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Abstract

Adleman, DeMarrais, and Huang introduced the nondeterministic quantum polynomial-time complexity
class NQP as an analogue of NP. Fortnow and Rogers implicitly showed that, when the amplitudes
are rational numbers, NQP is contained in the complement of C_P. Fenner, Green, Homer, and Pruim
improved this result by showing that, when the amplitudes are arbitrary algebraic numbers, NQP coincides
with co-C_P. In this paper we prove that, even when the amplitudes are arbitrary complex numbers, NQP
still remains identical to co-C=P. As an immediate corollary, BQP differs from NQP when the amplitudes

are unrestricted.
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1 Introduction

In recent years, the possible use of the power of quantum interference and entanglement to perform
computations much faster than classical computers has attracted attention from computer scientists
and physicists (e.g., [6, 9, 13, 16, 18, 19]).

In 1985 Deutsch [7] proposed the fundamental concept of quantum Turing machines (see Bern-
stein and Vazirani [4] for further discussions). A quantum Turing machine is an extension of a
classical probabilistic Turing machine so that all computation paths of the machine interfere with
each other (similar to the phenomenon in physics known as quantum interference). This makes
it potentially possible to carry out a large number of bit operations simultaneously. Subsequent
studies have founded the structural analysis of quantum complexity classes. In particular, quantum
versus classical counting computation has been a focal point in recent studies [1, 11, 14].

Adleman, DeMarrais, and Huang [1] introduced, as a quantum analogue of NP, the “nondeter-
ministic” quantum polynomial-time complexity class NQP ;-, which is the set of decision problems
accepted with positive probability by polynomial-time quantum Turing machines with amplitudes
all drawn from set K. In their paper, they argued that NQP s~ lies within PP, where A denotes

the set of algebraic complex numbers.
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In classical complexity theory, Wagner [22] defined the counting class C=P as the set of de-
cision problems that determine whether the number of accepting computation paths (of nonde-
terministic computation) equals that of rejecting computation paths. Fortnow and Rogers [14]
implicitly showed that NQPg C co-C-P; in fact, as pointed out in [11], their proof technique
proves NQP; C co-C-P so long as all members of K are products of rational numbers and the
square root of natural numbers. Fenner, Green, Homer, and Pruim [11] further improved this
result by showing NQP, = co-C-P, which gives a characterization of NQP in terms of classical
counting computation when the amplitudes are restricted to algebraic numbers (in [11] NQP, is
succinctly denoted as NQP). Nevertheless, it has been unknown whether NQP further collapses
to co-C_P.

In this paper we resolve this open question affirmatively as in Theorem 3.5: NQPx collapses
to co-C_P for any set K with Q C K C C. The proof of the theorem consists of two steps. First
we must show that co-C_P C NQP (actually co-C_P C NQP{O,:&%,ﬂ:%,tl})' This claim was
already mentioned in [11] and its proof recently appeared in [12]. For completeness, we give its
proof in Section 3. Then we must prove the claim NQPg C co-C_P in Section 4 by a detailed
algebraic analysis of transition amplitudes of quantum Turing machines.

Our result yields another important consequence about the relationship between NQP; and
BQP,, a quantum analogue of BPP, which was introduced by Bernstein and Vazirani [4] as the
set of decision problems recognized by polynomial-time quantum Turing machines with bounded-
error with amplitudes from K. It is shown in [1] that BQPgy = BQP, but BQP( has uncountable
cardinality. Theorem 3.5 thus highlights a clear contrast between the power of nondeterministic
quantum computation and that of bounded-error quantum computation: BQPr # NQP. This
extends the separation of the exact quantum computation from bounded-error quantum computa-
tion in the case when amplitudes are unrestricted [1].

The reader who needs more background on quantum computation may refer to recent survey

papers [2, 5].

2 Basic Notions and Notation

Let Z be the set of all integers, Q the set of rational numbers, C the set of complex numbers,
and A the set of all algebraic complex numbers. Moreover, let Z>q and Z~q denote the sets of all
nonnegative integers and of all positive integers, respectively. For any d € Z~o and k € Z >, define
Zyg={i€Z|0<i<d—-1}and Zy={i € Z| -k < i < k}. By polynomials we mean elements
in Z[xy,2q,...,2y] for some m € Zxq. For any finite sequence k € Z™, let |k| = maxi<j<m {|ki|},
where k = (ky, kg, ..., k). Furthermore, 0 denotes the k-tuple (0,0, ...,0) for k € Z,.

