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Abstract

Impagliazzo and Wigderson [IW97] have recently shown that if there exists a decision problem solvable
in time 22 and having circuit complexity 2™ (for all but finitely many n) then P = BPP. This result
is a culmination of a series of works showing connections between the existence of hard predicates and
the existence of good pseudorandom generators.

The construction of Impagliazzo and Wigderson goes through three phases of “hardness amplification”
(a multivariate polynomial encoding, a first derandomized XOR, Lemma, and a second derandomized
XOR Lemma) that are composed with the Nisan-Wigderson [NW94] generator. In this paper we present
two different approaches to proving the main result of Impagliazzo and Wigderson. In developing each
approach, we introduce new techniques and prove new results that could be useful in future improvements
and/or applications of hardness-randomness trade-offs.

Our first result is that when (a modified version of) the Nisan-Wigderson generator construction
is applied with a “mildly” hard predicate, the result is a generator that produces a distribution indis-
tinguishable from having large min-entropy. An extractor can then be used to produce a distribution
computationally indistinguishable from uniform. This is the first construction of a pseudorandom gen-
erator that works with a mildly hard predicate without doing hardness amplification.

We then show that in the Impagliazzo—Wigderson construction only the first hardness-amplification
phase (encoding with multivariate polynomial) is necessary, since it already gives the required average-
case hardness. We prove this result by (i) establishing a connection between the hardness-amplification
problem and a list-decoding problem for error-correcting codes; and (ii) presenting a list-decoding algo-
rithm for error-correcting codes based on multivariate polynomials that improves and simplifies a previous
one by Arora and Sudan [AS97].
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1 Introduction

This paper continues the exploration of hardness versus randomness trade-offs, that is, results showing
that randomized algorithms can be efficiently simulated deterministically if certain complexity-theoretic
assumptions are true. We present two new approaches to proving the recent result of Impagliazzo and
Wigderson [TW97] that, if there is a decision problem computable in time 20(") and having circuit complexity
24" for all but finitely many n, then P = BPP. Impagliazzo and Wigderson prove their result by presenting
a “randomness-efficient amplification of hardness” based on a derandomized version of Yao’s XOR Lemma.
The hardness-amplification procedure is then composed with the Nisan—-Wigderson (NW) generator [NW94]
and this gives the result. The hardness amplification goes through three steps: an encoding using multivariate
polynomials (from [BFNW93]), a first derandomized XOR Lemma (from [Imp95]) and a second derandomized
XOR Lemma (which is the technical contribution of [IW97]).

In our first result, we show how to construct a “pseudoentropy generator” starting from a predicate
with “mild” hardness. Roughly speaking, a pseudoentropy generator takes a short random seed as input and
outputs a distribution that is indistinguishable from having high min-entropy. Combining our pseudoentropy
generator with an extractor, we obtain a pseudorandom generator. Interestingly, our pseudoentropy generator
is (a modification of) the NW generator itself. Along the way we prove that, when built out of a mildly
hard predicate, the NW generator outputs a distribution that is indistinguishable from having high Shannon
entropy, a result that has not been observed before. The notion of a pseudoentropy generator, and the idea
that a pseudoentropy generator can be converted into a pseudorandom generator using an extractor, are due
to Hastad et al. [HILL98].! Our construction is the first construction of a pseudorandom generator that
works using a mildly hard predicate and without hardness amplification.

We then revisit the hardness amplification problem, as considered in [BENW93, Imp95, IW97], and we
show that the first step alone (encoding with multivariate polynomials) is sufficient to amplify hardness to
the desired level, so that the derandomized XOR Lemmas are not necessary in this context. Our proof is
based on a list-decoding algorithm for multivariate polynomial codes and exploits a connection between the
list-decoding and the hardness-amplification problems. The list-decoding algorithm described in this paper
is quantitatively better than a previous one by Arora and Sudan [AS97], and has a simpler analysis.

An overview of previous results. The works of Blum and Micali [BM84] and Yao [Yao82] formalize
the notion of a pseudorandom generator and show how to construct pseudorandom generators based on
the existence of one-way permutations. A pseudorandom generator meeting their definitions (which we
call a BMY-type PRQG) is a polynomial-time algorithm that on input a randomly selected string of length
n® produces an output of length n that is computationally indistinguishable from uniform by any adver-
sary of poly(n) size, where € is an arbitrarily small constant. Pseudorandom generators of this form and
“pseudorandom functions” [GGMS86] constructed from them have many applications both inside and outside
cryptography (see, e.g., [GGM86, Val84, RR97]). One of the first applications, observed by Yao [Ya082], is
derandomization — a given polynomial-time randomized algorithm can be simulated deterministically using
a BMY-type PRG in time 2" - poly(n) by trying all the seeds and taking the majority answer.

In a seminal work, Nisan and Wigderson [NW94] explore the use of a weaker type of pseudorandom
generator (PRG) in order to derandomize randomized algorithms. They observe that, for the purpose of
derandomization, one can consider generators computable in time poly(2!) (instead of poly(t)) where ¢ is
the length of the seed, since the derandomization process cycles through all the seeds, and this induces an
overhead factor 2! anyway. They also observe that one can restrict to generators that are good against
adversaries whose running time is bounded by a fixed polynomial, instead of every polynomial. They then
show how to construct a pseudorandom generator meeting this relaxed definition under weaker assumptions
than those used to build cryptographically strong pseudorandom generators. Furthermore, they show that,
under a sufficiently strong assumption, one can build a PRG that uses seeds of logarithmic length (which
would be impossible for a BMY-type PRG). Such a generator can be used to simulate randomized algorithms
in polynomial time, and its existence implies P = BPP. The condition under which Nisan and Wigderson
prove the existence of a PRG with seeds of logarithmic length is the existence of a decision problem (i.e., a
predicate P: {0,1}" — {0,1}) solvable in time 2°(") such that for some positive constant € no circuit of size

1To be accurate, the term eztractor comes fron [NZ96] and postdates the paper of Hastad et al. [HILL9S8].



2¢" can solve the problem on more than a fraction 1/2 + 27" of the inputs.? This is a very strong hardness
requirement, and it is of interest to obtain similar conclusions under weaker assumptions.

An example of a weaker assumption is the existence of a mildly hard predicate. We say that a predicate
is mildly hard if for some fixed € > 0 no circuit of size 2¢® can decide the predicate on more than a fraction
1—1/poly(n) of the inputs. Nisan and Wigderson prove that mild hardness suffices to derive a pseudorandom
generator with seed of O(log2 n) length, which in turn implies a quasi-polynomial deterministic simulation
of BPP. This result is proved by using Yao’s XOR Lemma [Ya082] (see, e.g., [GNW95] for a proof) to
convert a mildly hard predicate over n inputs into one which has input size n? and is hard to compute
on a fraction 1/2 + 2-%n) of the inputs. A series of subsequent papers attacks the problem of obtaining
stronger pseudorandom generators starting from weaker and weaker assumptions. Babai et al. [BFNW93]
show that a predicate of worst-case circuit complexity 2%(") can be converted into a mildly hard one.?
Impagliazzo [Imp95] proves a derandomized XOR Lemma which implies that a mildly hard predicate can be
converted into one that cannot be predicted on more than some constant fraction of the inputs by circuits of
size 2¢. Impagliazzo and Wigderson [IW97] prove that a predicate with the latter hardness condition can
be transformed into one that meets the hardness requirement of [NW94]. The result of [IW97] relies on a
different derandomized version of the XOR Lemma than [Imp95]. Thus, the general structure of the original
construction of Nisan and Wigderson [NW94] has been preserved in most subsequent works, progress being
achieved by improving the single components. In particular, the use of an XOR Lemma in [NW94] continues,
albeit in increasingly sophisticated forms, in [Imp95, IW97]. Likewise, the NW generator and its original
analysis have always been used in conditional derandomization results since.? Future progress in the area
will probably require a departure from this observance of the NW methodology, or at least a certain amount
of revisitation of its main parts.

In this paper, we give two new ways to build pseudorandom generators with seeds of logarithmic length.
Both approaches bypass the need for the XOR Lemma, and instead use tools (such as list decoding, extractors,
and pseudoentropy generators) that did not appear in the sequence of works from [NW94] to [IW97]. For a
diagram illustrating the steps leading up to the results of [IW97] and how our techniques depart from that
framework, see Figure 1. Both of our approaches are described in more detail below.
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Figure 1: A comparison of our approach with previous ones. Double arrows indicate our results.

