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Abstract

We establish hardness versus randomness trade-offs for a broad class of randomized proce-
dures. In particular, we create efficient nondeterministic simulations of bounded round Arthur-
Merlin games using a language in exponential time that cannot be decided by polynomial size
oracle circuits with access to satisfiability. We show that every language with a bounded round
Arthur-Merlin game has subexponential size membership proofs for infinitely many input lengths
unless the polynomial-time hierarchy collapses. This provides the first strong evidence that
graph nonisomorphism has subexponential size proofs.

We set up a general framework for derandomization which encompasses more than the tradi-
tional model of randomized computation. For a randomized procedure to fit within this frame-
work, we only require that for any fixed input the complexity of checking whether the procedure
succeeds on a given random bit sequence is not too high. We then apply our derandomization
technique to four fundamental complexity theoretic constructions:

e The Valiant-Vazirani random hashing technique which prunes the number of satisfying
assignments of a Boolean formula to one, and related procedures like computing satisfying
assignments to Boolean formulas non-adaptively given access to an oracle for satisfiability.

e The algorithm of Bshouty et al. for learning Boolean circuits.
o Constructing matrices with high rigidity.
e Constructing polynomial-size universal traversal sequences.

We also show that if linear space requires exponential size circuits, then space bounded ran-
domized computations can be simulated deterministically with only a constant factor overhead
in space.
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1 Introduction

The power of randomness in computation is a fundamental area of study in computer science. We
know of many examples where “flipping a coin” facilitates algorithm design. From a complexity
theoretic point of view, however, the merits of randomization remain unclear. Can we always
eliminate the use of random bits without substantially increasing the need for other resources?

Blum and Micali [BM84] and Yao [Yao82] gave a partial answer to this question. They realized
that if some of the seemingly hard algorithmic problems really are computationally intractable then,
in certain settings, randomness cannot help much. Nisan and Wigderson [NW94] established a range
of hardness versus randomness trade-offs. They showed how to use any language in exponential time
that is nonuniformly hard in an average-case sense to construct a pseudo-random generator that
fools circuits of polynomial size. They obtained nontrivial derandomizations of polynomial-time
randomized decision algorithms under average-case hardness assumptions and even deterministic
polynomial-time simulations under the strongest of their hypotheses. Babai, Fortnow, Nisan, and
Wigderson [BFNW93] and Impagliazzo and Wigderson [IW97] relaxed the hardness condition from
average-case to worst-case. As a corollary, they showed how to simulate every polynomial-time
randomized decision algorithm deterministically in subexponential time for infinitely many input
lengths unless the polynomial-time hierarchy collapses [BENW93].

The authors of [NW94], [BENW93], and [IW97] used their techniques to derandomize traditional
models of randomized computation, most notably BPP. There is no reason, however, to restrict
ourselves to these models. We show how to apply the techniques used to derandomize BPP to more
general models of randomized computation. The key observation we make is that the reductions
proved in [NW94], [BENW93], and [IW97] are “black-box”, i.e., they relativize. More specifically,
the above papers show how to transform any small circuit that distinguishes the output of a
certain pseudo-random generator from the uniform distribution into a small circuit that computes
a function used to build the pseudo-random generator. We observe that these reductions work for
any nonuniform model of computation that satisfies certain closure properties, and in particular
for oracle circuits given any fixed oracle. Thus, in order to build a pseudo-random generator that
looks random to any small B-oracle circuit, we need only assume the existence of a function that
cannot be computed by small B-oracle circuits.

The above observations allow us to apply the classical hardness versus randomness results to
various settings, in particular to the nondeterministic setting of Arthur-Merlin games [Bab85].
The class AM of languages with bounded round Arthur-Merlin games forms a randomized ex-
tension of NP. The most notable problem in AM not known to be in NP is Graph Nonisomor-
phism [GMW91, GS89]. Derandomizing AM requires security against nondeterministic adversaries.
Rudich [Rud97] pointed out that pseudo-random generators in the traditional cryptographic set-
ting where an adversary has more resources than the generator cannot hope to have this property
because the adversary can always guess the seed and check. From a derandomization perspective,
however, the Nisan-Wigderson type of pseudo-random generator does not suffer from this draw-
back, as adversaries in this setting do not have the resources to run the generator — even if they
correctly guess the seed.

We give evidence that AM coincides with NP. More specifically, we show that the existence
of an exponential-time decidable language with high worst-case nonuniform SAT-oracle complexity
implies nontrivial derandomizations of AM. The trade-offs are presented in Table 1, where we use
CP to denote circuit complexity given access to oracle B. See Section 2 for precise definitions. The
parameter £ in Table 1 can be any space constructible function, the interesting range lying between
logarithmic and subpolynomial, e.g., polylogarithmic.



‘ hardness assumption: ‘ derandomization consequence: ‘
3 f € NEXP N coNEXP : C$4"(n) € n*(V) AM C N oNTIME[2"]

3 f € NEXP N coNEXP : C$AT(£(n)) € Q(n) | AM C UcsoNTIME[2(0") %]
3f € NENcoNE : G} (n) € 2%") AM = NP

Table 1: Hardness versus randomness trade-offs for AM.

If the hardness condition on the left-hand side of Table 1 holds for infinitely many input lengths,
then the corresponding derandomization on the right-hand side works for infinitely many input
lengths. We refer to the weak version of Table 1 when we assume the above hardness conditions only
hold for infinitely many input lengths. As in [NW94], BFNW93], and [IW97], we typically state our
theorems assuming the hardness conditions are true for every input length. Both interpretations
hold for all of our results.

