Electronic Colloquium on Computational Complexity, Report No. 77 (1998)

Determinism versus Non-Determinism for Linear Time RAMs
with Memory Restrictions

(Preliminary version)

Miklés Ajtai
IBM Almaden Research Center

Abstract. Our computational model is a random access machine with n read
only input registers each containing clogn bits of information and a read and write
memory. We measure the time by the number of accesses to the input registers.
We show that for all k£ there is an € > 0 so that if n is sufficiently large then the
elements distinctness problem cannot be solved in time kn with en bits of read and
write memory, that is, there is no machine with this values of the parameters which
decides whether there are two different input registers whose contents are identical.
We also show that there is a simple decision problem that can be solved in constant
time (actually in two steps) using non-deterministic computation, while there is no
deterministic linear time algorithm with enlogn bits read and write memory which
solves the problem. More precisely if we allow kn time for some fixed constant k,
then there is an € > 0 so that the problem cannot be solved with enlogn bits of read
and write memory if n is sufficiently large. The decision problem is the following:
“Find two different input registers, so that the Hamming distance of their contents is
at most %clog n’. % can be replaced by any fixed 0 < v < % if ¢ i1s sufficiently large
with respect to v. We actually show that the promise problem : “decide whether all
occurring Hamming distances are greater than (% — v)clogn or there is at least one
which is smaller than yclogn” where v > 0 is an arbitrarily small constant, cannot be
solved by a nonlinear algorithm with the described limitations even if we know that
we only get inputs where one of these conditions hold. (In this case ¢ may depend on

v too).

Introduction. One of the main goals of complexity theory is the separation of non-
deterministic and deterministic computation. We solve the problem for random access
machines with certain restrictions on the size of their working memory. Although the
restrictions are strong, the working memory must be smaller than the input, still,
under certain circumstances this computational model is realistic as we will explain
later. We also use realistic search problems for the sepration results. The first problem
is the element distinctness problem, that is, we have to decide whether there are
different input registers with identical contents. This problem is of great practical

and theoretical interest, it has been studied in great detail in various computational

1
ISSN 1433-8092

models, particularly in the comparison model (see [BFKLT], [BFMUW], [K], [Y]). A
time space tradoff T'S = Q(n?) for the elements distinctness problem on comparison-
based branching programs was conjectured by Borodin et al in [BFKLT]. A. Yao [Y]
proved a tradeoff T'S = Q(n27¢("), where €¢(n) = O(1/(log n)%), which is very close
to optimal since T'S = O(n?) is achievable even for sorting in the range c;logn < § <
can/logn (See [PR]). The best upper bounds for the element distinctness problem are
given in the RAM model. We can solve the element distinctness problem with bucket
sorting in our RAM in linear time with ¢'nlogn bits of read and write memory, where
c' is a suitably choosen constant (see [AHU]). This is a determinstic (non-probabilistic)
algorithm. Owur lower bounds are also about non-probabilistic algorithms. For the
element distinctness problem we give a probabilistic algorithm which solves it in time
kn with en bits of read and write memory provided that & > 0 is sufficiently large with
respect to € and n is sufliciently large with respect to k. Moreover our algorithm can
be implemented in a random access machine defined in the usual sense, that is where
the memory is organized into registers and we allow only arithmetic operations etc.
(For the exact statement of this result see Theorem 5 in the last section.) This makes
it very unlikely that our lower bound for the element distinctness problem can be
improved since the ratio between the determenistic lower bound and the probabilistic
upper bound is only a large constant.

The other problem that we study is the Hamming distance problem, that is, find
two different input registers so that the Hamming distance of their contents is smaller
than yclogn where v < % and the input registers contain clogn bits. This problem
and in particular its promise problem version mentioned in the abstract is also of
great theoretical and practical importance although much less is known about it than
about the element distinctness problem. Searching for two items with small Hamming
distance is a typical task e.g. in recognition problems, reservation systems, data
compression problems and generally in any search problem where nearly identical
objects have to be located. Here our result is stronger since we allow more read
and write memory than in the element distinctness problem, still our proof is much
easier. The reason is probably that the elements distinctness result is sharper, as
we explained our lower bound is very likely close to the best possible, while for the
Hamming distance problem we do not have any reason to assume that the lower bound
cannot be significantly improved.