2This has to be true for all but finitely many input lengths n.
3In fact the result of [BFNW93] was somewhat weaker, but it is easily extendable to yield this result.
4The techniques of Andreev et al. [ACR97] are a rare exception, but they yield weaker result than the ones of [TW97].



A pseudoentropy generator. Nisan and Wigderson show that when their generator is constructed using
a very hard-on-average predicate, then the output of the generator is indistinguishable from the uniform
distribution. It is a natural question to ask what happens if there are stronger or weaker conditions on
the predicate. In this paper we consider the question of what happens if the predicate is only mildly hard.
Specifically we are interested in whether exponential average-case hardness is really necessary for direct
pseudorandom generation. In this paper we first show that, when a mildly hard predicate is used in the
NW generator, then there exists a distribution having high Shannon entropy that is indistinguishable from
the output of the generator. Our main result is then that, for a mildly hard predicate, a modified version
of the NW generator has an output indistinguishable from a distribution with high min-entropy. Such a
generator is essentially a “pseudoentropy generator” in the sense of Hastad et al. [HILL98]. The intuition
behind our proof is that if a predicate is hard to compute on more than a fraction 1 — § of the inputs then
there should be some subset of the inputs of density § on which the predicate is very hard — this intuition is
made precise by a result of Impagliazzo [Imp95]. Due to the high hardness, the evaluation of the predicate
in a random point of this set will be indistinguishable from a random bit. The NW generator constructed
with a predicate P works by transforming an input seed s into a sequence of points x1,...,z,, from the
domain of P; the output of the generator is then P(x1)P(x2)--- P(x,,). For a random seed, each of the
points x; is uniformly distributed, and so we expect to typically generate dm points from the hard set, so
that the output of the generator looks like having dm bits of randomness, that is, it is indistinguishable
from some other distribution having (Shannon) entropy dm. The generation of the points z; - - - z,, can be
modified so that the number of points landing in the hard set is sharply concentrated around its expected
value dm. The output of the modified generator is then indistinguishable from having high min-entropy.
When our generator is composed with a sufficiently good extractor® (such as the one in [Tre98]) then the
result is a pseudorandom generator. This is the first construction of a pseudorandom generator based on
mild average-case hardness that does not rely on hardness amplification. It is also the first application of
the notion of a pseudoentropy generator to the construction of PRG in the Nisan—Wigderson sense.

Remark 1 While in this paper we analyze for the first time the Nisan-Wigderson generator under a weaker
assumption than the one originally considered in [NW94], there has also been some work exploring the effect
of stronger assumptions on the predicate. Impagliazzo and Wigderson [IW98] show that if the predicate has
certain additional properties (such as “downward self-reducibility”) then one needs only a uniform hardness
assumption on the predicate (rather circuit-complexity assumption). Arvind and Kébler [AK97] and Klivans
and van Melkebeek [KvM98] show that if the predicate is hard on average for nondeterministic circuits, then
the output of the generator is indistinguishable from uniform for nondeterministic adversaries. Therefore it
is possible to derandomize classes involving randomness and nondeterminism, such as AM. Trevisan [Tre98§]
shows that if the predicate is chosen randomly from a distribution having certain properties, then the output
is statistically close to uniform. This yields the construction of extractors that we use in our generator.

The connection with list decoding of error-correcting codes. Our second result deals with the
“list-decoding problem” for error-correcting codes and its connection to amplification of hardness.

We start by describing a new “list-decoding” problem for error-correcting codes. This problem differs
from the standard decoding task in that (1) the decoding algorithm is allowed to output a list of nearby
codes (rather than a unique nearest codeword) and (2) the decoding algorithm is allowed oracle access to
the recieved word, and expected to decode in time much smaller than the length of the codeword. It is also
allowed to output implicit representations of the list of codewords, by giving programs to compute the ith
coordinate of each codeword. This implicit version of the list-decoding problem is closely related to and
inspired by work in program checking and probabilistic checking of proofs.

We show a simple connection between amplification of hardness and the existence of (uniformly-constructible)
families of codes with very efficient list-decoders in our sense (Theorem 22). We then show that a recent
result of Arora and Sudan [AS97] on polynomial reconstruction leads to a family of error-correcting codes
with very efficient list-decoders (Lemmas 23 and 25). In particular, this is sufficient to imply the hardness
amplification results of [IW97]. Finally, we simplify the reconstruction procedure of Arora and Sudan and

5An extractor is an efficient algorithm that on input a distribution sampled from a distribution with high min-entropy has
an output that is statistically close to uniform.



give an analysis (Theorem 26) that works for a wider range of parameters and has a much simpler proof.
(In contrast the analysis of Arora and Sudan relies on their difficult analysis of their “low-degree test” for
the “highly noisy” case.)

Th polynomial reconstruction problem has been studied for its applications to program checking, average
case hardness results for the permanent, and random self-reducibility of complete problems in high complexity
classes [BF90, Lip89, GLR*91, FF93, GS92, FL96, CPS99]. The applicability of polynomial reconstruction
to hardness versus randomness results was demonstrated by Babai et al. [BENW93]. They show that the
existence of a polynomial reconstruction procedure implies that one can convert a worst-case hard predicate
into one which is mildly average-case hard by encoding it as a polynomial. In effect our analysis shows that
already at this stage the polynomial function is very hard, hard enough to use with the [NW94] pseudo-
random generator. This connection between polynomial reconstruction and hardness amplification has also
been observed independently by Avi Wigderson [Wig98] and S. Ravi Kumar and D. Sivakumar [KS98].

2 Preliminaries

We write U, for the uniform distribution on {0,1}". The statistical difference between two random variables
X and Y on a universe U is defined to be maxgcy [Pr[X € S]—Pr[Y € ]|
Our main objects of study are pseudorandom generators:

Definition 2 A function G: {0, l}d — {0,1}" is an (s,e) pseudorandom generator if no circuit of size s can
distinguish G from U, with advantage greater than €. That is, for every circuit C' of size s,

[Pr{C(U) = 1] - Pr[C(G(U) = 1]] <.

We begin by recalling the Nisan—Wigderson construction of pseudorandom generators.

3 The Nisan—Wigderson generator

The combinatorial construction underlying the NW generator is a collection of sets with small intersections,
called a design.

Lemma 3 (design [NW94]) For every £,m € N, there exists a a family of sets S1,...,Sm C {1,...,d}
such that

1. dzO(L),

Tog m
2. For all i, |S;| =¥, and
3. For alli # j |S; N S;| <logm,
Moreover, such a family can be found deterministically in time poly(m,2%)

For concreteness, one can think of m = 2%¢ for some small constant § > 0, so that d = O(¢) = O(logm).
Given such a family of sets, the NW generator takes a uniformly distributed string of length d and produces
m strings of length ¢. That is, given parameters £ and m, we take the family of sets given by Lemma 3 and
define NW ,: {0, 1} = ({0,1}")™ by

NW@,m(m) = (-'L'Sl;ng; s 7-7751”)7

where xg, denotes the projection of 2 onto the coordinates specified by S;.

The key property of this generator used in [NW94, IW97] is that the strings xs, behave as if they are
independent when they are used as inputs to a hard function. Let P:{0,1}* — {0,1} be any predicate.
Then the NW pseudorandom generator using P is a function NW—PRGf :{0,1}* = {0,1}™ given by

NW—PRGZm(:U) = P(z1)P(x2)--- P(xm), where (z1,...,Zm) = NW; n(2)

The main theorem of [NW94] is that if P is taken to be a sufficiently hard (on average) predicate,
NW—PRGE m 18 a good pseudorandom generator.



Theorem 4 ([NW94]) Suppose P:{0,1}¢ — {0,1} is a predicate such that no circuit of size s can compute
P correctly on more than a fraction $+= of the inputs. NW-PRGy,, is an (s—O0(m? logm),€) pseudorandom
generator.

The pseudorandom generators produced by this theorem can be spectacular, as the seed length d =
O(#?/1logm) can be much smaller than (even logarithmic in) the number of output bits if P is sufficiently
hard. The main drawback is that the hypothesis is also extremely strong (in that P must be very hard on
average), and much work has been done to construct predicates that are strong enough for Theorem 4 based
on weaker assumptions [BFNW93, Imp95, IW97, IW98]. In the next section, we analyze the quality of this
generator when only a mildly hard predicate is used.

4 Pseudorandom generators via pseudoentropy

In this section, we show how to build a pseudorandom generator out of a mildly hard predicate in a different
(and arguably more direct) way than [IW97]. Specifically, we show how to directly build a “pseudoen-
tropy generator” from a mildly hard predicate and argue that applying an extractor to its output gives a
pseudorandom generator.

