Electronic Colloquium on Computational Complexity, Report No. 76 (1998)

Attribute Efficient PAC-learning of DNF with Membership Queries
Under the Uniform Distribution

Nader H. Bshouty Jeffrey Jackson Christino Tamon
Technion Duquesne University Clarkson University

November 13, 1998

Abstract

We study attribute efficient learning in the PAC learning model with membership queries.
First, we give an attribute efficient PAC-learning algorithm for DNF with membership queries
under the uniform distribution. Previous algorithms for DNF have sample size polynomial in
the number of attributes n. Our algorithm is the first attribute efficient learning for DNF, i.e.,
that runs in polynomial time and uses sample of size polynomial in logn. We also develop lower
bound techniques for PAC learning with membership queries under a fixed distribution and
show that the sample size of our algorithm for learning DNF under the uniform distribution is
almost optimal in terms of n. Finally, we present a learning algorithm for DNF that is attribute
efficient in its use of random bits.

1 Introduction

In the standard PAC learning model [V84], the time and sample complexity of a learning algorithm
are allowed to be polynomial in n, the number of attributes (variables), as well as in various other
parameters including s, the size of the target function f, and €, the accuracy required of the
approximating function h output by the learner. Recently, attribute efficient learning algorithms
have attracted significant attention [L88, B92, BH96, BHL95, D98, DH94, H88, UTW97]. Attribute
efficient learning algorithms are standard PAC algorithms with the additional constraint that the
sample complexity of the algorithm must be polynomial in logn and in the number of attributes
that are relevant to the target, which we will denote by 7.

Most efficient PAC learning algorithms in the literature run in polynomial time but have sample
size polynomial in n, regardless of the number of relevant variables r. A current challenge in
learning theory is to convert these algorithms to attribute efficient algorithms that use sample size
polynomial in logn. Existing PAC algorithms also generally output hypotheses that are similarly
of size polynomial in n. Thus a further challenge is to find attribute efficient algorithms that output
hypotheses of size polynomial in logn (and the other parameters) and not in n. We call the latter
attribute efficient learning with small hypotheses.

The first attribute efficient learning algorithm was found by Littlestone [L88] for learning thresh-
old functions from equivalence queries only (by a standard argument [A88], this implies an attribute
efficient algorithm in the PAC-model as well). However, Littlestone’s Winnow algorithm does not
output a small hypothesis. A number of attribute efficient learning algorithms have since been
found in various learning models [B92, BH96, BHL95, D98, DH94, H88, UTW97].

An attribute efficient result by Haussler [H88] is particularly relevant to the present work.
Haussler gave an attribute efficient with small hypothesis algorithm for PAC-learning a single
term (conjunction of literals). Using a standard learning reduction, Haussler’s result also gives an
attribute efficient learning algorithm for DNF expressions having constant number of terms. PAC-
learning DNF with non-constant number of terms (even with membership queries) is still one of the
outstanding open problems in computational learning theory. Jackson [J97] gave a PAC-learning

ISSN 1433-8092

algorithm for DNF with membership queries under the uniform distribution. The sample size® used
in Jackson’s Harmonic Sieve algorithm is O(ns*) and the hypothesis size is O(s? log(1/e)).

In this paper we give a new attribute efficient algorithm that uses sample size O(s* logn) while
retaining the small hypothesis of size O(s?log(1/¢)). Notice that our sample size for learning DNF
is independent of the number of relevant variables r. This is because large terms in the DNF may
be ignored under the uniform distribution and only terms of size O(log(s/€)) remain. Therefore,
in terms of s, r < slog s.

We also develop a new technique for finding a lower bound on the sample size needed to learn
classes in the PAC-learning model with membership queries. We apply this technique to find a
lower bound for PAC-learning DNF with membership queries under the uniform distribution. This
lower bound will show that our algorithm for PAC-learning DNF with membership queries under
the uniform distribution is almost optimal in n.

In the appendix, we develop some general derandomization techniques and apply them to obtain
a learning algorithm for DNF that is attribute efficient in its use of random bits. Specifically, our
algorithm requires O(s* log* n) random bits for learning DNF with membership queries under the
uniform distribution.

2 Definitions and Notation

Let n be some positive integer and let [n] = {1,2,...,n}. We consider Boolean functions of the
form f:{0,1}"™ — {—1,+1}, the class C,, of such functions, and the countable union of such classes
C = U,>0Crn. In this paper we will focus on the class of DNF expressions. A DNF formula is a
disjunction of terms, where each term is a conjunction of literals. A literal is either a variable or
its negation. The size of a DNF f is the number of terms of f. The class of DNF formulas on n
variables consists of Boolean functions on n inputs that can be written as a DNF formulas of size
polynomial in 7.