We can view the assumptions in Table 1 as statements concerning the relationships among
computation, nonuniformity, and nondeterminism. For example, the third entry in the table states
that if nonuniformity and nondeterminism cannot significantly speed up computation then we can
derandomize AM. We point out that if the hardness assumption in the first row of the weak version
of Table 1 fails, then the polynomial-time hierarchy collapses to the third level.

Arvind and Kébler [AK97] obtained similar results to those in Table 1 using nondeterministic
circuits, but needed average-case hardness assumptions instead of worst-case. As opposed to oracle
circuits with access to SAT, nondeterministic circuits do not seem to have the closure properties
that allow us to relax the hardness hypothesis from average-case to worst-case. Bridging this gap is
crucial. It lets us conclude from the weak version of Table 1 that every language in AM, and graph
nonisomorphism in particular, has subexponential size proofs for infinitely many input lengths
unless the polynomial-time hierarchy collapses.

Our simulations of AM are a special case of an “all-purpose” derandomization tool which applies
to any randomized process for which we can efficiently check the successfulness of a given random
bit sequence. We formally define the notion of a success predicate in Section 4. If we can decide
the success predicate of a randomized process with polynomial size B-oracle circuits, then the
hardness assumption on the left-hand side of Table 2 provides a pseudo-random generator G with
the characteristics on the right-hand side of Table 2 for derandomizing the process. The symbol A
in Table 2 represents an arbitrary class of oracles.

hardness assumption: complexity of G: | seed length:

Jf e EXPA: C}B(n) € nv) EXP4 O(n¢) for every € > 0

3f € EXPA: CP(4(n)) € Q(n) EXPA O((£(n*))8) for some ¢ > 0
JfeEA: C}B(n) e 20(n) EA O(logn)

Table 2: Overview of pseudo-random generator constructions.

To illustrate the power of our generalization, we apply our technique to the following funda-
mental constructions from different areas of theoretical computer science.

e The Valiant-Vazirani random hashing procedure which prunes the number of satisfying as-
signments of a Boolean formula to one [VV86].

e Exact learning of circuits using equivalence queries and access to an NP oracle [BCG96].



e The construction of matrices with high rigidity [Val77].
e The construction of polynomial-size universal traversal sequences [AKL™'79].

Elaborating on the first application, given a Boolean formula ¢, we can construct in subex-
ponential time a collection of polynomial-size formulas with the Valiant-Vazirani property with
respect to ¢ unless the polynomial-time hierarchy collapses. If there exists a language in E with
nonuniform SAT-oracle complexity 2™ we achieve a polynomial time deterministic procedure. It
follows that, under the same hypothesis, we can find in polynomial time a satisfying assignment for
a Boolean formula given nonadaptive access to SAT as opposed to the standard adaptive method
of binary search. We obtain derandomization results of a similar kind for our three other examples.
See Section 5 for the precise statements.

Regarding universal traversal sequences, we obtain polynomial-time constructions under the
assumption that there exists a language in E with nonuniform complexity 2. We also show that
if there is a language in linear space that requires circuits of size 2™ then BPL = L, where BPL
denotes the languages recognizable in randomized logspace with bounded two-sided error. This
answers a question raised by Clementi, Rolim, and Trevisan [CRT98]. As a corollary, under the
same hypothesis, we can generate universal traversal sequences in logspace.

1.1 Organization

Section 2 introduces our notation. In Section 3 we generalize the techniques used to derandomize
BPP and establish how to use them in the Arthur-Merlin setting. Section 4 defines a broad class
of randomized algorithms and shows how our approach allows us to reduce the randomness of any
algorithm that fits within this class. In Section 5 we apply this framework to the four examples
mentioned above. We give some conclusions in Section 6.

2 Notation

Most of our complexity theoretic notation is standard. We refer the reader to the textbooks by
Balcdzar, Diaz and Gabarré [BDG95, BDGY0], and by Papadimitriou [Pap94].

An oracle circuit D is a circuit with AND, OR and NOT gates as well as oracle gates, which
compute membership of the string formed by their input bits to some unspecified oracle B. The
function D® the circuit computes depends on the oracle B. For fixed B, we will use the term B-
oracle circuit to denote an oracle circuit with access to B as an oracle. In this paper, we measure
the size of a circuit by its number of connections.

Given a Boolean function f : {0,1}* — {0,1} and an oracle B, the circuit complexity Cf (n) of
f at length n relative to B is the smallest integer ¢ such that there is a B-oracle circuit of size ¢
that computes f on inputs of length n. The hardness H J?(n) of f at length n relative to B is the
largest integer ¢ such that for any oracle circuit D of size at most ¢ with n inputs

B 1 1
|Pr[D%(z) = f(z)] — 5[ < 7,
T 2 t
where z is uniformly distributed over {0,1}".

A pseudo-random generator G is a sequence of functions (Gy,), such that G,, maps {0,1}*( to
{0,1}" for some function s : N — N with s(n) < n. The function s is called the seed length of G.
We say that G is computable in C if the problem of deciding the i-th bit of G, (o) given (n,o,1)



belongs to C. Given an oracle B, G is said to be secure against B if for almost all n and for any
oracle circuit D of size at most n

IE)T[DB(/J) = 1]~ Pr[DF(Gn(0)) = 1]| < —, (1)

[

S|+

where p is uniformly distributed over {0,1}" and o over {0,1}5("),

For any function ¢t : N — N, AM-TIME][t(n)] represents the class of languages L for which there
exists a deterministic Turing machine M that runs in time O(#(n)) on inputs of the form (z,y, z)
where z € {0,1}" and y, z € {0,1}*("), such that for any input z,

2
el = Pr [Bze{0, 1™ : M((z,y,2)) =1] > = (2)
ly|=t(n) 3
1
gL = Pr [3ze{0,1}'"™ : M((z,y,2) =1 < =, (3)
ly|=t(n) 3
where n = |z| and the probabilities are with respect to the uniform distribution. AM denotes

UesoAM-TIME[n¢].

