle in G, then I is a “yes” instance.

Proof: Assume there exists a Hamiltonian cycle b in G. We construct a matching M as
follows:

e Include all 9 double path edges of each node component (4 of each half, and one
connecting the two halves).

e Choose an arbitrary orientation for h. Let vv' = a;(v) = ay(v') be an arc of h in this
orientation. For each such arc add to M the following seven edges:

— Edges in J* and P™: pI(V)j{il(V), jﬁl(’/)j{:z(”)a Jz—:-z(’/)]z—l—(’/)
— Edges in J~ and P~: PZ(VI)ji7+1(V'); ji7+1(Vl)ji7+z(V')a ji7+2(Vl)ji7(Vl)-

10



— The edge j; (v)ja (V).

Subscripts for junction vertices are calculated modulo 3. Compare Figure 6 and Fig-
ure 2.

J2 . Wi ;7 Jo J2 J1 Jo

J2 J1 Jo J2 7

L,,,,,,,,,,,,,,,,\<,,,,J
\\
N
® D4 ® Da
J2 J1 Jo
S : :':' -~
[ J2 w1  Jo
l /
| //
! |
! /
| !
S )
o Da

Figure 6: The three possible ways we use to connect the vertices of a junction group by a
Hamiltonian matching.

Clearly, Misa matching. Since h is Hamiltonian, MU M, is a Hamiltonian cycle. For
the double edges in M, w(e) = 2. For the other edges in M, w(e) = 1. It follows that

—

w(M)=2-9n+ Tn = 25n n
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Claim 4.8 If I is a “yes” instance, then there is a Hamiltonian cycle in G.

Proof: Let M be a Hamiltonian matching in 7, with 'w(]T/I\) > 25n. We call a Hamiltonian
matching M in I proper if all the vertices of each node component appear consecutively
along the cycle M U M. We now prove that M is proper.

Since there are exactly 16n edges in ﬁ, and there are only 9n double edges in I, M must
contain all the double edges, and furthermore, for every other edge e € M, w(e) = 1, ie.,
e € M; for some 3. It follows that M U M, contains the double path of each v. Furthermore,
according to property 4.3, every bypassing or dangling edge is incident on an internal vertex
of such a path, M contains no bypassing edges, nor dangling edges (See Figure 7).

Arc-representing edges

Figure 7: The component without the bypassing edges and the dangling edges. A proper
Hamiltonian matching must pass through the six J* vertices consecutively, and immediately
“after” (direction is arbitrary) the P vertices.

Fix some v. M must contain one edge incident on pJ (v). Since this edge is a member of
some Hamiltonian matching M;, it is pf (v)j: (v), for some 0 < i < 2 (see Figure 6). Since
M must contain no other edge incident on pj (v), the edges of the two other Hamiltonian

matchings incident on pJ (v) are not in M. Formally, for i’ #+ 1, ps (v)ii (v) & M. Now we

can examine the vertex j;f (v). There must be some non-bypassing edge in M incident on it,
and the only possible candidate is j;_,(v)j; (v) (see Figure 2), therefore ji ,(v)jf (v) € M.
Hence, the path through J*(v) jiya, Jir2, Jit1,Jit1, Ji > JiPa is contained in M U M,. The
argument for a path passing through J~(v) is similar, proving that M is proper.
Let C(v),C(v') be two components visited consecutively by M U M,. There must be
an edge e connecting the two components, and since M U M, contains no dangling edges, e

12



must be an arc-representing edge (all other edges are incident on two vertices in the same
component). According to our construction, there must be an arc in G between v and v'.

Let A = vy, v1,...,Vn_1, V0 be the order in which components are visited by MUM,. It
follows that A is a Hamiltonian cycle in G.

|

Claims 4.6, 4.7, and 4.8 complete the proof of Theorem 4.2. [ ]
Corollary 4.9 The signed permutations median problem is NP-complete.

Proof: Immediate from Theorem 4.2 and Proposition 4.1. [ ]

Corollary 4.10 Finding a tree and corresponding signed permutations in internal nodes
so as to minimize overall breakpoint distance along tree edges is NP-hard, both if the tree
topology is known and if it is unknown.