For a € {0,1}", denote the i-th bit of a by a;. The Hamming weight of a, i.e., the number
of ones in a, is denoted wt(a). For i € [n], the unit vector e; is the vector of all zeros except for
the 4-th bit which is one. For I C [n], the vector e; denotes the vector of all zeros except at bit
positions indexed by I where they are ones. We denote the bitwise exclusive-or between two vectors
a,b € {0,1}" by a @ b. The dot product a - b is defined as Y ;- ; a;b;. When dealing with subsets,
we identify them with their characteristic vectors, i.e., subsets of [n] with vectors of {0,1}". So for
two subsets A, B, the symmetric difference of A and B is denoted by A @ B.

The asymptotic notation O(f(n)) stands for O(f(n)poly(log f(n))), where poly(n) = n°M.
The function sign(z) returns +1 if z is positive and —1 is z is negative.

Let f,h be Boolean functions. We say that h is an e-approxzimator for f under distribution D if
Prp[f # h] < e. We also use the notation fAh to denote the symmetric difference between f and
h, i.e., {z : f(z) # h(z)}. The example oracle for f with respect to D is denoted by EX(f, D).
This oracle returns the pair (z, f(z)) where z is drawn from {0, 1}" according to distribution D.
The membership oracle for f is denoted by MEM(f). On input z € {0,1}", this membership
oracle returns f(z). The Probably Approzimately Correct (PAC) learning model [V84] is defined
as follows. A class C of Boolean functions is called PAC-learnable if there is an algorithm A such
that for any positive € (accuracy) and ¢ (confidence), for any f € C, and for any distribution D,
with probability at least 1 — §, the algorithm A(EX(f, D),¢,6) produces an e-approximator for f
with respect to D in time polynomial in the size s of f, n, 1/e and 1/4. We call a concept class
weakly PAC-learnable if it is PAC-learnable with € = 1/2 — 1/poly(n, s). The e-approximator for f
in this case is called a weak hypothesis for f. If C is PAC-learnable by an algorithm A that uses
the membership oracle then C is said to be PAC-learnable with membership queries.

A variable or input z; to a function f is relevant if f(a) # f(a®e;), for some a € {0,1}". If there
exists a function ¢(n) = o(n) so that C is PAC-learnable by an algorithm A that asks poly(r, s)¢(n)
examples and queries, where r is the number of relevant variables of the target function f € C,

'Here and elsewhere, we focus in our sample complexity bounds on n and s, although the bounds are also
polynomial in all other relevant parameters.

then C is said to be t(n)-attribute efficient PAC-learnable with membership queries. A class is
attribute-efficient PAC-learnable if it is logn-attribute efficient PAC-learnable. Moreover, if the
algorithm A outputs an e-approximator h of size poly(r, s)t(n), then C is said to be PAC-learnable
attribute efficiently with small hypothesis.

The Fourier transform of a Boolean function f is defined as follows. Let f(a) = Ey[f(x)xq(x)]
be the Fourier coefficient of f at a € {0,1}", where x,(z) = (—1)** and the expectation is taken
with respect to the uniform distribution over {0,1}". It is a well-known fact that any Boolean
function f can be represented as f(z) = >, f(a)xa(z), since the functions x4, a € {0,1}", form an
orthonormal basis of real-valued functions over {0,1}". When dealing with a real-valued function
g : {0,1}™ — R, the notation |g| denotes max{|g(z)| : = € {0,1}"}. For a positive 8, a Fourier
coefficient a € {0,1}" is called 6-heavy if |f(a)| > 6.

Next we define some notation from coding theory [vL]. Let X be a finite alphabet of size m. A
code L of word length n is a subset of ¥". The distance between two codewords z,y € L is defined
as d(z,y) = |{i € [n] : z; # y;}| and the minimum distance of L is defined as

d(L) = min{d(z,y)|z,y € L,z # y}.

A m-ary (n,d)-code is a code over an alphabet of size m of word length n and minimum distance

d.

3 Learning DNF

In this section we give the attribute efficient algorithm for learning DNF under the uniform distri-
bution. Our algorithm is based on Jackson’s Harmonic Sieve for learning DNF expressions [J97].
The Harmonic Sieve has sample and time complexity poly(n, s). Our goal in this section is to give
an algorithm that has sample complexity poly(logn,s) and that runs in polynomial time.

The Sieve itself is based on one of Freund’s boosting algorithms [F90, F93]. This boosting
algorithm runs in stages. In each stage it creates a new distribution and assumes that the learner
can find a weak hypothesis for the target (one that (1/2 — y)-approximates the target) under this
distribution. The algorithm performs O(y 2 log(1/¢)) stages.

Jackson showed that there is an algorithm that finds a weak parity hypothesis in each stage of
the boosting algorithm that is a (1/2 — 1/O(s))-approximation of the target. He also showed that
finding a weak parity hypothesis in each stage is equivalent to finding a heavy Fourier coefficient of
a function g that satisfies |g| < poly(1/¢). In the original Sieve, finding the heavy coefficient of such
function is performed by an algorithm due to Goldreich and Levin [GL89] that was first applied
to learning problems by Kushilevitz and Mansour[KM93]. This algorithm runs in polynomial time
with sample size poly(|g|,n, s).