EXP = UgsoDTIME[2"] and E = U, DTIME[2¢"]. Similarly, NEXP = U5 oNTIME[2"] and
NE = U,»NTIME[2°"].

For any complexity class C, the class i.0.-C consists of all languages L for which there is a
language L' € C such that L N {0,1}" = L' N {0,1}" for infinitely many lengths n.

For any function s : N — N, Q(s) denotes the class of all functions ¢t : N — N for which there
exists a constant € > 0 such that ¢(n) > €- s(n) for almost all n. w(s) is the class of ¢ such that for
any ¢ > 0 and almost all n, t(n) > c- s(n).

3 Derandomizing Arthur-Merlin Games

In this section, we develop methods for derandomizing Arthur-Merlin games and give evidence that
the class AM of languages with bounded round Arthur-Merlin games is not much larger than NP
and may even coincide with it.

As is customary in the area of derandomization, our approach will be to construct pseudo-
random generators with appropriate security properties. The following lemma, states that to deran-
domize AM = U.50AM-TIME[n¢], the pseudo-random generator need only be secure against SAT.
See the Appendix for a proof.

Lemma 3.1 Lets: N — N be a space constructible function, and t,7 : N — N be time constructible
functions. If there is a pseudo-random generator G computable in NTIME[7(n)] N coNTIME|[7(n)]
and with seed length s that is secure against SAT, then

AM-TIME][t(n)] C NTIME[2:¢ (") . 7(s(#'(n))) - t(n)], (4)
where t'(n) € O(t(n)log? t(n)).

In order to build such a pseudo-random generator, we will extend the work of [NW94], [BFNW93]
and [IW97] to the nondeterministic setting of Arthur-Merlin games. The main construction in these
papers is a reduction from a circuit that distinguishes the output of a pseudo-random generator
based on f from the uniform distribution to a circuit capable of computing f. We argue that this
construction works for any nonuniform model of computation satisfying certain closure properties,
and in particular for B-oracle circuits for any fixed oracle B. In this way, we obtain pseudo-random
generators secure against B from functions which B-oracle circuits cannot compute.

4



3.1 Subexponential Nondeterministic Simulations for AM

We begin with a generalized version of [NW94]:

Theorem 3.2 Let A be a class of oracles, B an oracle, and s : N — N a space constructible
function. For any Boolean function g € EXPA, there is a pseudo-random generator G computable
in EXPA which is secure against B and has seed length s provided

HgB( s(n)) > n’.

Proof Sketch
The constructions of Nisan and Wigderson [NW94] work for any nonuniform model which is closed

under precomputation and complementation. In particular, they carry through for oracle circuits.
O

The generalization of the main reduction implicit in [BFNW93] can be stated as follows:

Theorem 3.3 Let A be a class of oracles and B an oracle. For any Boolean function f € EXP4,
there is a Boolean function g € EXPA such that

HE(n) € 9(3 cf(%)/nQ).

Proof Sketch

The transformation in [BENW93] only needs closure of the model of computation under majority,
complementation, and certain arithmetic field operations. Since oracle circuits have these closure
properties, we obtain the desired result. O

Combining Theorems 3.2 and 3.3 yields our main tool for obtaining subexponential simulations.

Theorem 3.4 Let A be a class of oracles, B an oracle, and s : N — N a space constructible
function. For any Boolean function f € EXPA, there is a pseudo-random generator G computable
in EXPA which is secure against B and has seed length s provided

0}3 (W) € w(n).

In this section, we will apply Theorem 3.4 with A = NP N coNP and B = SAT. Note that
EXPNPNeoNP — NEXP N coNEXP. Together with Lemma 3.1, Theorem 3.4 yields the following
results:

Theorem 3.5 If there is a Boolean function f € NEXP N coNEXP such that CﬁAT(n) e nv(),
then
AM C N> oNTIME[2™].

Theorem 3.6 If there is a Boolean function f € NEXP N coNEXP, and a space constructible
function £ : N — N such that
CF(e(n)) € Q(n),

then there is a constant d such that

AM C U soNTIME[2(4)]



We can rephrase the weak version of Theorem 3.5 as:
Theorem 3.7 If NEXP N coNEXP ¢ PNF /poly, then AM C Nesoi.0.-NTIME[27].

So, if the conclusion of Theorem 3.7 fails to hold, then NEXPNcoNEXP C PN /poly, which implies
that EXP = £ NII}. Therefore, we obtain:

Theorem 3.8 If the polynomial-time hierarchy does not collapse, then every language in AM, and
graph nonisomorphism in particular, has subexponential size proofs for infinitely many lengths.

Theorem 3.6 yields a range of hardness versus randomness trade-offs for the various choices of
the parameter £. Since CJ‘? (n) € O(2™/n) always holds, the hypothesis of Theorem 3.6 cannot be
met for £ sublogarithmic. On the other hand, the conclusion becomes trivial in the case where ¢
is polynomial. Therefore, the interesting range for ¢ lies between logarithmic and subpolynomial.
For example, for ¢ polylogarithmic, Theorem 3.6 reads:

Theorem 3.9 If there is a Boolean function f € NEXP N coNEXP such that C?AT(n) € Q(2™)
for some € > 0, then every language in AM has quasipolynomial size proofs.