4.1 Using a mildly hard predicate

Intuitively, the reason the NW pseudorandom generator works is that whenever z; is a “hard instance” of
P, P(x;) is indistinguishable from a random bit. If P is very hard as in the hypothesis of Theorem 4, then
almost all inputs are hard instances. Thus, with high probability all the z;’s will be hard instances and the
limited dependence of the x;’s guarantees that the P(x;)’s will look simultaneously random.

Now suppose that P is instead only mildly hard, in the sense that no small circuit can compute correctly
on more than a 1 — ¢ fraction of inputs, for some small but noticeable §. Intuitively, this means that some
¢ fraction of the inputs are extremely hard for P. Thus, we’d expect that a § fraction of the output bits of
NW—PRGE m are indistinguishable from random, so that we should get some crude pseudorandomness out
of the generator. In fact, this intuition about hard instances can be made precise, using the following result
of Impagliazzo [Imp95].

Theorem 5 (hardcore sets [Imp95]) Suppose no circuit of size s can compute P:{0,1}* — {0,1} on
more than a 1 — § fraction of the inputs in {0, l}é. Then, for every € > 0, there exists an e-hardcore set

H c {0, 1}1 such that |H| = &-2¢ and no circuit of size s' = Q(e26%s) can compute P correctly on more than
a % + € fraction of the inputs in H.

Using this theorem, we can prove something about the output of NW—PRGE m When a mildly hard
predicate P is used. Notice that if z is chosen uniformly at random, then each component z; = zg, of
the output of NWy ,(z) is uniformly distributed in {0, l}e. Hence, the expected number of z;’s that land

in H is ém. Thus, the earlier intuition suggests that the output of NW—PRGZ m should have dm bits of
pseudorandomness, and this is in fact true.

Theorem 6 Suppose no circuit of size s can compute P:{0, 1}1Z — {0,1} on more than a 1 — § fraction of
the inputs in {0, 1}e. Then, for every e > 0, there is a distribution D on {0,1}" of (Shannon) entropy®
at least dm such that no circuit of size s' = Q(e*/m?) - s — O(m?logm) can distinguish the output of
NW—PRGfm: {0,1}* = {0,1}™ from D with advantage greater than e.

Proof: Let H be a (¢/dm)-hardcore set for P, as given by Theorem 5. We will show that the following
distribution satisfies the requirements of the theorem.

Distribution D: Choose z uniformly from {O,I}d. Let (z1,...,om) = NW(z). If z; € H, select
b; € {0,1} uniformly at random, and if z; ¢ H let b; = P(x;). Output by - - - by,.”

5Recall that the (Shannon) entropy of a distribution D is H(D) = }°_, Pr[D = a]log(1/Pr[D = a]).
7A similar “bit-flipping” technique is used in [HILL98] to prove their construction of a false entropy generator.




First, we argue that the entropy of D is at least dm. Define N(xy,...,2,) to be the number of z;’s
that are in H. Then for any z € {0, 1}, the entropy of D|, (i.e., D conditioned on z) is N(NW(z))). By the
definition of the Nisan-Wigderson generator, each x; is (individually) uniformly distributed and therefore
lands in H with probability . By linearity of expectations, the expectation of N(NW(z)) (over uniformly
selected x) is dm. Thus, since conditioning reduces entropy (cf., [CT91, Th. 2.6.5]),

HD) > BIH(DL)
= EINNW())
= om

Now we show that D and NW—PRGZ m are computationally indistinguishable. Suppose that some circuit
C distinguishes the output of NW-PRGy,,,, from D with advantage greater than ¢. We will show that C
must be of size at least Q(e2/m?) - s — O(m?logm). By complementing C' if necessary, we have

Pr [C(NW-PRG/,,(Us)) = 1] = Pr[C(D) =1] > .
For z € {0,1}" and r € {0,1}, define

r ifxreH
Q,r) = {P(m) otherwise.

Now consider “hybrids” Dy,...,D,, of D and NW—PRGf m(Uaq) defined as follows:

Distribution D;:  Choose z uniformly from {0, l}d and choose r1,. ..,y uniformly from {0,1}. For
j=1,...,m,let p; = P(xs;) and q; = Q(zs,,r;). Output p1 ---pigit1-- - qm-

Thus, Dy = NW-PRG?(U,), and D,,, = D. By the “hybrid argument” of [GM84] (cf. [Gol95, Sec. 3.2.3]),
there is an ¢ such that
e/m < Pr[C(D;_1)=1]-Pr[C(D;) =1]
= §-Pr[C(Dij—1) =1 | zg, € H]
+(1=96)Pr[C(Di—1) =1 | zs; ¢ H| — (6-Pr[C(D;) =1 | z5, € H + (1 =0)Pr[C(D;) =1 | zs, ¢ H|)
= §-(Pr[C(Dij—1) =1 | zg, € H —Pr[C(D;) =1 | zg, € H]),

where the last equality is because D;_; and D; are identical conditioned on zg, ¢ H. Expanding and using
the fact that ¢; = Q(zg,,r;) = r; when zg, € H, we have

Pr [C (P('Z-Sl) 0T 'P('Z.Si—1)riQ($Si+1ari+1) e Q('Z.Sm7rm)) =1 | Ts; € H]

€
R, [C (P(zs,) - P(25,)Q(%s:1157it1) - Q@s,057m)) =1 | x5, € H| > g
where z is chosen uniformly in {0, 1}d and r;,...,r,, are selected uniformly in {0,1}. Renaming r; as b and

using the standard transformation from distinguishers to predictors [Yao82] (cf. [Gol98, Sec. 3.3.3]), we see
that

1 €
b Pr [C (P($51) T 'P(msi—1)bQ(wSi+1ari+1) ot Q($Sm7rm)) &b= P(msi) | Ts; € H] > 5 + %
Z,0,Ti41*Tm
Using an averaging argument we can fix r;y1,...,7m, b, and all the bits of z outside S; while preserving the
prediction advantage. Renaming x5, as z, we now observe that z varies uniformly over H while P(zs,) for
Jj <iand Q(zxs,,r;) for j > i are now functions P; of z that depend on only |S; N S;| < logm bits of z. So,
we have 1
€

l?zr [C(Pi(2) - Pi—1(2)bPiy1(2) - - Pp(2)) @ b= P(2)] > 2 + 5



Each P; can be computed by a circuit of size O(mlogm), since every function of logm bits can be
computed by a circuit of that size. Incorporating these circuits and b into C, we obtain a circuit C' of size
size(C) + O(m?logm) such that Pr, [C'(2) = P(2)] > 3 + 5=

Now, since H is (¢/dm)-hardcore for P as in Theorem 5, C' must have size greater than Q(6%- (¢2/dm)?) -
s = Q(e?/m?) - s, and hence C must have size greater than Q(e?/m?) -s — O(m%logm). W

Thus, using a mildly hard predicate with the NW generator, we can obtain many bits of crude pseudo-
randomness. A natural next step would be to try to “extract” this crude pseudorandomness and obtain an
output that is indistinguishable from the uniform distribution. Unfortunately, one cannot hope to extract
uniformly distributed bits from a distribution that just has high Shannon entropy. Extraction is only possible
from distributions that have high min-entropy. Recall that a distribution D on a finite set S is said to have
min-entropy k if for all z € D, Pr[X = z] <2°%.

The reason that we were only able to argue about Shannon entropy in Theorem 6 is that we could only
say that dm x;’s land in H on average. To obtain a result about min-entropy, we would need to guarantee
that many z;’s lie in H with high probability. Clearly, this would be the case if the z;’s were generated
pairwise independently instead of via the NW generator. But we also need the special properties of the NW
generator to make the current argument about indistinguishability work. Following [IW97], we resolve this
dilemma by taking the XOR of the two generators to obtain a new generator with the randomness properties
of each.® That is, we obtain z1, ..., 2,, from a seed x using the NW generator, we obtain y1, ...,y pairwise
independent from a seed y, and then use z; = 1 ® y1,---,2m = Tm ® Ym as the inputs to the predicate
P. As we will prove shortly, this gives a generator whose output is indistinguishable from some distribution
with high min-entropy, as desired.

4.2 A pseudoentropy generator.
The following definition (following [HILL98]) formalizes the type of generator we obtain.

Definition 7 A generator G: {0, l}d —{0,1}™ is a (k, s,€) pseudoentropy generator if there is a distribu-
tion D on {0,1}™ of min-entropy k such that no circuit of size s can distinguish the output of G from D
with advantage greater than €.