Since the hypothesis found is (1/2 — 1/0(s))-approximation of the target, Freund’s boosting
algorithm should be run in T = O(s?log(1/€)) stages. So the sample complexity is at most T -
poly(|g|,n,s) (it can be made asymptotically smaller by using a single sample for all calls to the
Goldreich-Levin algorithm).

Notice that to convert the above algorithm to one that is attribute efficient we simply need an
algorithm that finds weak parity hypotheses with sample complexity poly(|g|,logn,s) instead of
poly(|gl,n,s).

In the following subsections, we begin with an algorithm by Levin [L93] for finding a heavy
coefficient that has sample and time complexity poly(|g|,n,s). We then show how to reduce its
time complexity from an n? to an n dependence. This modified algorithm is then converted to one
that has sample complexity poly(|g|,logn, s), which then gives us a similar result for DNF formulas.
For simplicity of exposition, we will assume in the following sections that g is boolean function and
therefore |g| = 1. The reader can easily check that the complexity remains polynomial in |g| when
g is not boolean.

3.1 Levin’s Algorithm

We describe Levin’s algorithm [L93] for solving the following problem: Given an unknown target
f 40,1} — {—1,41}, a positive value 6, and a membership oracle M EM(f), find the index
(frequency) of a heavy Fourier coefficient of f, i.e., a coefficient a such that |f(a)| > 6. In the case
of DNF, 6§ = 1/0(s), where s is a size measure of the target.

Assume for the moment that we have guessed that f (a) is a heavy coefficient and we want to
verify our guess. Typically, we would draw a sample X of z € {0,1}" uniformly at random and

compute Y, x f(#)xa(2)/|X|. By Chernoff bounds, for |X| on the order of f~2(a) we will get a

good estimate of f(a) with high probability. However, notice that we do not need a completely
uniform distribution to produce a coarse estimate with reasonably high probability. In particular, if
we draw the examples X from any pairwise independent distribution, then we can apply Chebyshev
bounds and get that for | X| > 2n/f?(a), with probability at least 1—1/2n, sign(¥,c x f(z)xa(z)) =

A

sign(f(a)). Thus a polynomial-size sample suffices to find the sign of the coefficient with reasonably
high probability, even using a distribution which is only pairwise rather than mutually independent.

Now one way to generate a pairwise independent distribution is by choosing a random n-by-k
0-1 matrix R and forming the set Y = {R-p | p € {0,1}¥ — {0F}} (the arithmetic in the matrix
multiplication is performed modulo 2). This set Y is pairwise independent because each n-bit
vector in Y is a linear combination of random vectors, so knowing any one vector Rp gives no
information about what any of the remaining vectors might be, even if p is known. Thus if we take
k = [logy(2n/f2(a))] + 1 and form the set Y as above then with probability at least 1 — 1/2n over

N

the random draw of R, sign(}_,cy f(z)xa(x)) = sign(f(a)). Now note that

(@) = Ea[f(z @ ei)xa(z © e1)] = (~1)" Es[f (2 ® e5) xa(2)].

The first equality follows from the definition of Fourier coefficients by a change of variables. The
second equality follows from x,(z @ €;) = xa(Z)Xa(ei) = (—1)% xqa(x).

Now assume for the moment that f (a) > 0. Then for Y as above, we have that for a given i,
sign(3 ey f(z ® e;)xa(z)) = (—1)% with probability at least 1 — 1/2n, and thus with probability
at least 1/2 this holds simultaneously for all i.

We need one more observation. Instead of summing over z above, we could rewrite this as a
sum over p € P, where P = {0, 1}* — {0¥}. With probability at least 1/2, for all i we have

(-1)* = sign Zf((Rp)EBei)xa(Rp)>

peP

= sign ZfR,z’(p)(—l)aT.R.p>

peP

pcP

= sign ZfR,i(p)XaTR(p)>’

where fri(p) = f((Rp) @). -

Now fix z € {0,1}* and notice that fg;(z) = 27* Yopefoayk fRi(P)Xz(p). Also, adding the
zero vector to the earlier sum giving (—1)% will not affect the sign of the sum if it is sufficiently
bounded away from zero, which follows from our choice of k (recall that it was 1 larger than
apparently needed, which covers both the fact that we did not have the zero vector in Y and
this consideration). Therefore, for z = a” R, with probability at least 1/2 over the choice of R,
(—1)% = sign(f/};:i(z)) holds for all 4.