3.2 Polynomial Nondeterministic Simulations for AM

Theorem 3.6 is not powerful enough to yield a complete derandomization — even if £ is logarith-
mic, we only obtain quasipolynomial simulations. However, we can strengthen Theorem 3.6 for
logarithmic £ along the lines of [NW94], [Imp95], and [IW97].

We first generalize the theorem of [NW94] used to give conditions for equating BPP and P:

Theorem 3.10 Let A be a class of oracles and B an oracle. If there is a Boolean function g € E4
with Hf(n) € 220 | then there is a pseudo-random generator G computable in EA which is secure
against B and has seed length O(logn).

Impagliazzo and Wigderson’s construction [IW97], building upon work by Impagliazzo [Imp95],
also carries through for oracle circuits:

Theorem 3.11 Let A be a class of oracles and B an oracle. For any Boolean function f € EA
such that C]]?(n) € 24" | there is a Boolean function g € EA such that Hf(n) € 29,

Now, by combining Theorems 3.10 and 3.11, we can state a general derandomization theorem:

Theorem 3.12 Let A be a class of oracles and B an oracle. If there is Boolean function f € EA
such that C]?(n) € 22 then there is a pseudo-random generator G computable in EA which is
secure against B and has seed length O(logn).

When we apply Theorem 3.6 for A = NP N coNP and B = SAT, Lemma, 3.1 achieves complete
derandomizations of Arthur-Merlin games, noting that ENPNNP — NE N coNE.

Theorem 3.13 If there is a Boolean function f € NE N coNE such that C?AT(n) € 29 then
AM = NP. In particular, the same hypothesis implies that graph nonisomorphism has polynomial
size proofs.

We point out that, under the hypothesis of Theorem 3.13, we give an explicit certificate for graph
nonisomorphism in the proof of Lemma 3.1 in the Appendix.

Finally, we note that for derandomizing AM it is actually sufficient to construct efficient pseudo-
random generators that are secure against SAT-oracle circuits with parallel access to the oracle.
All theorems in this section also hold for oracle circuits with such restricted access.



4 A General Framework for Derandomization

In the previous section, we showed that an Arthur-Merlin protocol can be viewed as a SAT-oracle
distinguisher for a pseudo-random generator, and if a Boolean function f exists with sufficient
hardness against SAT-oracle circuits we can construct a pseudo-random generator based on f
that will look random to our Arthur-Merlin protocol. Still, we have only applied our results
to randomized decision algorithms. In this section, we show how to relax this condition and
obtain hardness versus randomness trade-offs for a broader class of randomized processes. Under a
sufficient hardness condition depending upon the particular randomized algorithm, we are able to
reduce the algorithm’s randomness to a logarithmic factor and, in some cases, provide a complete
derandomization. Weaker hardness conditions yield partial derandomizations.

We first describe the notion of a randomized process to which our approach applies. We formalize
a process that uses r(n) random bits on inputs of length n as a pair (F, ), where

e F is a function that takes a string = and a string p of length r(|z|), and outputs the outcome
of the process on input x using p as the random bit sequence.

e 7 is a predicate with the same domain as F' that indicates whether the process succeeds on
input z using p, i.e., whether p is a “good” choice of random bits for the given input z. We
call 7 the success predicate of the randomized process.

In the case of Arthur-Merlin games F' is Boolean. More specifically, for the game defined by (2)
and (3) in Section 2, F(z,p) coincides with the predicate 3z € {0,1}4™) : M((z, p,2)) = 1; the
success predicate w(z, p) equals F(z,p) if z € L and the complement of F(x,p) otherwise. In the
specific randomized processes we will consider in Section 5, F' will be non-Boolean.

What matters for our derandomization results is the complexity of the success predicate = and
more precisely the following property.

Definition 4.1 Let (F,n) be a randomized process using r(n) random bits, and B an oracle. We
say that B can efficiently check (F, ) if there is a polynomial p such that for any fized input = of
length n, the predicate 7 : {0, 1}"(") — {0,1} where z(p) = w(z,p) can be decided by B-oracle
circuits of size p(n + r(n)).

Using the success predicate as a distinguisher in the proofs of Theorems 3.4 and 3.12, we obtain
our general derandomization tool:

Theorem 4.2 Let A be a class of oracles and B an oracle. Let (F,n) be a randomized process
using a polynomial number of random bits, and suppose that B can efficiently check (F, ). Then
the hardness conditions of the left-hand side of Table 2 provide a pseudo-random generator G with
complexity and seed length s as specified on the right-hand side of the table such that for some
constant d > 0 and any input = of length n

| Pr{r(z, p) = 1] = Pr[n(z, Gpa(0)) = 1]| € o(1).

The parameter s in Table 2 can be any space constructible function.

In order to reduce the randomness of a randomized process, we will first analyze the complexity
of an oracle B capable of efficiently checking the associated success predicate and then construct

a pseudo-random generator secure against B based on a function with presumed hardness against
B.



5 More Applications and New Derandomizations

We will now apply the general framework of Section 4 to various fundamental constructions in
computational complexity. As customary, we only state our results in terms of the strongest of
the assumptions in Table 2, yielding polynomial time deterministic simulations. It should be
noted, however, that weaker assumptions can be taken (the weakest being that the polynomial-
time hierarchy does not collapse) in order to achieve weaker, but still subexponential, deterministic
simulations.

5.1 Valiant-Vazirani

Our first example is the randomized Boolean hashing protocol developed by Valiant and Vazirani
[VV86]. They give a method for pruning the satisfying assignments of a Boolean formula to one:

Theorem 5.1 ([VV86]) There exists a randomized polynomial time algorithm that, on input a
Boolean formula ¢, outputs a list of Boolean formulas such that:

o FEvery satisfying assignment to any of the formulas in the list also satisfies ¢.

o If ¢ is satisfiable, then with high probability at least one of the formulas in the list has exactly
one satisfying assignment.