Remark 8 The above definition differs from that of [HILL98] in several ways. Most importantly, we require
the output to be indistinguishable from having high min-entropy, whereas they only require that it be
indistinguishable from having high Shannon entropy. They later convert to the Shannon entropy to min-
entropy by taking many samples on independent seeds, but we cannot afford the extra randomness needed
to do this. Other differences are that we ask for indistinguishability against circuits rather than uniform
adversaries, that we do not require that G be computable in polynomial time, and that we do not explicitly
ask that k be larger than d (though the notion is uninteresting otherwise).

Recall that we need a way of generating many pairwise independent strings from a short seed.

Lemma 9 ([CG89] (see also [Gol97])) For any £ € N and m < 2¢, there is a generator PI; n,: {0, 1% -

{o, l}l)m such that for y selected uniformly at random, the random variables Pl (y)1, ..., Plym(y)m are
pairwise independent. Moreover Py ,,, is computable in time poly(¢,m).

Let P:{0, 1}4 — {0,1} be any predicate, let m be any positive integer, and let d be the seed length of
NW¢,m- Then our pseudoentropy generator using P is a function PEf 40,1393 5 {0,1}™ given by

PEL . (2,y) = P(¢1 ® y1)P(22 ® y2) - - P& ® Ym),

where
(1, m) =NWem(z) and  (y1,-..,ym) = Plim(y)

The following theorem confirms that this construction does in fact yield a pseudoentropy generator.

8]TW97] take the XOR of the NW generator with a generator coming from a random walk on an expander.



Theorem 10 Suppose no circuit of size s can compute P: {0, l}l — {0,1} on more than a 1 — § fraction
of the inputs in {O,I}K. Then, for any m < 2¢, PEim:{O,l}dHl — {0,1}™ is a (k,s',e) pseudoentropy
generator, with

seed length=d +3¢ = O(£*/logm)

pseudoentropy =k = 6m/2
adversary size=s' = Q(1/8°m*)-s — O(m?logm)
adversary’s mazimum advantage=¢ = O(1/ém)

Moreover, PEZm is computable in time poly(m,2£2/1°gm) with m oracle calls to P.

Proof: Let ey =1/dm. Let H be a (g1 /dm)-hardcore set for P, as given by Theorem 5. Like in the proof
of Theorem 6, we consider the following distribution D'.

Distribution D’:  Choose z uniformly from {0, l}d and y uniformly from {0, 1}33. Let (z1,...,&m) =
NWem(z) and (y1,...,ym) = Plyn(y). If 2; ® y; € H, select b; € {0,1} uniformly at random, and if
z; ®y; ¢ H let b; = P(z; ®y;). Output by - - - byy,.

By an argument like the proof of Theorem 6, it can be shown that no circuit of size s’ = Q(e}/m?) -
s — O(m?logm) = Q(1/6°m*) - s — O(m?logm) can distinguish D' from PEy,, with advantage greater than
€1. The only change needed is that y should be fixed at the same time as r;;1,...,7m, b and all the bits of
x outside S;, and z should be zg, @ y; rather than just zg,.

Next we argue that D' has statistical difference at most 4/dm from some distribution D with min-
entropy dm /2. This will complete the proof with ¢ = g1 +4/dm = O(1/dm), as the advantage of any circuit
in distinguishing D from PEf, m 18 at most its advantage in distinguishing D' from PEZ m Plus the statistical
difference between D and D'.

For any wy,...,w, € {0,1}5, define N(wi,...,wy) to be the number of w;’s that are in H. As in
the proof of Theorem 6, each z; @ y; is (individually) uniformly distributed and therefore lands in H with
probability 6. By linearity of expectations, the expectation of N(NW, ,(z) ® Pl (y)) is 0m. Now, since
{y;} are pairwise independent and independent from z, it follows that {z;®y;} are also pairwise independent.
Thus, by Chebyshev’s inequality,

om om 4
N m PI m e _— =
Pr | NONWen (o) @ PLn(®) < 5 | < s = 5

Therefore, D' has statistical difference at most 4/dm from the following distribution D:

Distribution D:  Choose z uniformly from {0, 1}d and y uniformly from {0, 1}34. Let (z1,...,Zm) =
NWem(z) and (y1,...,Ym) = Plyn(y). If N(@1 @ y1,...,Zm D ym) < dMm/2, output a uniformly selected
string from {0,1}"™. Otherwise, select by - --b,, as in D' and output by - - - by,. That is, if z; ® y; € H, select
b; € {0,1} uniformly at random, and if z; ®y; ¢ H let b; = P(z; ® y;).

Now we argue that D has min-entropy dm. Let v be any string in {0,1}™. Then, conditioned on any
z and y, the probability that D outputs v is at most 2-9™/2 since in all cases at least dm/2 of the output
bits of D are selected uniformly and independently. Thus, Pr[D = v] = Eg,y [Pr[D]s, = v]] < 279™/2, as
desired. W

4.3 Extracting the randomness

The tool we will use to transform our pseudoentropy generator into a pseudorandom generator is an extractor.



Definition 11 A function EXT: {0,1}" x {O,I}d — {0,1}™ is a (k,e)-extractor if for every for every
distribution D on {0,1}" of min-entropy k, EXT(D,Uy,) has statistical difference at most € from U,.

We will make use of the following recent construction of extractors:

Theorem 12 ([Tre99]) For every m, k, and € such that k < m, there is a (k,¢)-extractor Ex1:{0,1}" x

{0,1}* = {0, 1}\/E such that
log”(m/e)
d= —
0 ( log k
and Ex1: {0,1}™ x {0,1}* = {0, l}ﬁ is computable in time poly(m,d).

The following lemma confirms the intuition that applying an extractor to a distribution that is com-
putationally indistinguishable from a distribution with high min-entropy should yield a distribution that is
indistinguishable from uniform.

Lemma 13 Suppose G: {0, l}d1 — {0,1}™ is a (k, s,€1) pseudoentropy generator and EXT: {0,1}™ x {0, l}d2 —
{0,1}" is a (k,e2)-extractor computable by circuits of size t. Then G':{0,1}"T% — {0,1}" defined by
G'(u,v) = EXT(G(u),v) is a (s — t,e1 + €2) pseudorandom generator.

Proof: Let D be the distribution of min-entropy k that cannot be distinguished from G(Uy,). Suppose
C:{0,1}" — {0,1} is a circuit of size s—t that distinguishes G’ (Ug, , Uy, ) from uniform with advantage greater
than €1 +¢€2. By complementing C if necessary, we have Pr [C(G'(Uy,,Uq,)) = 1]=Pr[C(Uy,) = 1] > e1+¢a.
Let C': {0,1}™ x {0,1}* — {0,1} be the circuit of size s given by C’(z,v) = C(ExT(z,v)). Then

Pr [CI(G(Ulh): Udz] —Pr [CI(DJ Udz) = 1] = Pr [C(G(Ud1 ) Ud2))] —Pr [C(EXT(D, Udz)) = 1]
> Pr[C(G(Uay, Un))) = Pr[C(Unm) = 1] — &5
> E1,
where the second-to-last inequality follows from the fact that EXT(D,U,,) and U,, have statistical difference
at most 3. Now, by an averaging argument, the second argument of C' can be fixed to some v € {0, l}d2
to obtain a circuit C"(z) = C(x,v) of size at most s which distinguishes G(Uy,) from D with advantage
greater than €;. This is a contradiction. [ |

Summing up, we have the following theorem:

Theorem 14 There is a universal constant v > 0 such that the following holds. Let P:{0,1}" — {0,1} be
any predicate such that no circuit of size s can compute P correctly on more than a 1 — § fraction of the
inputs, where s < 2¢ and § > s77. Definen = s” and m = 2n%/§ and let PEZm: {0,1}" = {0,1}™ be the
(6m/2,9(1/8*m*)-s—O(m? logm), O(1/6m)) pseudoentropy generator of Theorem 10 and let EXT: {0,1}™ x
{0,1}% — {0,1}" be the (6m/2,1/6m)-extractor of Theorem 12. Let PE-PRGT:{0,1}"+% — {0,1}" be
defined by PE-PRG” (u,v) = EXT(PE,, (u), v).

Then, PE-PRGY is a (s',¢) pseudorandom generator with

output length=n = s"
€2
seed length=dy +dy = O ( )
log s
adversary size=s" = /s
adversary’s mazimum advantage =¢ = O(1/n?),

Moreover, PE-PRGY can be evaluated in time 20(¢°/198 %) with O(n?/6) oracle calls to P.