5 Unsigned Permutations

We map each unsigned permutation 7 on the elements 1,2,...,n — 2 to the Hamiltonian
cycle on n vertices heycle(m) = o, Vr(1), Un(2), - - - , Un(n—2)s Un—1,%o. This is a 1-1 mapping,
whose range is all the Hamiltonian cycles on n vertices passing through the compulsory edge
vn_1Vg. We call such cycles image cycles. For two image cycles, heycle(r) and heycle(o), a
non-compulsory edge in heycle(w) N heycle(o), maps to an adjacency between 7 and o, and
vice versa.

The unsigned permutations median problem formulates as the Consensus of 3 Hamilto-
nian Cycles (C3HC for short) problem:
Instance: Three image cycles Co, C;, Cy on n vertices, and an integer wyapget-
Question: Does there exist an image cycle 6’, s.t. 'w(CA') =3 |6’ N Ci| > Wiarget-

Theorem 5.1 C3HC (and therefore also the unsigned permutations median problem) is NP-
complete.

Proof: (sketch): The proof is very similar to the proof of Theorem 4.2. We use a similar
construction to reduce the problem of Hamiltonian cycle on 3-regular graphs passing through
a specific edge (actually, the Hamiltonian path problem), to C3HC. The only differences are:

o We set C; = M; U M,, thus replacing every edge e € M, with a triple edge e €
CoNCiNCh.

o We number the vertices choosing a triple edge to be the compulsory edge.

o We increase wiq,rger by the total weight of the triple edges and set it to 25n+4-3-16n = 73n.

13



Cardinality considerations of the weight of a consensus image cycle make sure that this cycle
passes through all triple edges, and the rest of the proof is similar. [ ]

Proof:(Other option): We reduce signed permutations median to unsigned permutations
median. Let I’ = (mj, 7}, 7}, diarget) be a signed permutations median problem instance with
each m] being a signed permutation on n elements. Let m; be the 2n + 2 element signed
permutation obtained by the standard augmentation of w]. We claim that the unsigned
permutations median problem instance I = (mo, 71, T2, diarget) 15 @ “yes” instance iff I’ is.

For every two signed permutations o7, 0,, whose standard augmentations are, respec-
tively, o1, 02, bp(o1, 03) = bp(o7, 03). Therefore it remains only to be shown that:

Claim 5.2 If 7 is an unsigned permutation satisfying Y ; bp(7,m;) < diarget, then there is
also some unsigned permutation o satisfying 3 ; bp(o, ;) < diarger, with a signed permutation
o' whose standard augmentation is o.

Proof: We prove this by induction on the number p(7) of pairs 2 — 1,27 of non-successive
elements in 7.

Clearly, for p(7) =0, ¢ = 7 is a standard augmentation of some unsigned o’.

For positive k, assume correctness for all permutations p with p(p) < k, and suppose
p(t) = k. It suffices to find a permutation p satisfying >; bp(p, ™) < X; bp(7, m:), with
p(p) < k. Let Co, Cy, Cy, Wiarger be the C3HC instance corresponding to I’. Define w(e) =
|{z]e € C;}|. Note that for each vertex v:

Zw(uv) =6 (1)

u

We call every edge e = vg;_1v2; a parity edge. Note that every parity edge e has w(e) = 3.

Then there is a Hamiltonian cycle C; = vg,vr,. .., VUny,, Vant1 with weight w(C,) >
Wigrget, and with n 4+ 1 — k parity edges. Fix some ¢ for which the parity edge vy;_1v3; 1s not
contained in C;. 2:—1 and 27 are not successivein 7,i.e. 7; = 2t — 1,7 = 23, and |j—j7'| > 1.
Let 2 = vy, ¥y = vai_1, 2 = vy, and &' = Vri y' = vy, 2 = Vrityy - w(yy') = 3, so
according to equation 1 w(zy) + w(yz) + w(z'y’) + w(y'2’') < 6, either w(zy) + w(z'y’) < 3
or w(yz) + w(y'2’) < 3. In the first case, define C, = (C; \ {zy,z'y'}) U {zz',yy'} and in
the latter define C, = (C; \ {yz,y'2'}) U {22/, yy'}. In either case, C, is an image cycle, and
w(C,) > w(C,;). The corresponding permutation p is as required. [ |

Now it is clear that [ is a “yes” instance iff I’ is, completing the proof of theorem 5.1 m

In a forthcoming companion paper, we give several constant-factor approximation algo-
rithms to the signed problem.

14
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