Let F(x,p) denote the list of formulas the Valiant-Vazirani algorithm produces on input x using
coin flips specified by p. We define the success predicate m(z,p) to hold unless z is a satisfiable
formula and none of the formulas in F(z,p) has a unique satisfying assignment. It is clear that
(F, ) corresponds to a formalization of the Valiant-Vazirani process and fits within our framework.

Theorem 5.2 If there is a Boolean function f € E such that C?AT(’H) e 2% then, given a
Boolean formula ¢, we can generate in polynomial time a list of Boolean formulas such that:

o FEvery satisfying assignment to any of the formulas in the list also satisfies ¢.

o If ¢ is satisfiable, then at least one of the formulas in the list has exactly one satisfying
assignment.

Proof Sketch

Let (F,m) be the formalization as described above. Notice that checking whether a given Boolean
formula has at least two satisfying assignments is an NP question. Hence, we can check, in poly-
nomial time, whether a Boolean formula has a unique satisfying assignment using two queries to
SAT. It follows that SAT can efficiently check (F,7). Applying theorem 4.2 to (F,w) yields a
pseudo-random generator that looks random to the Valiant-Vazirani process. Enumerating over all
seeds and collecting all formulas produces the desired list of formulas. O

We now have the following corollary about computing satisfying assignments nonadaptively.

Corollary 5.3 If there is a Boolean function f € E such that C?AT(n) e 2" then, given a
satisfiable Boolean formula ¢, we can find a satisfying assignment for ¢ in polynomial time given
non-adaptive oracle access to SAT.

We also obtain interesting structural observations. Recall that SPP denotes the class of all
languages whose characteristic function is a GapP function [FFK94], i.e., the difference of two #P
functions. SPP contains both @P and PP. We refer the reader to the survey by Fortnow [For97]
for background on these counting classes. Theorem 5.2 implies:



Corollary 5.4 If there is a Boolean function f € E such that C?AT(n) e 292 then NP is
contained in SPP.

Similarly, we can conditionally derandomize the result by Toda and Ogiwara [T092] that the
polynomial-time hierarchy does not add power to GapP in a randomized setting. Applying our
techniques to their main lemma yields:

Lemma 5.5 Let B be any oracle. If there is a Boolean function f € E such that C?ATB (n) € 28xn)
then GapPNPB is contained in GapPPB.

This allows us to show:

Theorem 5.6 For any integer k > 1 the following holds. If there is a Boolean function f € E such
that C'J?QBF’“ (n) € 2%, then XF is contained in SPP.

Here TQBF}, denotes the language of all true fully quantified Boolean formulae with at most £ —1
quantifier alternations.

Proof Sketch

Corollary 5.4 relativizes and, under the given assumption, implies that the characteristic function
of any language in E}z is contained in GapPT®B¥r—1. The successive application of Lemma 5.5 with
B =TQBF,_,, B=TQBF, 3, ..., B=TQBF,, and B = @ yields under the given assumption
that GapPTQBF« is contained in GapP. O

Consequently, we have:

Corollary 5.7 Let B be any oracle hard for the polynomial-time hierarchy under polynomial-
time Turing reductions. If there is a Boolean function f € E such that C’]]?(n) e 2% then
the polynomial-time hierarchy is contained in SPP.

Corollary 5.7 is strongly related to Toda’s Theorem [Tod91] that the polynomial-time hierarchy
lies in BP - @P. Applying our derandomization technique directly to Toda’s Theorem yields:

Theorem 5.8 If there is a Boolean function f € E such that C;-BSAT(TL) € 2" then the polynomial
time hierarchy is contained in ®P.

5.2 Learning Circuits

Learning theory represents another area where we can apply our techniques. We will focus on exact
concept learning with equivalence queries [Ang88, Lit88], in which the learner presents hypotheses
to a teacher, who then tells the learner whether the hypothesis agrees with the concept in question.
If it does, the learner has succeeded; otherwise the teacher provides a counterexample and the
learner continues.

A major open problem is whether we can efficiently learn Boolean circuits in this model. Bshouty
et al. [BCG196] showed that we can, provided we have access to an NP oracle and to a source of
randomness. We give evidence that we may be able to dispense with the latter one.

Theorem 5.9 If there is a Boolean function f € NE N coNE such that C}FQBFZ (n) € 29" then
we can perform the following task in deterministic polynomial time given access to an NP oracle:
exactly learn Boolean circuits of size t using equivalence queries with hypotheses that are circuits of
size O(tn + nlogn).



As before, TQBF, denotes the language of all true fully quantified Boolean formulae with at most
one quantifier alternation.

Proof Sketch
We apply Theorem 4.2 to a randomized process (F,7) underlying the algorithm of Bshouty et
al. [BCG196]. We define F in the obvious way. The specification of the success predicate 7 is
somewhat more involved than in the examples we have seen so far. We only want to consider a
random seed as “good” if the learner, when using this seed, finds an equivalent circuit no matter
how the teacher picks the counterexamples. Therefore, we define 7 (z,p) to indicate whether for
every choice of candidate counterexamples, either one of them fails to be a valid counterexample on
input z and random seed p, or else the learner ends up with an equivalent circuit to z. It follows
from the construction of Bshouty et al. that 7 is a II5 predicate, and their analysis shows that for
any input z, m(z, p) holds with high probability.