Let k € Zo. A finite subset {y;}1<i<x of C is linearly independent if Ele a;y; # 0 for any
k-tuple (a1, as,...,ax) € Q% \ {0F}. Similarly, {y;}1<i<k is algebraically independent if there is no



qin Q[zy,z2,..., 2] such that ¢ is not identical to 0 but ¢(y1,72,...,7%) = 0.

We assume the reader’s familiarity with classical complexity theory and here we give only a
brief description of quantum Turing machines [4]. A k-track quantum Turing machine (QTM) M
is a triplet (X% Q,d), where X is a finite alphabet with a distinguished blank symbol #, Q is a
finite set of states with initial state o and final state ¢, and 4 is a multi-valued quantum transition
function from Q x ¥* to COXEZFx{L,R} A QTM has k two-way infinite tracks of cells indexed by Z
and a read/write head that moves along all the tracks. The expression 6(p, o, ¢, T,d) denotes the
(transition) amplitude in §(p, &) of |¢)|T)|d), where o, 7 € ¥ and d € {L, R}.

A superposition of M is a finite complex linear combination of configurations of M with unit Ly-
norm. The time-evolution operator of M is a map from each superposition of M to the superposition
of M that results from a single application of the transition function §. These time-evolution
operators are naturally identified with matrices.

The running time of M on input z is defined to be the minimum integer I’ such that, at time
T, all computation paths of M on input z have reached final configurations, and at any time less
than T there are no final configurations, where a final configuration is a configuration with state
qs. We say that M on input z halts in time 1" if the running time of M on input z is 7. The
final superposition of M is the superposition that M reaches when it halts. A QTM M is called a
polynomial-time QTM if there exists a polynomial p such that, on every input z, M halts in time
p(|z).

A QTM is called well-formed if its time-evolution operator preserves the Ly-norm. A QTM
is stationary if it halts on all inputs in a final superposition where each configuration has the
head in the start cells and a QTM is in normal form if, for every k-tuple of track symbols o,
5(¢s,0) = |qo)|o)|R). For brevity, we say that a QTM is conservative if it is well-formed and
stationary and in normal form. For any subset K of C, we say that a QTM has K-amplitudes if
its transition amplitudes are all drawn from K.

Let M be a multitrack, well-formed QT'M whose last track, called the output track, has alphabet
{0,1,#}. We say that M accepts x with probability p and also rejects x with probability 1 — p if M
halts and p is the sum of the squared magnitudes of the amplitude of each final configuration in
which the output track consists only of 1 as nonblank symbol in the start cell. For convenience, we
call such a final configuration an accepting configuration.

For a more general model of quantum Turing machines, the reader may refer to [23].

3 Main Result

In this section we state the main theorem of this paper. First we give the formal definitions of the
complexity classes C_P [22] and NQP [1].

The counting class C=P was originally introduced by Wagner [22]. For convenience, we begin



with the definition of GapP-functions. For a nondeterministic Turing machine M, Accas(z) denotes
the number of accepting computation paths of M on input z. Similarly, we denote by Rejas(z) the

number of rejecting computation paths of M on input z.

Definition 3.1 [10] A function from ¥* to Z is in GapP if there exists a polynomial-time

nondeterministic Turing machine M such that f(z) = Accar(z) — Reju(z) for every string z.

Lemma 3.2 [10] Let f € GapP and p a polynomial. Then, the following functions are also
GapP-functions: f?, Am.zyezp(pn f(z,y), and /\:U.Hfgfnf(m,li), where f*(z) means (f(z))?

and the A-notation Az.g(x) means the function g.

Definition 3.3 [22] A set S is in C_P if there exists a GapP-function f such that, for every z,
z € S exactly when f(z) = 0.

Adleman, DeMarrais, and Huang [1] introduced the notion of “nondeterministic” quantum
computation and defined the complexity class NQPx as the collection of all sets that can be

recognized by nondeterministic QTMs with K-amplitudes in polynomial time.

Definition 3.4 [1] Let K be asubset of C. A set S isin NQP if there exists a polynomial-time,
conservative QTM M with K-amplitudes such that, for every z, if x € S then M accepts z with
positive probability and if 2 ¢ S then M rejects 2 with probability 1.