The main restriction in our computational model is the memory restriction, that is,
the fact that the read and write memory is smaller (although only by a constant factor
in the Hamming distance problem and a factor of constant times log n for the element
distinctness problem), than the size of the input. However this is a common situation
in practice. In certain search problems we may search all of our available memory (e.g

hard disk). In this case the available free memory for computation (random acces or

2

not) can be much smaller then the input. Modifying the input may be impossible or
unwise because of safety reasons. In a similar way we may have read only access to a
huge database where we cannot alter the data. Again our input is much larger then
our workspace. In our examples the input is usually not located in a random access
memory, so our computational model does not describe well the expense of reading
from such a memory, still our lower bounds have meaningful consequences.

The most elegant way to describe our computational model in an abstract form is
the R-way branching programs. Since we do not have any limitation on the computa-
tion done between the accesses to the input, we may simply assume that the possible
states of the R/W memory are the nodes of a directed graph and each node is associ-
ated with a register which will be accessed in the given state and there are outgoing
edges from the nodes each associated with the possible contents of the accessed reg-
ister. The machine follows a path on this graph starting from a distinguished node
and from each node the path continues along the edge which is labeled by the content
of the register associated with the node. The number of outgoing edges is R, in our
case R = n®. This computational model was introduced by Borodin and Cook (see
[BC]) and they gave a time space tradeoff for sorting n integers. They introduced a
technique for proving lower bounds for R-way branching problems where the number
of output bits is relatively large compared to the time allowed. This method was
successfully used for proving several lower bounds and space time tradeoffs for prob-
lems of similar nature. (See e.g. Beame [Be]) Our problem does not belong to this
category since the output is a single bit. Still the same very high level idea, cutting
the time into short intervals and knowing that all we can use about the past of the
computation in an interval must be contained in the limited memory at the beginning
of the interval, is applicable.

The strongest known separation theorem between deterministic and non-
deterministic computation is the theorem of Paul, Pippinger, Szemerédi and Trotter
(see [PPST)) stating that non-deterministic linear time is more powerful than deter-
ministic linear time for multitape Turing machines. The proof of this theorem is also
using a segmentation of the time. In this case, although the overall size of the memory
can be larger than the input, still the geometry of the machine acts as a local memory
limitation.

We formulated our results in the random access model since this motivates the
choice of the parameters in our computational models. Although the notion of 1-
way branching is simpler and perhaps more natural, n°-way branching problems are
motivated by the usual register sizes in actual random access machine. Since an
address of a register is usally stored in one (or a few) registers, the clogn register size
is a natural choice. Our results has no consequences for the Boolean (that is 1-way)

case, since we lose a factor of clogn during the translation.

3

The number of lower bound results for computing various explicitly given functions
with a branching program when there are certain limitation on the parameters (size,
depth, width, number of aceesses of the input bits, “R”, etc.) is very large so we do
not try to give a review of them. The results that are closest to our present problem,
are lower bounds on the computation of explicit functions given by Beame, Saks and
Thathachar ([BST]). There is also a strong similarity between the proof techniques of
[BST| and the present paper. They gave a nonlinear lower bound on the depth of an
R-way branching program computing an explicitly defined function, where the size is
n® and R depends only on k and not on n. More precisely they proved that for all &
there is a ri so that for all sufficiently large n there is an (explicitly given) function
g(z1,...,2,) of n variables with 0,1 values so that: (a) each variable is taking it values
from a set of size ry and (b) there is no r,-way and size n® branching program which
computes g(z1,...,2,) in depth kn. (In our RAM model this means that the number
of bits in the input register is log 7 the working memory is clogn bits and the time
is kn). For the 1-way case they have a similar lower bound but k£ can be only a fixed
constant larger than 1. (The paper also gives an overview of our present state of
knowledge about branching programs.)