Of course, the problem is to find a, so we don’t know which z has this property. But because
there are only 2¢ < 8n/f2(a)—a polynomial —many z’s, we can simply try them all. For given
R and i we can use the Fast Fourier Transform to compute all 2% of the Fourier coefficients of

4

Input: Membership oracle M EM (f)(z,4) that given z and ¢ returns f(x@®e;); number of input bits
n; threshold 0 < 6 < 1 such that there is at least one Fourier coefficient f(a) such that |f(a)| > 6
Output: With probability at least 1/2 return set containing n-vector a such that |f(a)| > 0

1. Define k = [logy(2n/6%)] + 1
2. Choose n by k matrix R by uniformly choosing from {0, 1} for each entry of R
3. Generate the set Y of n-vectors {R-p | p € {0,1}*}
4. for each i € [n] do
5. for each R-p €Y do
6. Call MEM(f)(R - p,1) to compute f((R-p) ® e;) = fri(p)
7. end do .
8. Compute (using FFT) fgr,
9. for each z € {0,1}*
10. Compute a,; = sign(fr,(2))
11. end do
12. end do
13. For z € {0,1}* define a, = (az,1,82.2,---,0zn)
14. return {a,,—a, | z € {0,1}*}

Figure 1: Levin’s algorithm.

fr; in time k2%, We do this for all n values of i and take signs of the coefficients, giving us 2*
{—1,+1}-valued vectors of length n. Now with probability at least 1/2 one of these vectors or the
negation (depending on the sign of f (a)) of one of the vectors represents a, the frequency of a heavy
Fourier coefficient.

Figure 1 shows Levin’s algorithm for finding a set containing a heavy Fourier coefficient with
probability at least 1/2. By running this algorithm multiple times, with high probability a list of
indices containing a heavy coefficient is produced. If we want a single heavy coefficient, a testing
phase can be performed. The overall algorithm then has sample complexity O(n202).

Notice also that oblivious sampling is used by this algorithm. That is, this algorithm chooses
the sample without regard to the target function. Furthermore, recall that the boosting algorithm
will run this heavy-coefficient algorithm on non-boolean functions g(z). It turns out that the
membership oracle that returns the value g(z) for a given input z is simulated using the value
f(x). Therefore, after we have drawn a sample to learn a heavy coefficient for f(z), no further
sampling of f is required for subsequent boosting stages. The only concern is that we draw a
sufficiently large sample in the first stage so that we have sufficient probability that not only the
first round, but all rounds, succeed. By standard Chernoff analysis and the fact that there are
O(s?) boosting stages, this only increases the required sample size by a multiplicative factor that
is dominated by a log s term. ~

Summarizing, Levin’s algorithm can be used to learn DNF with sample complexity O(n?s?) (in
comparison, Goldreich-Levin has a bound of O(ns?)). In the next subsection we improve on this
algorithm, obtaining sample complexity O(ns?). This improved algorithm is in turn the basis for
our final algorithm, which is attribute efficient.

3.2 First Improvement on Levin’s algorithm

An idea for improving on Levin’s algorithm is to extend his observation about the relationship
between flipping a single bit of the input and the effect on the sign of the heavy Fourier coefficient.
For example, notice that if flipping both z; and x5 results in a sign change in the heavy coefficient
and flipping x5 alone does not, then this would be an indication that a; is set in the heavy index,

independent of a direct test obtained by flipping z; alone. In general, for any fixed 3, j € [n],

fla) = E[f(z®eij)xa(T @ egizy)l
= (=1)"(=1)% Ez[f(z & efij})Xa(2)].

Now assuming that f (a) > 0, for pairwise independent Y as before we have that for a given 1,

sign()_ f(® efijy)xa(z)) = (=1)%(=1)%

zeY

with probability at least 1 — 1/2n. We also have that

sign()_ f(z @ e;)xa(w)) = (-1)%

€Y

with the same probability. Thus with probability 1 — 1/n both of these sums have the correct sign
and can be used to solve for the value of a; (the sign of the product of the two sums gives (—1)%).
This gives a different way to arrive at a; than Levin’s original way. We can do a similar thing using
ay # a; to get yet another way to compute a;.

If there was sufficient independence between these different ways of arriving at values of a;,
then we could use many such calculations and take their majority vote to arrive at a good estimate
of the value of a;. We could then get by with a smaller probability of success for each of the
individual calculations, say more like constant rather than 1 — 1/2n. And if n was not required in
this probability, then working back we see that it could be removed from & as well.

This observation forms the basis for the algorithm shown in Figure 2. First, notice that for the
algorithm’s choice of k we have that, for a such that |f(a)| > 0, with probability at least 1 — ¢ over

the choice of R)
sign() f(z)xa(x)) = sign(f(a)).
€Y
Furthermore, for any fixed I C [n]|, we can similarly apply Chebyshev to f(z @ er) and get that
with the same probability 1 — ¢ over choice of R,

sign(Y" /(2 ® er)xalx)) = sign(f(a)) T[(~1)%. M

€Y jeI

This means that the expected fraction of I's which fail to satisfy (1) for uniform random choice of
R is at most c. Therefore, by Markov’s inequality, the probability of choosing an R such that a 2¢
or greater fraction of the I's fail to satisfy (1) is at most 1/2. We will call such an R “bad” for a
and all other R’s “good” for a. Furthermore, for any fixed ¢ € [n] and for any R that is good for a,
at most a 2c fraction of the I's fail to satisfy the following equality:

sign(Y (2@ er @ e)xa(0) = sign(f(@)] (-1)%. 2)

zeYy jelofi}

This follows because there is a one-to-one correspondence between the I's that fail to satisfy this
equality and those that fail to satisfy (1). Therefore, combining (1) and (2), the probability is also
at most 1/2 that for a 4c or greater fraction of the Is, either of the following conditions holds (each
condition is a conjunction of two equalities):

sign() f(z ® er)xa(z)) # sign(f(a) [J (~1)%

z€eY jeI

and

sign), f(z @ er ® ei)xa(2)) =sign(f(a)) [(-1)%,

z€Y jelod{i}

Input: Membership oracle M EM (f)(z,I) that given z and I returns f(x @ er); number of input
bits n; threshold 0 < # < 1 such that there is at least one Fourier coefficient f(a) such that
F(@) >0 A