It immediately follows from Definition 3.4 that NP C NQPy C NQP, C NQP. Adleman
et al.[1] first showed that NQP - is a subset of PP. Based on the work of Fortnow and Rogers
[14], Fenner, Green, Homer, and Pruim [11] later obtained the significant improvement: NQP - =
co-C_P for any set K satisfying Q C K C A.

We expand their result and show as the main theorem that any class NQP., Q C K C C,
collapses to co-C_P.

Theorem 3.5 IFor any set K with Q C K CC, NQPy = co-C_P.

Before giving the proof of Theorem 3.5, we state its immediate corollary. We need the notion of

bounded-error quantum polynomial-time complexity class BQP ;- given by Bernstein and Vazirani

[4].

Definition 3.6 [4] A set S is in BQPy if there exists a polynomial-time, conservative QTM M
with K-amplitudes such that, for every z, if z € S then M accepts z with probability at least %
and if z € S then M rejects  with probability at least %



It is known from [1] that BQP has uncountable cardinality. Theorem 3.5 thus implies that
BQP differs from NQP.

Corollary 3.7 BQP # NQP.

The proof of Theorem 3.5 consists of two parts: co-C_P C NQP{O,:I:%,:}:%,:}:I} and NQP C
co-C=P. The proof of the first claim recently appeared in [12]. For completeness, however, we
include a proof of the first claim below. The second claim needs an elaborate argument and will
be proved in the next section.

Let S be any set in co-C=P. By definition, there exists a GapP-function f such that, for
every z, z € S if and only if f(z) # 0. Without loss of generality, we can assume that, for some

polynomial p and some deterministic polynomial-time computable predicate1 R, f(z) = {y €

{0, 137020 | R(z,y) = 1} — |{y € {0,1}*UD | R(z,y) = 0} for all binary strings .

3

5,:i:%,:i:l}—:cmrlplitude that produces, on

We wish to design a quantum algorithm with {0, +
input z, a particular configuration with amplitude —ep(|x|)+1f(m), where ¢ = 12/25, so that we
can observe this configuration with positive probability if and only if 2 € S. This implies that
S is in NQP{O,i%,i%,:tl}' To simplify our argument, we make use of the four letter alphabet
¥, =40,1,2,3}.

Let I be the identity transform and let H[a, b|d] be the generalized Hadamard transform defined
as Zyme{a’b}(—l)[y:“:b]5[y=“](1 — H#d|u) (y|, where a,b € T4, § € C, and the square brackets
mean the truth value.® Moreover, let H = H[0,1|2], J = H[0,1|2], and K = H[0,2|2] + H[1, 3|].
Notice that H, I, J, and K are unitary and their amplitudes are all in {0, :I:g, :I:%, +1}.

Let z be an input of length n. We start with the initial superposition |¢g) = [07(")]0). We
apply the operations H?(") @ I to |¢g). Next we change the content of the last track from |0) to
|R(z,y)). This can be done reversibly in polynomial time since R is computable by a polynomial-
time reversible Turing machine [3, 4]. Finally we apply the operations JP(") @ JK to this last
superposition and let |¢) denote the consequence.

Let |¢) denote the observable [07(")|1). When we observe |¢), we can find state |¢;) with
amplitude (¢;]¢), which is #(?) Zye{ml}p(n)(—l)R(m’y)e since (1|JK|R(z,y)) = (—=1)F@Y)e. By the
definition of f, (¢1|#) is equal to —eP(M+1 f(z),

4 Proof of the Main Theorem

This section completes the proof of Theorem 3.5 by proving NQP C co-C_P. Assume that S is
in NQP(. By Definition 3.4, there exists an element p € Z[z] and an f-track conservative quantum

Turing machine M = (3, Q, ) with C-amplitudes that recognizes S in time p(n) on any input of

YA predicate can be seen as a function from {0,1}* x {0,1}* to {0,1}.
$Conventionally we set TRUTH=1 and FALSE=0. For example, [0 =0] =1 and [0 = 1] = 0.



length n. Let D be the set of all transition amplitudes of §; that is, D = {é(p',o,¢,7,d') | p', ¢’ €
Q,o,7 €X' d € {L,R}}. We must show that S is in co-C_P.

The key ingredient of our proof is, similar to Lemma 6.6 in [1], to show that, for some constant
u € C, every amplitude of a configuration in a superposition generated by M at time ¢, when

multiplied by the factor u?~!