We will first prove the Hamming distance result. The proof of the element dis-
tinctness lower bound will be built on top of this proof in the sense that the basic
idea of the proof is the same but for the actual realization we need a much more
complicated and argument. For this latter proof we use some of the lemmata proved
for the Hamming distance lower bound.

We prove our result not directly for Hamming distances but for a much larger
class of search problems. Assume that a binary relation) is given and our problem
is whether there are two distinct registers so that for their contents z,y we have
Q(z,y). We give a condition for the relation @ so that if this condition is satisfied
then the problem cannot be decided in linear time with the described restrictions on
the memory.

Definition. Assume that @) is a binary relation defined on the finite set A and A > 0
is a positive real number. We say that the relation @ is A-full on A iff the following
holds:

forall BC A, C C Aif |B| > MA|, |C| > M A]| then there exist z € B, y € C so

that Q(z,y).
Examples. 1. The relation equality is %-full on any finite set |A|. Indeed if both B

and C' has more than %|A| elements, then they must have a common element.

2. (a) Assume that there is a graph G whose set of vertices is A, and we denote by
N(X) the neighborhood of each set X C A, that is the set of points which are either
in X or connected by an edge to an element of X. Suppose further that 1 > A > 0
and the graph has the following expansion property:

4

for each Y C A with more than A|A| elements we have |[N(Y)| > 1|A|.

We claim that the binary relation @) defined on A by “Q(z,y) iff the distance of
and y in the graph G is at most 2” is A-full on A. Indeed if |B| > A|A|, |C] > M|A],
then N(B) > %|A|, and N(C) > %|A|, so N(B)NN(C) # 0, which implies our claim.

(b) If G is a graph on A, and X C A, then let N4(X) be the d neighborhood of
N, that is, the set of points in A whose distance from X is at most d. If G has the
expansion property that for all X C A, | X| > A|A| we have |Ny(X)| > %|A|, then the
relation “the distance of z and y is at most 2d” is A-full.

The following example is a special case of (b) and it gives a way to construct a
non-trivial A-full relation for a fixed X\ and for an arbirarily large universe.

(c) Assume that 1 > X > 0 is fixed, and that a > 0, ¢ > 0 so that for each integer
n there 1s a c-regular graph GG, on the vertex set A, with n points so that for each
X C A,, |X| < § we have [N(X)| > (14 a)|X|. Then there is a d depending only on
A, a, c so that the relation “the distance of z and y is less than 2d” is A-full on A,

Definition. Let R(z,y) be a binary relation on the finite set A. Assume that y > 0
is a real-number and m is a positve integer. We say that R is (i, m)-sparse if the
following holds: the number of sequences ay, ..., a,, formed from the elements of A so
that R(a;,a;) for some 1 < ¢ < 7 < m is at most u|A|™.

Our general condition which guarantees that the decision problem associated with
() cannot be solved in linear time will be essentially the following:

(a) @ is n~%-full for some constant § where 0 < § < c. (The number of bits in the
registers is clogn) and

(b) @ is (%,n)-sparse.

In the reduction of the Hamming distance theorem to the more general result we
will use the following statement which connects the notions of Hamming distance and
A-full relations:

(*) Forall 0 <~ < % there is a 7 < 1 so that if m is sufficently large then on the
set AU™ of all 0,1 sequences of length m, the following relation @ is 277™ full: “the
Hamming distance of ¢ and y is at most ym”

The Hamming distance problem. For the exact formulation of our results we
need some definitions. First we give a detailed but informal description of a random
access machine with n read-only input registers and log (8 bits of read an write memory.
(log z will denote the logarithm of base 2.) We will consider the following random
access machine M. It has n input registers each may contain an element of the set
{0,1,...,a — 1} where « is a positive integer. (We usually will assume that a < n® for

some constant c¢). The machine is only able to read the contents of the input registers,

5

but it is not able to change them. The machine has 3 different states, we may think
of them as the various possible states of its read and write memory if this memory
can store log, 3 bits of information. We usually will assume that 3 is about 2¢"1°8 ™,
in other words the read and write memory may consist of en registers each with logn
bits. S will denote the set of the states of M. There is a state of the machine called
the initial state what we will denote by init. We assume that a function ¢ is fixed,
defined on S with values in {1,...,n}. (At state S the machine will have access to the
content of the resgister ¢(S5)).