In particular, suppose P is a predicate in E such that no circuit of size s = 2%¢ can compute P correctly
on more than a 1 — & = 1 — 1/poly(£) fraction of the inputs. Then the output length is n = 249 the seed
length is O(¢) = O(logn), no circuit of size s' = 2%() can distinguish the output from uniform, and the
generator can be evaluated in time poly(n), so the resulting pseudorandom generator is sufficiently strong

to obtain P = BPP.
2 2
logm log s

g (i)
log(6m/2)

Proof: By Theorem 10,

By Theorem 12,

62
dy =0 =0(logs) <O (—) ,

logs

and EXT is computable in time ¢ = poly(m, ds) = poly(m). By Lemma 13, no circuit of size s’ can distinguish
the output of PE-PRG from uniform wth advantage greater than O(1/dm) = O(1/n?), where

s' = Q(1/8°m*) - s — O(m?logm) — t > Q(s' 197) — poly(s?)

By choosing « sufficiently small, s’ will always be at least 1/s. ®

Remark 15 As mentioned earlier, Hastad et al. [HILL98] introduced the notion of a pseudoentropy genera-
tor and showed that the crude pseudorandomness of such a generator can be extracted to yield a pseudoran-
dom generator. Their work is in the Blum—-Micali-Yao setting, in which the generators must be computable
in time polynomial in the seed length and hence one can only hope for the output to be polynomially longer
than the seed (rather than exponentially, as we obtain). Hence throughout their construction they can
afford super-linear increases in seed length, whereas preserving the seed length up to linear factors is cru-
cial for obtaining pseudorandom generators good enough for P = BPP. For example, they can afford to use
randomness-inefficient extractors such as 2-universal hash functions, whereas we require extractors which use
only a logarithmic number of truly random bits, which have only been constructed recently [Zuc96, Tre99].?

Remark 16 The output of the pseudoentropy generator PEZ m constructed in Theorem 10 is actually “nicer”
than stated. Specifically, it is indistinguishable from a oblivious bit-fizing source — that is, a distribution
on strings of length m in which m — k bit positions are fixed and the other k bit positions vary uniformly
and independently. Such sources were the focus of the “bit extraction problem” studied in [Vaz85, BBR85,
CGH™85, Fri92] and the term “oblivious bit-fixing source” was introduced in [CW89]. To see that the output
of PEE m is indistinguishable from an oblivious bit-fixing source, simply observe that the distribution D given
in the proof of Theorem 10 is such a source.!’ Extracting from oblivious bit-fixing sources in which all but
k bits are fixed is an easier task than extracting from a general source of min-entropy k, and already in
[CW89] there are (implicitly) extractors sufficient for our purposes.

Remark 17 It is natural to ask whether similar ideas can be used to directly construct BMY-type pseudo-
random generators from mild hardness. Specifically, we consider taking the construction of pseudorandom
generators from strong (i.e., very hard-on-average) one-way permutations (of [BM84, Ya082]) and replacing
strong one-way permutation with a weak (i.e., mildly hard-on-average) one. In analogy with Theorem 6,
one might hope that the resulting generator has output whch is indistinguishable from having high Shannon
entropy. Unfortunately, this is not the case in general, at least not to the extent one might expect.

To see this, let us recall the BMY construction. Let f : {0,1}" — {0,1}" be a one-way permutation, and
let b:{0,1}" — {0,1} be a hardcore predicate for f, so no polynomial-time algorithm can predict b(z) from

9Indeed, the term “extractor” was not even present at the time of [HILL98] and the first constructions of randomness-efficient
extractors used their Leftover Hash Lemma as a starting point.

10Actually, D is a conver combination of oblivious bit-fixing sources. Distribution X is said to be a convex combination
of distributions X1,...,X; if there is a distribution on I on {1,...,t} such that X can be realized by choosing i € {1,...,t¢}
according to I, taking a sample x from X;, and outputting x. It is easy to see that any extractor for oblivious bit-fixing sources
also works for convex combinations of them.
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f(z) with inverse-polynomial advantage over the choice of z. Then the Gy : {0,1}" — {0, 1}]c is defined
by G.(x) = b(@)b(f(2)b(f*(x)) - b(f*~*(z)). It is shown in [BM84, Yao82] that, as long as k = n®™), the
output of G cannot be distinguished from uniform by any polynomial-time algorithm.

Now we show to construct a weak one-way permutation F' (and a predicate B so that B(z) is mildly
unpredictable from F(x)) for which the output of Gr g is distinguishable from every distribution of high
Shannon entropy. To construct F, let f :{0,1}" — {0,1}" be a strong one-way permutation with hardcore
bit b: {0,1}" — {0,1} as above. Let t = [log2n]. F will be a permutation on strings of length n + ¢, where
the last t bits are viewed as an integer from 0 to 2! — 1. For z € {0,1}" and i € {0,...,2% — 1}, we define

F(z,i) = (z,i+1 (mod 2%)) ifie{0,...,n—1}
T 1 (f(x),i +1 (mod 2%)) otherwise.
. _ Ti41 lflE{O,,TL—].}
B(z,i) = { b(z) otherwise ’

where z;41 denotes the 7 + 1’st bit of z. It is easy to verify no polynomial-time algorithm can invert F' on
more than, say, 3/4 of the inputs and similarly B(z,¢) cannot be predicted from F'(z,i) with probability
greater than, say, 7/8. On the other hand, from the first 2¢ + n bits of Gr g(z,1), it is easy to predict the
remaining bits with probability 1: 2! 4+ n successive applications of F' always passes through a sequence of
points of the form (y,0), (y,1),..., (y,n— 1), during which the hardcore bits completely reveal y. All further
applications of F' and B are then polynomial-time computable given y. Therefore the output of Grp is
distinguishable from any distribution with Shannon entropy greater than 2¢ +n = O(n), whereas an analogy
with Theorem 6 would expect indistinguishability from Shannon entropy k/8 (since B cannot be predicted
with probability more than 7/8). The mild hardness of F' and B can be varied in this counterexample by
increasing or decreasing t relative to logmn.

5 List decoding and amplification of hardness

Recall the main theorem of Nisan and Wigderson (Theorem 4) which states that given a sufficiently hard-
on-average predicate P: {0,1}¢ — {0, 1}, one can get a pseudorandom generator. To obtain such a predicate,
Impagliazzo and Wigderson [IW97] start from a a predicate P’ that is hard in the worst case (i.e., no small
circuit computes it correctly on all inputs) and use a low-degree extension of P’ to obtain a multivariate-
polynomial function p that is mildly hard on the average (as in [BFNW93]). They then apply two different
XOR lemmas to obtain a functions that grow harder; eventually obtaining as hard a function as required in
Theorem 4. We use an alternate approach for this sequence by showing directly that the function p above is
very hard; as hard as required for Theorem 4.!!

In the process, we discover a connection between amplification of the hardness of functions and efficient
decoding of error-correcting codes. In what follows, we describe the decoding properties that we need, why
they suffice for amplification of hardness, and how multivariate polynomials yield codes with such decoding
properties. For the last part, we use a result of Arora and Sudan [AS97], which involves a technically hard
proof. We also provide a simpler proof of their result, with some improved parameters. (These improvements
are not needed for the hardness amplification.)

5.1 Notation and Definitions

We will be working with error-correcting codes over arbitrary alphabets. A word or vector over a g-ary
alphabet is simply an element of [¢]™. It will often be more convenient to think of such a vector as a function
mapping [n] to [q]. We will switch between these two representations frequently.

Definition 18 For positive integers n,k,q with n > k, an (n,k), code C is simply an injective map from
[q]* to [q]". Elements of the domain of C are referred to as messages, and elements of the image are referred
to as codewords.

1 Strictly speaking, Theorem 4 requires hard Boolean functions. This requirement is weakened, both in the original result of
[IW97] and in our result, by using the Goldreich-Levin [GL89] construction of hardcore predicates from hard functions.
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For codes to be of use to us, we will need that the codewords are sufficiently “far” from each other. So
we define the Hamming distance between two vector z,y € [¢]™ to be the number of coordinates i such that
z(i) # y(i). (Notice we are already using the functional notation!) The relative Hamming distance, denoted
A(z,y), is Pricpn[z(i) # y(i)].

In the codes that we construct and use, we will expect that every pair of codewords are far from each
other. But we won’t impose such a restriction explicitly. We will rather impose a restriction that the
codewords allow for recovery, even after many errors have occured.