Using the derandomization provided by Theorem 4.2, we end up with a polynomial number of
candidate circuits at least one of which is equivalent to z. So, we just present each of these to the
teacher and will succeed. O

Bshouty et al. used their learning theory result to improve the known collapse of the polynomial-
time hierarchy in case NP would have polynomial size circuits: They showed that the latter implies
that the polynomial-time hierarchy is contained in ZPPNF. Along the same lines, we obtain:

Corollary 5.10 If NP has polynomial size circuits and there is a Boolean function f € NENcoNE
such that Cy(n) € 29%n) then the polynomial-time hierarchy is contained in PNF.

5.3 Rigid Matrices

Several researchers have studied the problem of finding explicit constructions of combinatorial
objects that have been proven to exist non-constructively (by using the probabilistic method, for
example). In many cases, an explicit construction of some combinatorial object yields an interesting
complexity theoretic result. One of the notable examples of this is the problem of matrix rigidity.
The rigidity of a matrix M over a ring S, denoted R3,(r), is the minimum number of entries of M
that must be changed to reduce its rank to r or below (an entry can be changed to any element of
S). Valiant [Val77] proved that an explicit construction of an infinite family of highly rigid matrices
yields a circuit lower bound:

Theorem 5.11 ([Val77]) Let €,6 > 0 be constants. For any positive integer n, let M, be an
n X n matriz over a ring S,. If Rf}}n(en) > nlt0 for infinitely many values of n, then the linear
transformations defined by the family M, cannot be computed by linear size, log-depth circuits
consisting of gates computing binary linear operators on Sy,.

Valiant also proved that almost all matrices over an infinite field have rigidity (n — r)? and
almost all matrices over a fixed finite field have rigidity Q((n —r)2/logn). The best known explicit
constructions achieve rigidity Q(n2/r) over infinite fields [PV91, Raz] and Q(”Tzlog(%)) [Fri90]
over finite fields. These are not sufficient to obtain circuit lower bounds using Theorem 5.11.
Under a hardness assumption, our derandomization technique will give an explicit construction
to which Theorem 5.11 applies: a family of matrices M,, over S, = Zyp,[z] such that Rf][‘n (r) €
Q((n —r)?/logn), where p(n) is polynomially bounded.

We will need to use the following lemma which follows directly from [Val77]:
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Lemma 5.12 ([Val77]) Let S be a ring with at least 2 elements, and n a positive integer. All but
at most a % fraction of the n x n matrices M over S satisfy

(n—7)?—2n—2logn 5)
1+2logn )
We can use our technique to achieve the nonconstructive rigidity bounds by noticing that there
exist polynomial-sized SAT-oracle circuits which can check if a matrix is rigid.

Ry(r) >

Theorem 5.13 If there exists a Boolean function f € E such that C?AT(n) € 29M) | then given
integers n = 1 and p > 2, we can construct in time polynomial in n+logp a list of n X n matrices
M over S =7, most of which satisfy (5).

Proof Sketch

Let p be a string of length n? - [log p]. We will view p as the concatenation of n? blocks of [log p]
bits each. Let F((1™,p), p) denote the matrix whose ij-th entry is the (n(i — 1) 4+ j)-th block of p
interpreted as a number in binary and taken modulo p. We define the predicate w({1",p), p) to be
true if M = F((1™,p), p) satisfies (5). Note that the latter is a coNP predicate: If (5) is violated
for some r, we can guess modified values for fewer than the right-hand side of (5) many entries
of M and verify that the rank of the modified matrix over S is at most r. So, we can decide 7
by one query to an oracle for SAT. Moreover, Lemma, 5.12 states that for most sequences p, the
predicate holds. By applying theorem 4.2 to (F, ) we obtain a pseudo-random generator which on
most seeds outputs a matrix with the required rigidity property. Enumerating over all seeds gives
us the desired list of matrices. O

Now we need to combine this list of matrices into a single matrix with similarly high rigidity.
We refer to Appendix B for a proof of the following construction.

Lemma 5.14 Given n x n matrices My, M1, ..., My, over Z, where p is a prime larger than k, we
can construct in time polynomial in n + k +1logp an n x n matriz N over Zy[z| such that
Ryp(r) > max Ry (r), (6)

0<i<k
where the entries of N are polynomials of degree at most k.

Given this construction of rigid matrices we can conclude the following new relationship among
circuit lower bounds:

Theorem 5.15 If there exists a function f € E such that C?AT(n) € 2Un) then there exists
a polynomially bounded function p(n) and a polynomial-time computable family of matrices M,
where M, is an n X n matriz over Zp(n)[m] such that the linear transformations defined by the
family M,, cannot be computed by log-depth linear size circuits which have special gates that can
compute binary linear operators over Zp(n)[x].

Proof Sketch

For any polynomial time computable function p(n), Theorem 5.13 allows us to efficiently compute a
list of (n + log p(n))¢ matrices M over Z,,, for some constant ¢, most of which are rigid. Provided
p(n) is a prime satisfying

p(n)

p(n) 2 (n+logp(n))*, (7)
Lemma 5.14 efficiently combines them into a single matrix N over Zp,[z] which satisfies a rigidity
condition sufficient for Theorem 5.11. The smallest prime value for p(n) that satisfies (7) is poly-
nomially bounded in 7, and we can compute it in time polynomial in 7. O
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5.4 Universal Traversal Sequences

Universal traversal sequences, introduced by Cook, form another example where explicit construc-
tions have important complexity theoretic implications. A universal traversal sequence for size n
is a sequence o of labels from {1,2,...,n — 1} such that for any undirected connected graph G
with n vertices in which the incident edges at every vertex have been assigned distinct labels from
{1,2,...,n — 1}, the following process always visits every vertex of G: Pick an arbitrary start
vertex, and in subsequent steps, go along the edge with the label matching the next symbol of o;
in case of no match, stay put during that step and continue with the next symbol of o.