Another function G(z,y) is also given which is defined for all pairs z,y where z € S
and y € {0,...,a — 1}, the values of G are in S. (As we will see below G describes how
are the states of M are changed.)

Finally “out” is a function defined on the set S with values in 0,1. (out will
determine the output of the machine at a given state.)

M works in the following way. Assume that each input register contains a nonnega-
tive integer less than a. We will denote the content of register ¢ by n(z) for: = 1, ..., n.
At time 0 the M’s state is init.

The machine M changes its states according to the following rule. Assume that S
is the state of the machine at time t. Then at time ¢ + 1 the state of the machine is
G(S,n(¢(S))). The state of the machine at time ¢ will be denoted by state(t,n).

We will think that M is working for a fixed amount of time ¢y with the input 7.
The output of the machine at time tg and at input 7 will be out(state(tg,7)) which
also will be denoted by out,, (7).

Now we give a more concise formal definition of M.

Definitions. 1. The machine M is a sequence (n, , 3,10,S,1init, G, out, ¢), where
n,a, [3,tg are positve integers, S is a finite set, init € S, §(z,y) is a function of two
variables defined for all pairs z,y where z € S and y € {0, ..., — 1} with values in S,
out is a 0, 1-valued function defined on &, ¢ is a function defined on S with values in
{1,...,n} and B = |S].

2. A function 7 defined on the set {1,...,n} with values in the set 0,...,a — 1 will
be called an input for M.

3. We define a function state(t,n) for all nonnegative integer ¢ and for all input
n, by recursion on ¢:

state(0,n) = init

state(t + 1,n) = G(state(t,n), p(state(t,n)))

4. We define the output of M at input 7 as out(state(tp,n)). We will also use the
abbreviation out;,(n) = out(state(tg,n))

Sometimes we will not write out the complete sequence of objects defining the
machine, we may say that M = (n, @, 3,1y) is a machine and assume that the missing

elements of the sequence are denoted in the usual way.

6

Theorem 1 . Forall0 < v < % there exists a ¢; > 0 so that for all positive integer
Ek there is an € > 0 so that if n is sufficiently large, a > n°, § < 2"1°8™ then the
following holds:

there is no machine M = (n, a, 3, kn) so that for any input n we have
outyn(n) = 1 iff there are ¢,j € {1,...,n}, ¢ # j so that the Hamming distance of 7(t)
and n(j) is less than «log, o

Although we do not formulate here the “promise problem” promised in the abstract,
but our proof gives this result too without any extra work. The proof of Theorem 1

will be based on the the following more general theorem.

Theorem 2 . There exists a ¢; > 0, so that for all positive integer k, and for
all real number § € (0,cz), if € > 0 is sufficiently small and n is sufficiently large,
a>n, B <208 and Q is an n~°-full binary relation on {0, ..., — 1}, with the
property:

(1) Qis (%,n)-spa,rse

then there is no machine M = (n, , 3, kn) so that for all inputs p we have

(2) outgn(n) =1 iff there are ,j € {1,...,n}, i # j so that Q(n(:),n(5)).

Sketch of the proof of Theorem 2. We will show that there is an input x so that x
does not satisfy) and there are two disjoint sets W1, W5, and sets of partial inputs
A; defined on W;, 1 = 1,2 so that |4;| is so large that |U77€Ai range(n;)| > n %
(see Lemma 3 for the necessary lower bound on |4;|) We will also be able to select
these object with the additional property that for each pair 71 € A, ny € Ay we have
outgn(x) = outrn((x 17m1) 172).