Output: With probability at least 1/4 return set containing n-vector a, such that |f(a,)| > 6

1. Choose constant 0 < ¢ < 1/8 (different choices will give different performance for different
problems)
Define t = 2[In(4n)/(1 — 8¢)?] + 1
Choose set T consisting of ¢ uniform random n-vectors over {0,1}
Define k = [—logy(c6?)] + 1
Choose n by k£ matrix R by uniformly choosing from {0, 1} for each entry of R
Generate the set Y of n-vectors {R-p | p € {0,1}*}
for each 7 € T do

for each R-p €Y do

Call MEM(f)(R-p,I) to compute f((R-p) ®er) = fr,1(p)

10. end do .
11. Compute (using FFT) fr 1
12. for each i € [n] do

© 00O Ui W

13. Compute fr rgi)(p) as in line 9.
14. Compute (using FFT) fR,/I;{i}
15. end do

16. end do

17. for each z € {0,1}* do
18. for each i € [n]

19. Compute a,; = sign(3 ;e sign(fr,r() - fR,/Ié{i}(Z)))
20. end do
21. end do

22. return {a, | z € {0,1}*}
Figure 2: Improved Levin algorithm.

or

sign()_ f(z ® er)xa(x)) = sign(f(a)) [J(-1)%

€Y jelI

and

sign) f(z @ er @ ei)xa(w)) #sign(f(a) [(-1)%.

zeY jelofi}

This in turn implies that for fixed 1,

N | =

%r[ﬁr[sign(z fla@®enxa(@) -) flz@er ®ei)xa(z)) # (-1)%] 2 4 <

So, for good R’s, a random choice of I has probability at least 1 — 4¢ of giving the correct sign for
a; and probability at most 4c of giving the incorrect sign. If the correct sign is +1, then for a good
R and any 1,

Erfsign(Y" /(2 ® en)xa(@) - 3 f(2 @ er @ e))xa(@))] 2 1 — 8.
T€Y €Y

Similarly, a correct sign of —1 gives expected value bounded by —1 + 8c. So by Hoeffding, if we

estimate this expected value by taking a sum over ¢ randomly chosen I’s, for
21In4dn

> 3

~ (1—8¢c)? ®)

7

then the sign of the estimate will be (—1)% with probability at least 1 — 1/2n. Therefore, with
probability at least 1/2 this holds simultaneously for all n possible values of 7. In this case, we will

discover all n bits of the index a of the heavy Fourier coefficient f(a). So overall we succeed with
probability at least 1/4 for a given choice of R.

This algorithm has sample complexity O(n®~2). Once again, oblivious sampling is used, which
implies a sample complexity of O(ns?) for DNF learning. In the next subsection we show how to
change this algorithm to an attribute efficient algorithm for learning DNF.

3.3 Attribute efficient learning DNF

In this subsection we show that if the target have a heavy coefficient f(a) with weight wit(a) = k

then a can be found in poly(k, f 1(a)) time and space complexity. We then show that the algorithm
for learning DNF finds heavy coefficients with wt(a) = O(log s). With those two results we get our
attribute efficient learning algorithm.

Notice first that for any b € {0,1}" we have

~

fla) = Ex[f(z ® b)Xa(z @ b)] = Xa(b) Ex[f (2 © b)Xa(2)]-

As in the previous section we choose |Y| = 2[—1o82(c8”)]+1 4nd we have, for R good for a, with
probability at least 1 — 2¢

sign (Z flz® b)xa<x)) = sign(f(a))xa(b)

€Y

and
sign (2 fzobe d)xa(:v)> — sign(()xa (D) xa(d)
zeY

for any fixed d € {0,1}". Then taking (similar to Subsection 3.2, equation 3)

41n(4(wt(a)logn))
b2 (1 —8c)?

we have that for good R and fixed d, with probability at least 1 — 1/(wt(a)logn)? the estimation

E, lsign ((Z flzo b)xa(x)) (Z flzabe d)m(i)))]

z€Y €Y

is equal to x4 (d). This provides a membership oracle for x,(d) that for every d € {0,1}" gives with
probability at least 1—1/(wt(a) logn)? the true value of x.(d). It is known (see for example [BH96])
that there is an algorithm that runs in polynomial time, asks O(wt(a) logn) membership queries of
MEM/(xa), and with high probability finds a. (This algorithm is easily modified to terminate after
this many queries even if the membership oracle does not represent a parity function y,.) Since
the number of membership queries of this algorithm is O(wt(a)log n) and the probability that the
above approach fails to correctly answer one membership query is 1/(wt(a)logn)?, the probability
of failing to correctly answer any membership queries of the algorithm is 1/(wt(a)logn) = o(1).
Using this membership query algorithm for each of the O(0~2) values of z, we will with probability
at least 1/4 find a. This algorithm requires sample size of O((wt(a)logn)0~2), where now the O
does not suppress factors of log n but does suppress sublogarithmic factors of n as well as logarithmic
factors of other parameters.