, is uniquely expressed as a linear combination of O(poly(t)) linearly
independent monomials with integer coefficients. If each basic monomial is properly indexed, any
transition amplitude can be encoded as a collection of pairs of such indices and their integer
coefficients. This encoding enables us to carry out amplitude calculations on a classical Turing
machine.

We first show that any number in DD can be expressed in a certain canonical way. Let A =
{a;}1<i<m be any maximal algebraically independent subset of D and define I’ = Q(A), i.e., the
field generated by all elements in A over Q. We further define G to be the field generated by all
the elements in {1} U (D \ A) over F. Let B = {3;}o<i<q be a basis of GG over F. For convenience,
we assume 3y = 1 so that, even in the special case A = D, {fy} becomes a basis of G over F. Let
D"'= DU {B:iBj}o<ij<d-

For each element « in GG, since B is a basis, a can be uniquely written as E;l;é A;B; for some
A; € F. Since the elements in A are all algebraically independent, each A; can be written as s;/u;,
m kaj)

where each s; and u; is a finite sum of linearly independent monomials of the form a, (1%, o,
for some k; = (k1;, ko5, ..., kmj) € Z™ and ay, € L. Unfortunately, this representation is in general
not unique, since s;/u; = (s;r)/(u;r) for any non-zero element r.

To give a standard form for all the elements in D', we need to “normalize” them by choosing
an appropriate common denominator. Let u € G be any common denominator of all the elements
a in D' such that ua is written as 3°, a, ([T12, ozf")ﬂk, where k = (k, ki, ko, ..., kp) € Zg X Z™
and a, € Z. Notice that such a form is uniquely determined by a collection of pairs of k and a,.
We call this unique form the canonical form of wa. Fix u from now on. For the canonical form, we
call k an index and a;, a major sign of ua with respect to index k (or a major k-sign, for short).
An index k is said to be principal if the major k-sign is nonzero. For each o € D', let ind(ua) be
the maximum of |k| over all principal indices k of ua. Moreover, let e be the maximum of d and

of ind(ua) over all elements o in D',

A crucial point of our proof relies on the following lemma.

Lemma 4.1 'The amplitude of each configuration of M on input x in any superposition at time t,
t > 0, when multiplied by the factor u?'~', can be written in the canonical form Zk a, (TT7, afi)ﬁk,
where k = (k, k1, ka, ..., kn) ranges over Zig X (Ze)™ and ay, € 7Z.

Proof. Let ag; denote the amplitude of configuration C' of M on input z in a superposition at

time t. When ¢t = 1, the lemma is trivial. Let C’ be any configuration in a superposition at time ¢t+41.



2t—1

2+1 : 2 : .
Note that u gt g41 is a sum of u?(u ag,i)0c,cr over all configurations C', where ¢ ¢ denotes

the transition amplitude of § that corresponds to the transition from C' to C’ in a single step. By

the induction hypothesis, u%_lac,t has a canonical form as in the lemma. Hence, it suffices to show

that, for each configuration C' and each index k € Zg X (Z[ye)™, g oo, def u?([T2, af")/@k(SC’C,

k
has a canonical form in which all the principle indices lie in Zg x (Z[ye(41y)"™ since w*lags 44 is
expressed as the sum of a o, - L over all C and k.
Let k = (k,k1,..., ky) be anindex in Zgx (Zy.)™, which corresponds to monomial (T];Z, afi)ﬂk.
We first show that af. ., & has a canonical form. Since d;cr € D', we can assume that the canonical
form of udc ¢ is EJ. bj(H:»il oz‘gi)ﬂj, where j = (j,j1,- .., Jm) ranges over Zg X (Z[,))™ and b; € Z.

I . . .
Then, g oy, 1S Written as:

i+ ki+ji+hs
() oo, =5, b5 (T a4 ) upefy = £, 5, bien, (T, ol ) 6y,

provided that uf3;3; has a canonical form Zhj Ch, (IT~, a?”)ﬂhj, where h; = (hj, h1j,..., hp;)
ranges over Zg X (Z)™ and ¢, € Z. Since bjcy,. € Z, ag, ¢, must have a canonical form. For
later use, let h(z,C, k,C", k') be the major k'-sign of af, o, for any index k' = (K", k1, ..., k).
We next show that ind(a’c,cuk) < 2e(t + 1). By (%) it follows that ind(a’oc,’k) is bounded
above by the maximum of k; + j; + h;;, which is at most |k| + |7]| + |h;| < 2et 4+ 2e = 2e(t 4 1); in
other words, all the principal indices of O/QO,Jc must lie in Zg X (Z[Qe(t_l_l)])m. This also shows that
h(z,C,k,C" k') is computed¥ deterministically in time polynomial in the length of C' and C’ and
also in |k| and |k'| since h(z,C, k,C" k') is the sum of bjcy, over all pairs of 3 and h; such that
h; = k" and k; + j; + h;j = k} for each i with 1 <i < m. a