The n?-fullness of @ implies that there are z1,z9 171 € A1,m2 € Ay with z; €
range(n:1), zo € range(n:) and Q(z1,2z2). Since Wi and W, are disjoint we have
that (x 1 71) 1 n2 satisfy Q. Moreover because of the mentioned property of the sets
Ai, Ay we have that the output of the machine at input y is the same as at input
x' = (x1m1)1m2. So we got two inputs x, x’ which provide the same output and one
satisfies () while the other is not. Therefore the machine cannot decide whether its
input satisfies Q).

To carry out this program we first have to know whether for our input y there
are partial inputs 7 at all so that outg,(x) = outin(xn). Since we assumed that for
at least half of the all possible inputs x we have out(x) = 0, by a simple counting
argument we get that indeed there must be many partial inputs n with the required
property. Let X be the set of all inputs x with out(x) = 0. We show in Lemma 7
that if B C {1,...,n} then for most of the inputs x € X the number of partial inputs

n—|B]

n so that x 1n € X is very large, it will be close to | X|a The Lemma gives

7

a more precise connection between the various parameters. In particular it follows
(see Lemma 8) that X still have a large subset whose elements x have the following
property: for all large enough Z C {1,...,n} the number of partial inputs n defined
on Z so that x1n € X is still large.

We have seen that there are many inputs x that can be changed in many different
ways without changing the output. This cannot help in itself since this statement
remains true if we do not speak about outputs, but ask only whether the sequence
satisfies). This is the reason why we need changes represented by partial inputs
m,7n2 which take place simultaneously. We want to isolate 71,7, from eachother so
that if out(x ! n;) = out(x), that is, applying them separately does not change the
output, then this remains true if they applied together. We cut the total time [0, kn]
into small subintervals of length on, where ¢ is sufliciently small with respect to
k. We want to choose 71, 2 in a way that their domains Wy, W, are in different
subintervals. On top of that we also want W;, Wj to be large enough so that we have
many different choices for 71, 12 defined on them. To achieve this we partition the set
of registers so that two are in the same class if they are seen by the machine in the
same intervals. An average register is seen only k-times so we may throw away those
registers that are seen more than 2k times and still we have at least 7 registers. We
consider the classes only containing these registers. Again we throw away the classes
which are too small and at the end what remained is still a partition of at least %n
registers in each class at least c(o, k)n registers, and registers in a single class are seen
exactly in the same intervals. Let I'y, be this partition. W; and Wj will be classes of
Iy for a suitably chosen x. With a counting argument we can show that there are
classes so that the set of intervals where the registers in W7 and W5, are accessed, are
not only distinct but disjoint. We will use such a pair Wy, W,. The definition of T,
is given right before Lemma 5, the lemma itself formulates the mentioned properties.

Assume now that a x and the classes W7, W, are fixed so that the set of intervals
where their registers are seen are disjoint. We will take a partial input n; on W; so
that not only out(x) = out(x 17;) but also the state of the machine, when leaving of
each of the intervals, where W, is accesed, is the same at input x and at input x 1 7;.
If T; is the set of times ¢ which are contained in an interval where W; is accessed then
it means that the state of the machine at each point of the right border of T is the
same at inputs x and x ! 7;. This neutralizes the changes made by 7;. At the end of
the interval where the elements of W; is accessed the state of the machine will remain
the same. Since we have a limit on the number of states (the memory) the values for
the states at the end of the intervals can be fixed in a way so that still they occur for
many X and so for a large number of them there will be many partial inputs n; with
the required properties. We may think at first that the isolation of 7; from 7, implies
that out(x) = out(x 171 1 72). This is not necessarily true because it is possible that

8

e.g. in an interval where only the registers of W; are seen at input x, at input x 1 m
some new registers, say registers from W, are also seen. However if we exclude this
possiblity then even the two changes applied together does not change the output.
(see Lemma 2)