If we can construct universal traversal sequences in logspace, then we can solve undirected graph
connectivity in logspace, and symmetric logspace equals logspace [LP82]. However, we do not know
how to generate universal traversal sequences in logspace or even in polynomial time. Aleliunas
et al. [AKLT79] showed that most sequences of length O(n3) over {1,2,...,n — 1} are universal
traversal sequences for size n, but as of now the best explicit construction, due to Nisan [Nis92],
yields universal traversal sequences of length n©(°8™) We give evidence supporting the belief that
explicit universal traversal sequences of polynomial size can be generated efficiently.

A straightforward application of our technique would yield a polynomial-time construction
under the assumption that E requires exponential size SAT-oracle circuits. Since being a universal
traversal sequence is a coNP predicate, Theorem 4.2 applied to the Aleliunas et al. process and
oracle B = SAT would efficiently generate under that hypothesis a collection of sequences most of
which are universal traversal sequences. Concatenating all of them would yield the desired universal
traversal sequence of polynomial size. However, we can do better and dispense with the oracle B.

Theorem 5.16 If there is a Boolean function f € E such that C¢(n) € 29Un) | then we can construct
universal traversal sequences in polynomial time.

Proof Sketch

Let G encode a graph with n vertices with edge labels as above. For any sequence ¢ over
{1,2,...,n — 1}, let 7(G,0) indicate whether for every vertex v of G, the walk in G starting
from v and dictated by o visits every vertex of G. Let F(G, p) denote the sequence of length c - n3
over {1,2,...,n— 1} (where c is some sufficiently large constant) as specified by the successive bits
of p. Let (G, p) equal 7(G, F(G, p)). Note that 7 is a P predicate, so B = & can efficiently check
the randomized process (F, 7). Since every universal traversal sequence o satisfies 7(G, o), the re-
sult of Aleliunas et al. [AKL"79] shows that for any graph G, (G, p) holds for most p. Therefore,
Theorem 4.2 allows us to generate in polynomial time a collection of sequences o most of which
satisfy 7(G, o). Their concatenation forms a single sequence ¢’ satisfying 7(G,¢’). Since the o’s
are independent of G, so is their concatenation o’. Hence, we have constructed a sequence ¢’ which
satisfies 7(G,0') for every edge labeled graph G with n vertices, i.e., we have found a universal
traversal sequence o’. O

Under the stronger assumption that linear space requires exponential size circuits, we can
actually construct universal traversal sequences in logspace. In fact, that assumption allows us to
build logspace computable pseudo-random generators for logspace, and hence to derandomize BPL,
the class of languages accepted by logspace randomized Turing machines with bounded two-sided
€rror.

Theorem 5.17 If there is a Boolean function f € DSPACE[n| such that Cy(n) € 2Un) - then
BPL = L.
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We refer to Appendix C for a proof. Along the lines of Babai et al. [BNS92], the pseudo-random
generators behind Theorem 5.17 let us conclude:

Corollary 5.18 If there is a Boolean function f € DSPACE[n] such that Cy(n) € 20Un)  then we
can construct universal traversal sequences in logspace.

6 Conclusions

In this paper, we have demonstrated the power of relativization in the area of derandomization.
We gave several striking examples, most notably Arthur-Merlin games, and are convinced that
more will follow. In fact, Peter Bro Miltersen [Mil98] recently informed us that one can use these

techniques to obtain an alternate perspective on the recent breakthrough extractor constructions
of Trevisan [Tre98] and Vadhan [Vad98].
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A Proof of Lemma 3.1
Let L be a language satisfying (2) and (3), and consider
L' ={(z,y)|y € {0,1}"*) and 3z € {0,1}*) : M((z,y,2)) = 1}.

By Cook’s Theorem [Coo88], since L' € NTIME[n], there exists a circuit of size #/ (n) € O(t(n) log? t(n))
that many-one reduces L' to SAT on inputs (z,y) with z € {0,1}" and y € {0,1}*™). For any
fixed value of z € {0,1}", let C; denote the corresponding oracle circuit obtained by hardwiring
z. Note that C, makes a single oracle query and outputs the answer to that query. Since G is a
pseudo-random generator secure against SAT, conditions (2) and (3) imply that

ifxelL

>
ifregL, 8)

PrCT (Gymy(0) = 1]

N[0

where the probability is with respect to the uniform distribution of ¢ over {0,1}** (%),

Since G is computable in NTIME[7(n)]|NcoNTIME|7(n)], there exists a nondeterministic Turing
machine N running in time 7 that accepts {(n,o,1,b) |i-th bit of G, (o) equals b}. Now, consider
the nondeterministic algorithm in Figure 1.

counter < (0
for every o € {0,1}5( ()
for i+ 1,...,t(n)
guess p; € {0,1}
guess a computation path p for N((n, 0,1, p;))
if N((n,o,1,p;)) rejects along p
then reject and abort
guess z € {0, 1}

counter < counter + M ((z, p, z))

if counter > 2"'(")~1 then accept

Figure 1: Nondeterministic algorithm for deciding L

Figure 1 describes a nondeterministic Turing machine that runs in time 25¢' (™) .7 (s(#'(n)))-t(n).
The largest possible value of counter at the end of the outer loop over all possible nondeterministic
choices in the algorithm of Figure 1, equals 25(¢' (")) . Pr [C3AT(@, (n)(0)) = 1]. It follows from (8)
that the machine accepts L. This finishes the proof of Lemma 3.1.