We now show that in the Harmonic Sieve algorithm for learning DNF, at every stage there is
a parity x,(z) with wt(a) = O(log(s/€)) that correlates well with the target DNF. First, all of the

distributions generated by the boosting portion of the algorithm are polynomially bounded away
from the uniform distribution. Specifically, the distribution D at stage k satisfies

poly(1/e)
D(z) < —on

Any term T of size at least |T'| > clog(s/e€) over this distribution satisfies

. poly(1/e) 1
Pr[T =1] < [T ~ poly(s/e)

for some constant c¢. Therefore, if the DNF, with respect to sampling according to D, is not very
nearly always false, then there is a term in the DNF of size less than clog(s/e€) that correlates well
with the DNF. By the proof of a fact in [J97] it can be shown that there is a parity that depends
on less than clog(s/e) variables that correlates well with the DNF. On the other hand, if the DNF
is very nearly always false (expected value near —1 when viewed as a {—1,+1} function), we just
take —1 as the weak hypothesis. ~

This algorithm for finding a heavy coefficient therefore requires sample size O(0~%logn). How-
ever, this algorithm does not use oblivious sampling. Therefore, when used as a subprogram of
the Harmonic Sieve, the sampling will have to be repeated O(s?) times, giving an overall sam-
ple complexity for DNF learning of 0(34 logn). We have therefore achieved an attribute efficient
algorithm, although at some cost in terms of dependence on s.

4 Lower Bounds

In this section we give some lower bounds on the sample complexity for learning classes of boolean
functions under fixed distributions. We prove the following results.

Theorem 1 Let C be a class of boolean functions and 0 < e < 1 be fixed. Also, let Cc C C be such
that for every fi1, fa € Ce we have Prp[f1 # fa] > 2e. Any PAC(MQ)-learning algorithm that learns
C under the distribution D with accuracy € and with confidence 1 — § uses at least

1
l= {log\CJ _IOgl—éJ -1
queries.

Proof: Let A/, be a randomized algorithm that uses a sequence of random bits r, is given a set
s of 1 random eyxamples, and asks ms membership queries to f, where mi + mo < [. Suppose for
every f € C, we have

PrD(Al,Af) <] >1—06.

This implies that there is a specific sequence r(of bits and specific set sy of m1 examples such that

DAl Af)<e (4)

70,50

for at least (1 — 9)|C| of the functions in C,. Since Ay, s, asks less than [queries, each query gives
a response in {0, 1}, and 2! < (1—6)|C,|, there must be two functions f; and f, in C, and satisfying
(4) for which the algorithm outputs the same hypothesis Afl . = Af2 = h. Now

2¢ < D(f1Af2) < D(hAf1) + D(hAfz),

and therefore there is an ¢ such that D(hAf;) > e. This is a contradiction.]

The following lemma is an easy consequence of the Varshamov-Gilbert bound from coding theory
(see [vL], Chapter 5).

Lemma 2 Let ¥ be an alphabet with |¥| = m symbols. For m > 2 there is a code L C X" of
mainimum distance cn and size
ml—c n
) > .
2

We now show that to learn a DNF of size s (and € < 1/4) we need sample size nearly slogn.

Theorem 3 Learning the class of DNF expressions of size s under the uniform distribution requires
sample size Q(slog(n —logs)).

Proof: Letr=n—logsandt=Ilogs, and let x1,...,z; and y1,...,y, be the n variables of the
DNF. For a € {0,1}' we define z% = z{! - - - z{* where 2" = z; if a; = 1 and z{" = Z; if a; = 0. Let
¥={0,1,y1,---,Yr,J1,---,7r}. Now define the set of DNF formulas

C' = { \/ 7%,

a€e{0,1}¢

(ya)ae{o,l}t € E2t } .

That is, each DNF expression in C' has 2! terms, each containing the ¢ = variables plus one symbol
from X (either a y variable or a constant). Furthermore, each term in one of these expressions sets
the senses (positive or negated) of the z variables differently, and all possible senses are represented.
Thus the number of terms in each DNF in €’ is 2 = s. By Lemma 3 there is L C X° of minimum

distance cs and size . s
2 2)1—¢
L] > (%))

Fix such an L and define a new set C that is a subset of C":

C:{ V %,

ae{0,1}

(ya)aE{O,l}t € L} -

For y € L we write f, = VaE{O,l}t z%y,. That is, f, represents the DNF expression in which the ith
symbol in the string y is the value of the y, variable in the ¢th term of the DNF.