This last condition can be satisfied if we consider only the set H of those inputs
where Wi and W, are classes of I'y and we are looking for partial inputs 7n; with the
property x1n; € H. To satisfy the earlier requirements too we also want for all inputs
x € H the state of the machine to be the same at the right border of T; for : = 1, 2.
(T; is determined uniquely by W;). We consider the possible pairs of sets Wi and W,
and the possible functions giving the states of the machines at the right borders and
show that the number of choices for these object is so small compared to a™, the total
number of inputs, that for at least one of the choices the set of corresponding inputs
is still large. (Lemma 6). Let H be this set. We also require that for each x € H,
out(x) = 0. Now we may complete the proof easily. H is so large that by Lemma
8 there is a large set of inputs A; in W;, 1 = 1,2 so that for any choices n; € A; we
have x 1 n; € H. |A;| is so large that by Lemma 3 the partial inputs in it altogether
take more then n~%a values. Therefore by the n~%-fullness of Q we have that Q is
satisfied by x 171 172 for some n; € A;. We have that 0 = out(x) = out(x 171 172)=1,
a contradiction.

Proof of Theorem 2. We assume that contrary to our statement there is a machine
M with property (2). For the proof of the theorem assume that k, ¢ are fixed. We
pick a positive real number o so that it is sufficiently small with respect to k and
assume that € is sufficiently small with respect to o,k,¢é, and n is sufficiently large
with respect to k,0,d and e.

Definitions. 1. A partial input n will be a function defined on a subset of the set
{1,...,n} with values in (0,1,...,a — 1).

2. If x is an input and 7 is a partial input then x { will denote the input which is
identical to n on domain(n) and identical to x at every other points.

3. If T'1s a set of integers we say that M accesses a register v in a set T if there is
at €T sothat M accesses u at time t.

4. Suppose that T' C {0,...,kn — 1}. We say that z is at the right border of T' if
z & T and z — 1 € T. The set of those integers which are at the right border of T'
will be denoted by rigth(T).

5. Suppose that T' C {0,...,kn — 1} and x is an input. Let f be a function defined
on the set rigth(T'), so that for all ¢ € rigth(T) we have f(t) = state(t,x). We will
call f the right-state function of the set 7' at input x and will denote it by rstater ,.

6. Assume that x is an input we say that x satisfies) if thereare 1 <1 < 7 <n

so that Q(x(7), x(7))-

Lemma 1. Assume that M = (n,a,3,kn) is a machine satisfying condition (2), x
is an input and Ay, A, are sets of partial inputs so that domain(rn;) N domain(ns) = 0
for any n1 € A1, my € Ay. If | U’?eAi range(n;)| > n%q for i = 1,2, then there exist
m € A1, m2 € Ay with outp,((x1m)1n2) = 1.

Proof. Since @ is n~%-full on {0,1,...,a — 1} there are z; € U’?eAi range(n;) for
i = 1,2 so that @Q(z1,z2). Let n; € A; be the partial inputs taking the values z;. (2)
implies that conclusion of the lemma.

We will show that there is an input x so that x does not satisfy ¢} and there are
two disjoint sets Wi, W5, and sets of partial inputs A; defined on W;, 1 = 1,2 so
that |A;| is so large that |UneAi range(n;)| > n~%a (see Lemma 3 for the necessary
lower bound on |4;|). We will also be able to select these objects with the additional
property that for each pair 71 € A1, 72 € A2 we have outg,(x) = outrn((x 171)172).

The n—%-fullness of (@ implies that there are z1,z9 71 € A1,m2 € Ay with z1 €
range(n1), zo € range(n:) and Q(z1,z2). Since Wi and W, are disjoint we have
that (x 171) 1 n2 satisfy Q. Moreover, because of the mentioned property of the sets
Ay, As we have that the output of the machine at input y is the same as at input
x' = (x1m)1n2. So we got two inputs x, x’ which provide the same output and one
satisfies () while the other is not. Therefore the machine cannot decide whether its
input satisfies Q).

From this description it is still missing how is it possible to guarantee the required
properties of A; and A;. Lemma 2 and 4 below give necessary conditions for this.