Definition 19 An (n,k), code C is (g,1) list-decodable if for every word r € [q]|", there exist at most |
codewords ¢ € C such that A(r,c) <1—(e+ %) (In other words, at most | codewords agree with any word r

ina(e+ %)—fmction of the coordinates.) r is referred to as the received word.

Of course, to make these codes useful, we will have some computational requirements. We will need an
infinite family of codes, one for every k, capable of encoding k letters of the alphabet into some 7 letters.
These codes should be uniformly constructible, efficiently encodable and efficiently list-decodable. We will
formalize all these notions in the next mega-definition. Two of these aspects, uniform constructibility and
efficient encodability are defined along standard lines. However the third aspect, list-decodability, will not
be defined along standard lines. We outline the non-standard aspects first:

e First, we will not expect the list-decoding algorithm to return one codeword, but rather a list of upto [
codewords such that all nearby codewords are included in the list. This is natural given our definition
of (g,1) list-decodable codes.

e Next, we will expect the list-decoding algorithm to work in time polynomial in logk and % This is
impossible in a conventional model of computation, since it takes time at least n > k to even read
the received word. However (and this is where the functional view of words becomes important) we
will allow the input and output of the list-decoding algorithm to be specified implicitly. Thus we will
assume we have oracle access to the received word r (the input). We will also output the codewords
implicitly, by programs that compute the function represented by the codeword. These programs will
be allowed to make oracle calls to the received word r. Thus both our decoding algorithm and their
output programs are best thought of as oracle-machines. We will use the notation M (z) to denote
the computation of an oracle-machine M on input z with access to an oracle O. When asking for
efficient list-decoding, we will expect that the decoding algorithm, as well as its output programs are
all efficient.

e Finally, we will allow our decoding algorithms, as well as their output programs, to be randomized.
Below we define what is means for randomized algorithms to approximately compute functions, and
to solve search problems.

Definition 20 A randomized procedure A is said to compute a function f: X — Y at a point z € X if
Pr[A(z) = f(x)] > 3/4, where the probability is taken over the internal coin tosses of A. We say that A has
agreement a € [0, 1] with f if A computes f on an « fraction of the inputs in D. We say that A computes
f if it has agreement 1 with f. A randomized procedure A is said to solve a search problem S, if on input x
and security parameter s, Pr[A(z,s) € S(z)] >1—-2"°.

Notice that in the latter case, we explicitly require that the algorithm A have a controllable error. This is
due to the fact that for arbitrary search problems, there are no generic techniques to reduce error. However
in our case, where S(z) is the set of lists which include all nearby codewords, we can amplify, by running
the list-decoding algorithm several times and outputting the union of the lists. So once again, we will ignore
the security parameter and just focus on getting the right answer with constant probability.

We are now ready to define codes that are “nice” for our purpose.

Definition 21 A family of codes C = {Cy} is nice if there exist functions n,q,l : Z x R — Z and a pair of
algorithms (ENCODE, DECODE) satisfying the following conditions exist:

1. For every k,e, Cre : [q]* — [g]™ is an (g,1)-decodable code, where n = n(k,e) < poly(k,1/¢), ¢ =
q(k,e) < poly(k,1/e) and I = I(k,e) < poly(logk,1/e).
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2. ENCODE(z; k, €) runs in time poly(n) and returns Cy.(x), where n = n(k,e).

3. DECODE' (k,¢) (i.e. with oracle access to a word r € [q]") runs in time poly(log k, 1) and outputs a list
of oracle machines My,...,M; s.t. for every message x € [q]* satisfying A(r,Cp(z)) <1— (e + %),
there exists j € [l] such that M] computes . DECODE as well as M;’s are allowed to be randomized.
The running time of M; is bounded by poly(log k,% .

A family of codes is binary if q(k,¢) = 2.

5.2 Nice codes suffice for amplification of hardness

We first show that the existence of nice binary codes suffice for obtaining functions that are as hard as
required for Theorem 4, given any predicate that is hard in the worst-case.

Theorem 22 Let C be a nice family of binary codes. Then there exists a constant ¢ such that the following
is true. Let P : {0,1}* — {0,1} be a function such that no circuit of size s computes P. Given & > 0,
define P' : {0, 1}[ — {0,1} by P' = Cy .(P).** Then no circuit of size s' = (¢/€)°-s computes the predicate
Cot .(P) correctly on more than a 1 + € fraction of the inputs.

In particular, taking e = 1/s7 and assuming £ < s7 for a sufficiently small constant v (e.g., v = 1/4c),
P’ has the following parameters:

seed length =10 = O ({)
adversary size=3s = /s
adversary’s mazimum advantage = = 1/s7,

Moreover, P' can be evaluated in time 2°©) with access to the entire truth table of P.

Proof: Let k = 2°. Assume for contradiction that B is a circuit of size s' = (¢/£)¢ - s that computes
Cor (P) correctly on more than a § +¢ fraction of the inputs. Then, the decoding algorithm DECODE? (k, ¢)
outputs a list of programs Mj, ..., M; such that for some j, M JB computes P correctly. Since the running
times of the algorithms A; are bounded by a polynomial in logk and %, we can express M JB as a circuit

(with some random inputs) of size at most (£/¢)¢ for some constant ¢/. This circuit will involve some oracle
calls to B. Throwing in the circuit for B in place of all the oracle calls increases the size of the circuit to at
most (£/e)¢ - s'.13 Using Adleman’s method, we can now get rid of the random inputs for a O(t) blowup in
size of the circuit. Thus we get a circuit of size at most (£/e)°*1 - s' to compute P. Setting ¢ = ¢/ + 1, we
get the desired contradiction. ®

We prove the existence of nice families of binary codes in two steps. First we show that multivariate
polynomials lead to a nice family of codes over a growing alphabet. Then we use that to construct a nice
family of binary codes.

Lemma 23 A nice family of codes with q(k,e) = poly(log k,1/¢), n(k,e) = poly(k), and l(k,e) = poly(1/e)
exists.

Remark 24 The proof will show that the alphabet size ¢(k,¢) is at least 1/e. This property will be used
later.

12H{ere we are again viewing messages and codewords as functions. Since the codes are binary, the functions are Boolean.

13For simplicity, we have bounded number of oracle calls by the running time, which in turn we have made a polynomial of
unspecified degree in logk and 1/e. Clearly, to obtain quantitively better results, one should optimize and compute the number
of oracle calls to the received word in the decoding procedure, as this is the only part of the running time which affects the
circuit size multiplicatively.
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Proof: The encoding scheme will interpret the message as the values of a multivariate polynomial on a
specified subset of points. The encoding will be the evaluation of the polynomial at all inputs. Below, we
specify the choice of the parameters: m, the number of variables, F', the field and H, where H™ is the subset
of points where the polynomial is specified by the message.

Given k, €, we pick a field F of cardinality ©((log? k) /€%); and a subset H C F of cardinality max{logk, 1/}
and set m = (logk)/(log|H|). We let ¢ = |F'| and associate the set [g] with F. Let b : [k] - H™ be any
injective map. To encode a string x € F*, we find a polynomial  : F™ — F of degree at most |H| — 1 in
each of the m variables satisfying p(b(i)) = P(i) for every ¢ € [k]. (Such a function does exist and can be
found easily. The function may be made unique by forcing p(z) = 0 for all z € H™ \ image(b).) Letting
n = |F|™ and associating [n] with F™, the encoding of z is simply the polynomial function p : [n] — F.
Note that, with these settings,

logk
log |H|

logn =m-log|F| = ( ) -O(loglog k + log1/e) = O(log k).

since log |H| > max{loglogk,log1/c}. Thus n = poly(k), as claimed.

The uniform constructibility and efficient encoding properties are standard. The decoding problem
reduces to a “polynomial reconstruction” problem: Given oracle access to a function f : F* — F, (implicitly)
find a list of all total degree d polynomials that agree with f on at least an e+ |1T\ fraction of the places. Arora
and Sudan [AS97] give an efficient solution to this problem. In Theorem 26, we give a simpler algorithm
and analysis with improved parameters. In particular, the theorem gives a solution to this problem provided
€+ 1/|F| > ¢y/d/|F]|, for some constant ¢ > 0. We need only verify that this condition is satisfied for the
choice of parameters above. With our choice of parameters,

|H| log k& 1/e
d<m-(Hl -1 logk - =logk -
<m-(|H|-1) <log (10g|H| 08 %A Toglog k-’ log(1/e) |~

while |F| = ©(log? k/e?), so the required condition is met. The solution produces a list of size | = poly(1/e),
and thus the code Ci : [¢]* — [g]™ is an (g, [)-error-correctible code. W

To convert the codes constructed above into binary codes, we “concatenate” them with “Hadamard
codes”. The list decoding algorithm is extended using the fact that the Hadamard codes have efficient list
decoders, due to a result of Goldreich and Levin [GL89]. For our purposes, even the brute-force algorithm
(one that enumerates all codewords and outputs all that are close to the received word) is sufficient.