Now notice that for every y(!) and y® in L we have fy @ fy@ = fyey@- This follows from
the fact that f, can be also written as @4¢(0,1}¢tT"Ya- Now

Prf,0 # fy»] = Prlf,n @ fym =1]
= Prlfymgye =1]

= Elf,mgym)]

1
= - > EpY ey
ae{0,1}*
c
> —.
- 2
The latter is because ygl) and y((f) are different in at least cs entries and each y((ll) &) yt(f) that is not
zero has expectation at least 1/2.
By Theorem 1, any PAC(MQ) learning algorithm with € = ¢/4 for this class needs at least

log <(2r + 2)10> ’

2

queries for any constant ¢ < 1. This gives a sample complexity of Q(slog(n — log s)).

10

References

[A88] D. Angluin. Queries and Concept Learning. Machine Learning, 2(4):319-342, 1988.

[B92] A. Blum. Learning Boolean Functions in an Infinite Attribute Space, Machine Learning,
9(4):373-386, 1992.

[BHL95] A. Blum, L. Hellerstein and N. Littlestone. Learning in the Presence of Finitely and
Infinitely Many Irrelevant Attributes. Journal of Computer and System Sciences, 50(1):32-40,
1995.

[BH96] N. H. Bshouty, L. Hellerstein. Attribute-efficient Learning in Query and Mistake-bound
Models. In Proceeding of the Ninth Annual ACM Workshop on Computational Learning The-
ory, 235-243, 1996.

[DH94] A. Dhagat and L. Hellerstein. PAC Learning with Irrelevant Attributes. In Proceedings of
the 85th Annual IEEE Symposium on Foundations of Computer Science, 64-74, 1994.

[D98] P. Damaschke. Adaptive versus Nonadaptive Attribute-efficient Learning. In Proceedings of
the 30th Annual ACM Symposium on Theory of Computing, 590-596, 1998.

[F90] Y. Freund. Boosting a Weak Learning Algorithm by Majority. In Proceedings of 3nd Annual
Workshop on Computational Learning Theory, 202-216, 1990.

[F93] Y. Freund. An Improved Boosting Algorithm and Its Implications on Learning Complexity.
In Proceedings of the 5th Ann. Workshop on Computational Learning Theory, 391-398, 1992.

[GL89] O. Goldreich and L. Levin. A Hardcore Predicate for all One-Way Functions. In Proceedings
of the 21st Annual ACM Symposium on the Theory of Computing, pages 25-32, 1989.

[H88] D. Haussler. Quantifying Inductive Bias: AI Learning Algorithms and Valiant’s Learning
Framework. Artificial Intelligence, 36(2), 177-222, 1988.

[J97] J. C. Jackson. An Efficient Membership-Query Algorithm for Learning DNF with Respect to
the Uniform Distribution. Journal of Computer and System Sciences, 55(3):414-440, 1997.

[KM93] E. Kushilevitz and Y. Mansour. Learning Decision Trees using the Fourier Spectrum. SIAM
Journal on Computing, 22(6): 1331-1348, 1993.

[L88] N. Littlestone. Learning when Irrelevant Attributes Abound: A New Linear-threshold Algo-
rithm. Machine Learning, 2(4):285-318, 1988.

[L93] L. Levin. Randomness and Non-determinism. Journal of Symbolic Logic, 58(3):1102-1103,
1993.

[M92] Y. Mansour. An O(n!°6!°6") Learning Algorithm for DNF under the Uniform Distribution.
In Proceedings of Fifth Annual Conference on Computational Learning Theory, pages 53—61,
1992.

[NN93] J. Naor and M. Naor. Small-Bias Probability Spaces: Efficient Constructions and Applica-
tions. SIAM Journal on Computing, 22(4):838-856, 1993.

[UTWO97] R. Uehara, K. Tsuchida and I. Wegener. Optimal Attribute-efficient Learning of Dis-
junction, Parity, and Threshold Functions. In EuroCOLT’ 97, LNAI 1208 Springer, 171-184,
1997.

[V84] L. Valiant. A Theory of the Learnable. Communications of the ACM, 27(11):1134-1142, 1984.
[vL] J.H. van Lint. Introduction to Coding Theory. Springer-Verlag, 1982.

11

A Towards a derandomization

In this section we sketch an algorithm for learning DNF with respect to uniform that is attribute
efficient in terms of its use of random bits (its randomness complezity) as well as its sample complex-
ity. The algorithm is actually somewhat simpler conceptually than our previous attribute efficient
algorithm, but it does not produce as tight a sample complexity bound.

We begin by describing a technique to slightly derandomize Levin’s basic algorithm [L93] and
then show how to apply this to DNF learning. It should be noted that Kushilevitz and Mansour
[KM93] also showed how to derandomize another algorithm for solving the same parity-finding
problem solved by Levin, but they assumed that a quantity called the Li-norm of the target function
is polynomially bounded and is known. However, the L; norm is not polynomially bounded for the
class of polynomial-size DNF expressions [M92].