Definitions. Assume that 7' is a set of integers. The set of all registers ¢ so
that ¢ is accessed by the machine M at some ¢t € T, at input n will be de-
noted by register(7,n). The set of all registers in register(7,n) which are not
accessed at any time outside 7', at input 7 will be denoted core(T,7n). Clearly

core(T,n) C register(T,n).

Lemma 2 Assume that x is an input, m1, 12 are partial inputs, T1,T> C
{0,1,...,nk — 1}. If x,m,n:,Th,T> satisfy the following conditions then
outkn(x) =outin((x 1m) 172).

(3.2) domain(n;) and domain(n;) are disjoint.

(4.2) T and T are disjoint.

(5.2) for all i = 1,2 we have domain(n;) C core(T5,x)

(6.2) for all i =1,2 we have rstater, , = rstater;, y,

(7.2) foralli,j € {1,2}, i # j we have domain(n;) Nregister(T},x 1n;) = 0.

10

Proof. We will see how the computation is changed by the given changes of the
input. The set T; is the union of a set K, of disjoint intervals for : = 1,2. We
assume that |K;| is minimal. Let K = K; U K. (4.2) implies that the elements of
K are still disjoint. Let K = {I1,...,I,} where every element of I, is smaller than
any elements of I;1q for s =1,...,7 — 1. First we prove by induction according to s,
that if h, is the unique element of rigth(/;), then state(x, hs) = state(x1n1,hs) =
state(x 1 m2, hs) = state(x’, hs), where x' = (x 171) 1 2.

Let x; = x I ni. Assume s = 1. The initial segment of the computation before we
enter the time interval I; is the same at inputs x, x’, x1, X2, since at input x by (5.2)
we do not access any register in the domains of 7;, « = 1,2 so changing the content
of these registers in any way does not influence the computation. Assume that e.g.
I, € K;. In this case we claim that the computation at input ' in I; will proceed in
the same way as at input x { 771. Indeed, according to (7.2) with ¢ = 2, j = 1, during
the computation at input x 1 71 we do not access any of the registers in the domain
of 72, so the change of their contents do not influence our computation. We get that
state(x 17m1,h1) = state(x’, h1) and furthermore by (6.2) that this common value is
also equal to state(x,h1). We may use the same argument that we have used before
I; to show that the computation at input 2 in this interval remains the same as at
input x so we also have state(x,h1) = state(x2,h1). The general inductive step,
and the computation after h, can be handled in a similar way, using the fact that by
the inductive hypothesis we start the computation at time hs_; in the same state at
all of the four possible inputs.

Lemma 3. Assume that x is an input, D C {1,..,n} and A is a set of partial
inputs defined on D. If s = |U77€A range(n)| then sIP! > |A|. As a consequence if
|A| > (71_5()4)|D| then s > n %a.

Proof. The number of functions defined on a set of size |D| and taking at most s

different values is at most s!P!.

Lemma 4 Assume that M = (n,a,[3,kn) is a machine, x is an input, and A,
A, are sets of partial inputs, T1,T> C{0,1,...,nk —1}. If M, x, A1, Ay, Ty, T, satisfy
the following three conditions then there are n1 € Ay, ny € Ay and z1 € range(n:),
zy € range(nz) so that for x' = (x 1m1) 1 n2 we have outpn(x) = outrn(x'), 31 < <
7 <n, z1 =x'(i),z2 = X'(j), and Q(z1, z2).

(8.4) for all i = 1,2 there is a set W; so that domain(n) = W, for all n € A;.

(9.4) for all 1 € A1, n2 € Ay conditions (3.2), (4.2), (5.2), (6.2), (7.2) are satisfied
by x,m,n2, Th, T>.

(10.4) |A;| > (n73a)Wil for all i = 1,2.

11

Proof. ((10.4)) and Lemma 3 with D — W; imply that |, . o, range(n;)| > na.
Therefore by the definition of n % fullness we have ni € A; z; € range(n;), 1= 1,2
so that Q(z1,2z2). By (3.2) the domains of 11,7, are disjoint so (x 171) 1 72 takes the
values z1, 2, at distinct places. out(x) = out(x’) is a consequence of Lemma 2.