In what follows, we show how to simulate a quantum computation of M. First we define a
function f as follows. Let z be a string of length n, C' an accepting configuration of M on input
z, and k an index. Let f(z,C, k) be the major k-sign of u?(M=1 times the amplitude of C' in the
final superposition of M on input z. For convenience, we set f(z,C, k) = 0 for any other set of
inputs (z,C, k).

Notice by Lemma 4.1 that M rejects z with certainty if and only if the amplitude of any
accepting configuration of M on z, multiplied by «??(")=! has major sign 0 with respect to any

principal index. The following lemma is thus immediate.

Lemma 4.2 For every z, x € S if and only if, for every accepting configuration C' of M on input
z and for every index k € Za X (Zaep(ny)™, f(z,C, k) = 0.

We want to show that f is a GapP-function. Theorem 3.5 follows once this is proved. To see

T We assume that C, €', k, and k’ are appropriately encoded into strings in 2.



this, define
g(@) =3 > [(#.Ck),
¢ k

where C' ranges over all accepting configurations of M on input z and k is drawn from Zg X
(Z[er(n)])m. It follows from Lemma 3.2 that g is also in GapP, and by Lemma 4.2 g(z) = 0 if and
only if z ¢ S. This yields the desired conclusion that S is in co-C=P.

To show f € GapP, let C = (Cy, CY, .. .,Cp(n)> be any “computation path” of M on input z
of length n; that is, Cy is the initial configuration of M on input x and § transforms C;_; into C;
in a single step. Also let K = (ko, k1, ..., ky)) be any sequence of indices in Zg X (Zjzep(n))™
such that kg = 0™*!. We define '(z,C, K) to be the product of h(z,C;_1, ki_1,C;, k;) over all 1,
1 <7 < p(n), where h has been defined in the proof of Lemma 3.2. Notice that A’ is polynomial-time
computable since h is.

Note that the sum ZK h'(z,C, K) relates to the major k-sign of the amplitude, multiplied by
u??(") =1 of the computation path C, where K = (ko, ky, ..., ky(n)) ranges over Zg X (Zaep(ny) ™
with kg = 0™+! and k,n) = k. The following equation is thus straightforward.

f@,C k) =" "W(z,C, K),
K C

where K = (ko, k1, ..., k() ranges over (Zg X (Z[Zep(n)])m)p(”) and C = (Co,Ch,...,Cpn) is a
computation path of M on input z such that ko = 0™+, k) =k, and Cpy = C'.

Lemma 3.2 guarantees that f is indeed a GapP-function. This completes the proof of Theorem
3.5.

5 Discussion

We have extended earlier works of [1, 11, 14] to show that nondeterministic polynomial-time
quantum computation with arbitrary amplitudes can be completely characterized by Wagner’s
polynomial-time counting computation. Our result thus makes it possible to define the class
NQP independent of the choice of amplitudes, whereas BQP( is known to differ from BQPg
[1]. We also note that the proof of Theorem 3.5 can relativize to an arbitrary oracle A; namely,
NQPﬁ— = co-C_P# for any set K with Q C K C C. As a result, for instance, we have
NQPNQP = ¢o-C_PC=F and thus NQP C PP C NQPNQF C PPPP This implies that the
hierarchy built over NQP, analogous to the polynomial-time hierarchy, interweaves into Wagner’s
counting hierarchy [22] over PP.

At the end, we remind the reader that the fact NQP = co-C_P yields further consequences
based on the well-known results on the class C_P. For example, PPPH C NPNQP follows directly
from PPPH C PPP [20] and NPPP = NPC=F [21] and it also follows from [17] that all sparse
NQP sets are in APP. Moreover, NQP = co-NQP if and only if PHFY = NQP, which follows

from a result in [15]. Note that these results also follow from [11].
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