We use the A-bias distributions studied in [NN93] which is defined as follows. Let D : {0,1}" —
[0,1] be a probability distribution. D is called A-bias if for all a € {0,1}" — {0,} we have |D(a)| <
A27™ In [NN93], an explicit construction of a A-bias probability distribution of size O((n/))?) is
given. Note that this requires O(log(n/A)) random bits.

Recall that Levin’s algorithm constructs the n x k& matrix of Boolean entries by selecting each
entry randomly and independently. So it uses kn random bits altogether. We modify this algorithm
by choosing k independent column vectors according to a A-bias distribution D over {0,1}". Note
that the number of random bits required is O(klog(n/))).

First we need to define the notion of pairwise dependent random variables. A sequence of
random variables X1,..., X, is called pairwise §-dependent if for every 1 < ¢ # j < m and for
every a,b, we have

|Pr[X; = a,X; =b] — Pr[X; = a] Pr[X; = b]| <4.

The following is an easy property of pairwise dependent random variables.
Claim 4 Let Xi,...,Xm € {—1,+1} be pairwise d-dependent random wvariables. Then
|E[XiX;] — E[X;]E[X;]| < 46.
The following gives a version of Chebyshev’s inequality for pairwise J-dependent random variables.

Lemma 5 (Chebyshev’s inequality) Let X1,..., X, € {—1,+1} be pairwise d-dependent random
variables. Suppose that for each i € [m], E[X;] = u and Var[X;] = 0%. Then

1 & o2 26
Pr||— §—+—2.
miz mu? - p

3%

> |l

Proof The expression on the lefthand side can be bounded from above by

El(m X7 Xi —)]
p -

LE (Xi — w)?]

w1+ El(X; u)])

i#£]

(g
- 5 (Z var[X;] + > _(BE[X: X;)))

mp i#]

i (3))

AN

m?2

IN

2?'

mis

12

O

Setting 6 = 1/(2m) and using the fact that 0 = 1 — p? < 1, yields an upper bound of miﬂ in the
above. This is only a factor of 2 larger than the bound obtained from Levin’s analysis.

Next, we prove that by choosing k independent column vectors from {0,1}" according to an

A-bias distribution D the resulting random variables, i.e. X; = Rp;, p; € {0,1}*\ {04}, are pairwise

d-dependent, for § = 4)\/2". So, if 4)\/2™ < 1/(2m) then the analysis in Subsection 3.1 still holds.

Claim 6 Let R be a n-by-k matriz with entries from {0,1} constructed by selecting k random
column, vectors from {0,1}" according to a A-bias distribution D over {0,1}". Let X; = Rp\¥, for
p® € {0,1}%\ {04}. Then X1,...,Xox | are pairwise (4X/2")-dependent random variables.

Proof We observe first that if D is an A-bias distribution over {0,1}" then |D(z) — 27" < A.
Recall that since for all a # 0,, |D(a)| < 2 and D(0,) = 27",

on
D) =27 = | Y D@xal@) < Y [D(@)] < A
a#0p, a#£0y,

Let p and ¢ be any elements of {0,1}* \ {0;}. We need to prove that for any p # ¢ and any
a,be{0,1}"
| Pr[Rp = a, Rq = b] — Pr[Rp = a| Pr[Rq = b]| < 4A/2"

Consider first Pr[Rp = a]. Assume without loss of generality that py # 0. Then after choosing the
first £ —1 columns of R, the value of the last column is uniquely determine for the equation Rp = a
to hold, say the last column must equal to o € {0,1}". Hence Pr[Rp = a] = D(«).

Now consider Pr[Rp = a, Rq = b], with p # q € {0,1}* and a,b € {0,1}". Assume without loss
of generality that the following condition is true.

Prk—1 Qqk—1

0
Dk K 7

where the arithmetic is over GF(2). After choosing the first £ — 2 columns, there is a unique
solution for the (k — 1)th and kth columns, say « and 3. Then

Pr[Rp = a, Rq = b] = D(a)D(f)

since we draw independent columns. The difference between two quantities of the form D(«a)D(f)
is at most the difference between (27" —)2 and (27" + \)? which is at most 4)/2". This completes
the proof. O

In addition to changing Levin to use R as described above, we will also change the value of k
(number of columns in R) to be:

(wt(a) log n)Q-‘ 4l 5)

k= ’VIOg 02

Then by Chebyshev’s inequality, for any y € {0,1}", the probability that x,(y) is not equal to the

sign of
(D f@)xa(@) (D fz @ y)xal@))

€Y €Y

is at most 1/(wt(a)logn)?. So with 2¥*1 membership queries to f we can simulate a query to x4 (y)
that succeeds with probability at least 1 — 1/(wt(a)logn)?, and the analysis given in Subsection
3.3 still holds.

The algorithm for determining a from M EM (x,) can also be derandomized to require only
O(logn) random bits. The simulated membership queries above are deterministic for fixed R,
so require no additional random bits. Since the attribute efficient parity learning algorithm asks
wt(a) logn membership queries for each of 2% vectors z, and since there are O(s?) total boosting
iterations to learn DNF in the Harmonic Sieve algorithm, the total number of random bits used is

0(34 10g4 n). ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

13