Lemma 25 There exists a nice family of binary codes with parameters n = poly(k/e) and | = poly(1/e)

Proof: The encoding method is to concatenate the codes from Lemma 23 with Hadamard codes. Let C
be the code as given by Lemma 23. We obtain a nice family of binary codes C’ as follows.

Given k and ¢, we first set § = £3/4 and let (n,q,!) be the parameters of the code Cgs. (In particular,
q > 1/6). Let t = [log, q], and let b : [¢] — {0,1}! be any injective map. To encode a string z € {0,1}*,
we first encode it using Ci . to get y = Cr,s(x) € [g]*. Then we encode each coordinate of y as a 2'-bit
string, using the Hadamard code Had(-), described next. For i € [n], let z = b(y(i)). For w € {0,1}¢, the
w-th coordinate of the encoding Had(z) is (w, z) = 23:1 w(j)z(j)(mod 2), where z(j),w(j) € {0,1} are the
coordinates of w and z viewed as vectors in {0,1}*. Thus the concatenated encoding encodes a k-bit vector
T as an vector

Had(b(y(1)))Had(b(y(2))) - - - Had(b(y(n))), ~ where y = Cy4(x) € [¢]".

Clearly, the encoding is of length at most n’ = n - 2! < n - (2q) = poly(k, 1/¢) bits. It is also clear that the
encoding for the concatenated code can be computed efficiently. We now describe its decoding.

The decoding proceeds using the usual paradigm for the decoding of concatenated codes. We first decode
each symbol of the “inner” code, i.e., the Hadamard code; and then deocde the “outer code”; in each case
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we use the respective decoding algorithm. The details that need to be verified are: (1) We need to specify
the decoding algorithm for the Hadamard code. (2) We have to implement the decoding paradigm with
input/outputs being implicit. (3) While decoding the inner-code, we don’t get unique answers but rather a
list of codewords. We need a list-decoding version of the decoding procedure.

Given k, €, and an oracle for the received word r : [n]x[2¢] — {0, 1}, we implement oracles |, 75, ..., 7} Je2
[n] — [q] as follows. Given i € [n], we consider the oracle r|; : [2!] — {0, 1} given by 7|;(j) = r(i, 7). We find
a list of all elements z € [g] such that Had(b(z)) has agreement at least 1/2 + ¢/2 with r|;. A brute force
implementation takes O(g?) = poly(logk,1/¢) time. (A more efficient solution to this problem would be to
use an algorithm from [GL89] that runs in time poly(t,1/¢).) It is well-known (see, for instance, [Gol95])
that this list has at most 1/&? elements. The oracle r;-, on query i, outputs the j’th element of this list (after
sorting them using some canonical order, such the lexicographic order). We then invoke the list decoding
algorithm for Cy 5 1/ times, once for each 7, and take the union of the lists obtained. Thus, the resulting
list is of length at most [ - (1/&2) = poly(1/e).

To analyze the correctness of our decoding algorithm, consider a message z such that C;c,s (x) has % +e
agreement with r. Let y = Cp,5(z). An application of Markov’s inequality yields that for at least £/2 fraction
of the indices i € [n], r|; has at least 1/2+¢/2 agreement with Had(b(y(¢)), and therefore r|; = r} (i) for some
j. Since there are only 1/e? choices for j, it follows by averaging that there exists a jo such that T, (8) = 7l;
for at least a fraction (¢/2) - €2 = &3/2 of the indices i € [n]. Since 1/q +J < 2§ = £3/2, the list-decoding
algorithm for Ci,s will produce a list of upto | = poly(1/e) oracles which includes z. ®

Comparison with [IW97]. Theorem 22 and Lemma 25 provide sufficient hardness amplification to im-
mediately apply the Nisan—-Wigderson construction (Theorem 4) and obtain the main result of Impagliazzo
and Wigderson [IW97]. Specifically, if P is a predicate in E which cannot be computed by circuits of size
s = 29¢_ then P’ given in Theorem 22 will also be in E, and circuits of size s' = 22() will not be able
to compute P’ with advantage more than ¢ = 2~ Plugging such a predicate P’ into Theorem 4 gives
a pseudorandom generator whose seed length is logarithmic in its output length and security, and hence
implies P = BPP.

In addition, our construction provides hardness amplification for other settings of parameters that im-
proves over the hardness amplification of [IW97]. Specifically, the input length of P’ is only a constant factor
more than that of P (i.e., £ = O({)), regardless of the security s. In contrast, hardness amplification of
[IW97] produces a predicate with input length ©(¢?/logs), which is O(£) only if s = 2%(9). Note, however,
that our construction does not remove the ©(¢?/log s) overhead in seed length incurred when subsequently
applying Theorem 4 to obtain a pseudorandom generator. Obtaining a construction of pseudorandom gener-
ators from hard predicates which increases seed length by only a constant factor for all values of the security
s is still an open problem. Our result demonstrates that it suffices to solve this problem for very hard-on-
average predicates. A solution would have significant implications for the construction of extractors, via the
connection between extractors and pseudorandom generators recently established by Trevisan [Tre99).

The derandomized XOR lemma of Impagliazzo and Wigderson does have an important advantage over
our hardness amplification technique when one starts with a mildly hard predicate rather than a worst-case
hard predicate. Specifically, if P : {0, 1}4 — {0,1} cannot be computed by small circuits on more thana 1—4§
fraction of inputs, they obtain a hard-on-average predicate P’ is computable in time poly (¢, 1/d) with oracle
access to P. Our construction, on the other hand, does not take advantage of this mild hardness. Instead,
we do a “global” encoding of P, just as if P were worst-case hard, to obtain a hard-on-average predicate P’
computable in time poly(2¢) with oracle access to P. It would be interesting to see if mild hardness could
be amplified “locally” as in [IW97] using techniques based on error-correcting codes.

5.3 List-decoding of multivariate polynomials

Recall that we wish to solve the following problem:

Given: An oracle f: F — F' and parameters d € N and € € R.

Goal: Reconstruct (an implicit representation for) every polynomial that has e-agreement with the function
f. Specifically, construct randomized oracle machines My, ..., M; such that for every polynomial p: F™™ — F
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of degree d that has (relative) agreement € with f, there exists j € [I] such that M ]f computes p.

We will be interested in the running time of the “reconstruction procedure”, i.e., the time taken to gen-
erate the machines My, ..., My, as well as the running times of the machines M, ..., My.

Theorem 26 There exists a constant ¢ such that the reconstruction problem above can be solved in time
poly(mdlog |F|/e), provided € > c¢\/d/|F|. Furthermore, the running time of each of the oracle machines
listed in the output is at most poly(mdlog|F|/e).

Remark 27 1. This theorem is a strengthening of a theorem due to [AS97]. In particular, the lower
bound on e here is smaller than that of [AS97], who obtain an unspecified polynomial in d and ﬁ
Furthermore, our proof is simpler and in particular does not require “low-degree testing.”

2. The bound of Q(y/d/|F|) is within a constant factor of the bound for the univariate case. The constant
¢ above is not optimized in this writeup. But our methods can push it down to any constant greater
than 2. For the univariate case, this constant is 1. No inherent reason is known for the gap.

Fix an oracle f: F™ — F and a degree d polynomial p: F™ — F with § agreement with f. We observe that
it suffices to reconstruct a (randomized) oracle machine M such that M/ has sufficiently high agreement with
p. This is due to the existence of “self-correctors” of polynomials [BF90, Lip89, GLRT91, GS92]. Specifically,
we use the following theorem:

Theorem 28 ([GLR*91]) There erists a randomized oracle machine Corr taking as parameters integers d
and m and a field F' such that on access to an randomized oracle M: F™ — F with agreement % with some

degree d polynomial p, Corr™ computes p in time poly(d,m) provided |F| > 2(d + 1).