B Proof of Lemma 5.14

Let ¢;j(xz) be the polynomial of degree at most k such that ¢;;(£) equals the ij-th entry of M,
0 <4 <k, ie., g interpolates the ij-th entries of all k¥ + 1 matrices. Note that the ¢;;’s exist and
that each coefficient can be computed in time polynomial in k + log p. Let N be the matrix whose
ij-th entry is ¢;;. We now argue that (6) holds.

Let m = RJZV”[Z] (r), and let N’ be a matrix obtained by changing m entries of N such that the
rank of N’ is at most . Then every (r+t) X (r+t) minor of N’ has determinant 0 for 0 < t < n—r-.
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Thus the determinant of any (r+t) X (r+t) minor of N’ can be viewed as an identically 0 polynomial
in its entries. Let ¢,(N') be the matrix obtained by substituting a € Z, for z in every entry of N’
(recall N' has entries from Z,[z]). Every (r +t) X (r +t) minor of ¢,(N’) has determinant 0 for
0 <t <n—r. We conclude by noticing that changing m or fewer entries of ¢,(/N) has reduced
its rank to a value less than or equal to r. But ¢,(N) equals M, for a € {0,1,...,k}. Therefore,
Ry?(r) < m for any 0 < i < k, ie., (6) holds. 0

C Proof of Theorem 5.17

The proof of Theorem 5.17 follows the outline of the proof of Theorem 3.12 — it is a combination
of the extension of Theorems 3.10 and 3.11 to the space bounded setting. The key observations are
the following:

e There is a way to make Nisan and Wigderson’s pseudo-random generator used in the proof
of Theorem 3.10 run in logspace, provided the function g is computable in linear space.

e The polynomial extensions of a Boolean function computable in linear space over fields con-
structible in linear space, are computable in linear space.

e The pseudo-random generators of Impagliazzo [Imp95] and Impagliazzo and Wigderson [TW97]
used to derandomize the XOR Lemma in the proof of Theorem 3.11 are computable in
logspace.

The last two bullets are straightforward to check. The crucial ingredient for the first bullet is the
space efficient construction of certain designs.

An (£,m) design of size k over a universe €2 is a collection S, So,..., Sk of subsets of 2, each
of size m, such that for any 1 <7 < j <k, the intersection S; N S; has size at most £.

Nisan and Wigderson [NW94] showed that the greedy approach works for constructing designs
with m = an, £ = fn, and k = 27" where n = |Q|, for a an arbitrary constant in (0, 1), and 8 and
~ sufficiently small positive constants depending on a. Their construction runs in time 2°("). We
show how to do it in space O(n) using a different approach, namely along the lines of [IW97].

Lemma C.1 For any constant a € (0,1), there are constants B,y € (0,1) such that we can
generate a (Bn,an) design of size 2™ over {1,2,...,n} in space O(n).

Eric Allender informed us that Avi Wigderson showed him the same construction. A similar
proof to the one we give next appeared in [AR98].

Proof of Lemma C.1

We will show that the following process has a positive probability of generating an (¢, m) design of
size k = 27" over Q = {1,2,...,n} for sufficiently small positive constants § and -y, where £ = n
and m = an: Pick k subsets of ) of size m in a pairwise independent way such that each of the
(:fl) subsets has about the same probability of being selected.

More precisely, we will do the following. We choose an integer a > 0 such that 2% < k3 - (Zfl) <
20+1 " pick k numbers s; € {0,1,...,2% — 1} at random in a pairwise independent way, and set
S; to be the [(s; mod (1)) + 1]-st subset of  of size m (say using lexicographical order). Known
constructions of such sample spaces [CG89] only need O(a) random bits and can generate the
samples from the random bits in space O(a). Moreover, checking whether a given sample Si, ..., S
forms an (¢, m) design can be done within the same space bounds. Therefore, we can cycle through
all possible random bit sequences, check the corresponding candidate design and output the first
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valid one. This process runs in space O(a) = O(n), and succeeds provided the probability of picking
a valid design this way is positive. The remainder of the proof will argue the latter.

Claim C.2 Let S, S’ be subsets of Q of size m chosen independently and uniformly at random.
Then for some constant c,,

! 2 a4n
Pr[|SNS'|>2a°n] <cq-n-exp <_T)
Proof of Claim C.2
First consider a subset S of (2 obtained by doing the following independently for every 7 € Q: Put
i in S with probability a. Similarly, and independently, construct S’. Then, by Chernoff’s bounds,

4
Pr[|SNS'|>2a*n] <exp (—%) .

Stirling’s formula yields that
1 1

Pr[|S|=an]~ m-%.

So,
4
Pr(|SnS|>2a%n] |S| = |9 = an] < Co-T0- XD (—%)
for some constant ¢, depending on «. Since the above distribution of S and S’ conditioned on
|S| = |S'| = an coincides with the uniform distribution of the statement of the claim, this finishes
the proof of the claim. (Claim C.2) O

There is a constant ¢ < 2k® such that for any 1 < i < k and any T C Q with |T| = m,

c c+1

Because of the pairwise independence, it follows that for any 1 < ¢ < j < k, the distribution of
(Si,S;) differs from uniform by at most

<Z>2'[(c;1)2_(2%)2] = (2c+1) (@)2

< (24 1)(%)2

4(4k3 + 1)
< 7,{&6
17
< B

in Li-norm. Therefore, by Claim C.2,

Pr[|S;NS;| > 2a%n] < 17
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Hence, with ¢ = fn and 8 = 2a2,

K\ (17 4
Pr[Si1,S2,...,Sk is not an (£, m) design] < (2) . (E + ¢o - M- exp (—%)) . (9)
Since the right-hand side of (9) approaches 0 for k£ = 27" with 0 < v < %, this finishes the proof
of the lemma. (Lemma C.1) O
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