As in the algorithms of [BF90, Lip89, GLR*91], we use the properties of “lines” in the m-dimensional
space F™  defined below.
Definition 29 The line through z,y € F™, denoted ., is the parametrized set of points {lz,y(t)déf(l -
t)x +ty |t € F}. Given a function f: F™ — F, f restricted to the line I, , is the function f|;, :F — F

given by fli,, () = f(lzy(1))-

Notice that if f is a polynomial of total degree d, then f|;,  (t) is a univariate polynomial of degree at
most d. Our strategy, to reconstruct the value of p at a point z, is to look at a random line going through z.
On this line p turns into a univariate polynomial. Furthermore, the random line through the randomly chosen
point z is a “pairwise independent” collection of points from F™. Thus p and f will have agreement close to
4 on this line as well. Thus the goal of finding p(z) “reduces” to the goal of reconstructing p restricted to this
line, i.e., a univariate reconstruction problem, a problem that has been addressed in [ALRS92, Sud97, GS98].
In particular, we use the following theorem.

Theorem 30 ([Sud97]) Given a sequence of n distinct pairs {(t;,v;)}y, ti,v; € F and integer parameters
d,k, a list of all polynomials g1,...,9 satisfying |{i € {1,...,n}|g;(t:) = vi}| > k, can be reconstructed in
time poly(n,log |F|) provided k > v/2dn. Furthermore | < 27”

We describe a family of reconstruction procedures,{M; ;}.cFm qcr, that will be used to construct the
machines M, ..., M. To gain some intuition into the procedure below, it may be helpful to consider only

the machines M ... The machines take as parameters a positive real number ¢, integers d and m, and a
field F.

o M, o(2):

1. (Explicitly) find a list of distinct (univariate) polynomials g1, ..., g; such that this list includes
all polynomials that have agreement at least £/2 with f|;, . and does not include any polynomial
with agreement less than /4.

z,z
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2. If there exists a unique index ¢ € {1,...,l} such that ¢;(0) = a, then output g;(1), else output
anything.

Remark 31 1. Step 1 above can be computed in time polynomial in 1/e, log|F| and d as follows: If

F' is small enough, then we let t1,...,t, be all the elements of F' and invoke Theorem 30 on the set
{(ts, fls,2(t:))) o, with k = en/2. (Note that k¥ > v2dn as long as ¢ > 24/d/|F|, which is true
by hypothesis.) If F' is too large to do this, then set n = poly(d/e) and pick t1,...,t, distinct at
random from F' and then invoking Theorem 30 on the set {(¢;, f(l;,2(:)))}, with k = en/4. Since
there are at most 4/¢ polynomials with agreement at least £/2 with f|;, , (by the “furthermore” part
of Theorem 30), the choice of n guarantees that with high probability, all of these polynomials agree
with f[;, , on at least en/4 of the t;’s. As the choice of n also guarantees that k = (en/4) > V2dn,
Theorem 30 yields a list containing all polynomials with agreement at least €/2. Now, we wish to
discard all polynomials with agreement less than £/4 — this can be accomplished by comparing each
polynomial g obtained with f|;, , on a random sample of poly(1/¢) points from F' and discarding it if
it has agreement smaller than ¢/3 on this sample.

. The number of polynomials output in Step 1 above is at most 8/¢ (by the “furthermore” part of

Theorem 30.)

To shed some light on the steps above: We expect that p|;, , is one of the g;’s returned in Step (1) above.
In Step (2) we try to find out which g; to use by checking to see if there is a unique one which has ¢;(0) = a

(recall that p

1...(0) = p(2)), and if so we use this polynomial to output p(z) = pli, (1) = gi(1).

This

intuition is made precise in the Section 5.4. We now finish the description of the reconstruction procedure.

¢ Reconstruction algorithm.

— Repeat the following O(log(1/¢)) several times:

1. Pick z € F™ at random.
2. Pick y € F™ at random.

3. Find a list of univariate polynomials hy, ..., h; including all polynomials with agreement at

least £/2 with f|,_ "

4. For every polynomial h;, include the oracle machine Corr™=1i© in the output list.

5.4 Analysis of the polynomial reconstruction procedure

Now we show that the reconstruction algorithm runs in time run in time poly(22log|F|) and outputs a
list of oracles that includes one for every polynomial p that has ¢ agreement with f. Theorem 26 follows

immediately.
The claim about the running time is easily verified. To analyze the correctness, it suffices to show

that

in any iteration of Steps 14 in Reconstruction Algorithm, an oracle computing p is part of the output
with, say, constant probability for any fixed polynomial p of degree d that has £ agreement with f. We show
this in two parts. First we argue that for most choices of z, M, (. is an oracle that computes p on 15/16

of all inputs (and thus Corr™=7) computes p everywhere). Then we show that for most pairs (z,y), there

exists j s.t. the polynomial h; reconstructed in Step 3 satisfies h;(0) = p(z).

Lemma 32 There exists a constant ¢ s.t. for every d, F, ¢ satisfying 1 > € > cy/d/|F|, it is the case that

Pzr [Mz,p(z) (m) = p("[")] > 15/16:

with probability at least % over the random choice of z € F™,

Proof: We first argue that when both z and z are picked at random, certain bad events are unlikely to

happen. The next two claims describe these bad events and upper bound their probability.

14This is done as in Remark 31, though here we do not care if the list contains extra polynomials with low agreement.
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Claim 33 Ife > 16+/1/|F)|, then
Pr[Aiell] st. g; =pl..] <1/64.

)

Proof: For the polynomial p|;, , not to be included in the output list it has to be the case that p and f
do not have £/2 agreement on the line I, ;. But the line is a pairwise independent collection of |F'| points in
F™_ The quantity of interest then is the probability that a random variable with expectation ¢ attains an
average of at most £/2 on |F'| samples. Using Chebychev’s inequality, this probability may be bounded by

4 Coas o1
g <16z S5 ™

Claim 34 Ife > 32,/d/|F)|, then

1...(0) = g;(0)] < % < 1/64.

Proof: For convenience in this argument, assume that M, ;. finds all polynomials of agreement at least
e/4 with f|;, , rather than just a subset, as that is clearly the worst case for the claim. Now, instead of
picking = and z at random and then letting g¢1,. .., g be all degree d polynomials with /4 agreement with
fli..., we first pick 2’, 2’ independently and uniformly at random from F™; and let g1, ..., g;, be all univariate
degree d polynomials with £/4 agreement with f |lz,,m,. We now pick two distinct elements ¢;,t uniformly
from F and let z = I, »(t1) and & = I,/ »(t2). Notice that we can express 2’ = I, ;((t2 — t1)™" - t2) and

' =1, ,.((t2 — t1)7" - (t2 — 1)). Thus the lines [, , and I, ,» contain the same set of points and thus the

polynomials gi(t)défgg(tg +t-(t1 —t2)) are exactly the set of polynomials with /4 agreement with f|;, .. Thus

the event “p|i, , # g; and pli. ,(0) = g;(0)” is equivalent to the event “p|;_, , # g; and pli,, , (t1) = g;5(t1)”,
where t; is being chosen at random. This probability is at most % for any fixed j and thus the probability
that there exists a j s.t pli,, ., (t1) = g;(t1) is at most - r7- From 1 < 8 and 1 > ¢ > 32,/d/|F]|, the claim
follows. ®

Pr(3je(l] st gj #pl.., andp

Discounting for the two possible bad events considered in Claims 33 and 34, we find that with probability
at least 1 — 31—2, there exists a polynomial g; returned in Step 1 of M .y such that g; = p|;, ,; furthermore,
this is the unique polynomial such that g;(0) = pli, ,(0) = p(z). Thus the output is g;(1) = p;, , (1) = p(=).

Thus with probability at least 31/32, we find that for a random pair (2,x), M ;) computes p(z). An

application of Markov’s inequality now yields the desired result. W

Lemma 35 With probability at least 1 — 6%1, one of the polynomials reconstructed in any one execution of
Step 3 of Reconstruction Algorithm is p|;,  ; and thus one of the oracles created in Step 4 is CorrM=(),

provided |F| is large enough.

Proof: Asin Claim 33 we argue that p and f have at least ¢/2 agreement on the line I, , and then p|;_ , is

one of the polynomials output in this step. Thus one of the oracles created is Corr™=* for a = pli.,(0) =p(2).
|

Proof of Theorem 26: Fix any degree d polynomial p with € agreement with f. Combining Lemmas 32
and 35 we find that with probability 31/64, one of the oracles output by the reconstruction algorithm is
Corr™=¢); and z is such that M, p() computes p(z) for at least 15/16 fraction of z’s in F™; and thus (by
Theorem 28) Corr™=2() computes p on every input.

Repeating the loop O(log %) times ensures that every polynomial p with € agreement with f is included
in the output with high probability, using the well-known bound that there are only O(1/¢) such polynomials
(cf., [GRS98, Theorem 17]). MW
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