Definitions. 1. We partition the set {0,1,...,kn — 1} into intervals so that the
length of each interval is between on and 2on. Let Z be the set of these intervals.
Suppose that an arbitrary input x is fixed. We define a partition R, on the set of
input registers {1,...,n}. v and v will be in the same class of R, iff for each I € 7,
M, at input x, accesses u in [if and only if it accesses v in I. (That is, if the machine
looks at u and v exactly in the same time intervals I € 7.)

Let R be the set of those classes of R, whose elements are accessed, at input ¥,
in at most 2k different time intervals I € Z. T, will denote the set of all classes of
R, which have more than %|’R;<|_1n elements.

2. Assume that x is an input and C is a class of I'y. The set of those intervals I
of T wich satisfy C' C register(/,x) will be denoted by set(C,x). In other words
set(C, x) consists of exactly those intervals of Z where all of the elements of C' are
accessed at input x. (Note that by the definition of R, either all or none of the
elements of a C' € T'y, C R, is accessed in an I € 7).

Lemma 5. If x is an arbitrary input then
11.5) |C|> Yo2*k=2%kn for all C €T
(11.5) [C]= 3 X

(12.5) |Uger, C1> tn
(13.5) There are Wy, W, € Ty, with set(Wy,x) N set(Wa,x) =0

Proof. (11.5). By the definition of Z we have |Z|] < o7 'k. Each
class of R, is uniquely determined by at most 2k elements of Z. Therefore
RS | SE?ZO (a_jl k) §2(U;; k) <(c7'k)?*. Therefore the definition of I' implies (11.5).

(12.5). First we note that |[(Jocr, C| > 5. Indeed, if a register is not in (Jocr: C,

then it was accessed more than 2k times. Since there are altogether kn steps in the
n
2
that I'y contains each class of R,/ whose size is more than the half of the average class

computation we may have no more than 7 such registers. The definition of I', implies

size in ’R;. Clearly these classes contain at least half of the elements of UCEP,’C C.

(13.5). Let W; be an arbitrary element of I'y. Assume that

(*) set(W,x) Nset(Wy,x) #0

for some W € T'y. Then there is an I € 7 contained in set(W, x) N set(Wi,x).
I'y € R, implies that W C register(I,x). Therefore W C |J{register(l,x)|I €
set(W1,x)}. So the set of registers contained in all W € Ty, satisfying (*) is covered
by the set | J{register(I,x)|] € set(W1,x)} and consequently the number of these
registers is at most Y {|register(l,x)| | I € set(Wi,x)} < 2k2on. Since o is

12

sufficiently small with respect to k, this inequality and (12.5) implies that there must
be at least one class of Iy, which does not satisfy (*).

Lemma 6. Assume that k is a positive integer, o is sufficiently small with respect
to k, € is sufficiently small with respect to o, n is sufficiently large with respect to e,
B < 2¢m1°8™ and the machine M satisfies the conditions (1) and (2) of Theorem 2.
Then there is a set H of inputs, and there are W1, W> C {1,...,n}, Ji1,J2 C T and
functions f1, fo so that for all x € H we have:

(14.6) |H| > 27 5kenlognyn

(15.6) Wi, W, €Ty,

(16.6) J, = set(W;,x) fori=1,2

(17.6) if T; = UIEJi I then f; = rstater;, , fort=1,2
(18.6) JiNJy=0and WiNWr, =10

(19.6) outg,(x) =0

Proof. According to our assumptions about M there are at least %a" inputs x

with (19.6). Assume that a x is fixed with (19.6). By (13.5) of Lemma 5 there are
Wi, W, €T so that Wy "W, = 0. Let J; =W;, T; = UIEJi I, f; = rstater, ,, for
i =1,2. Clearly (15.6), (16.6), (17.6), (18.6) are satisfied. We show that the number
of possible choices for the sequence (Wi, Wa,J1,Ja, f1, f2) is at most 271 F5kenlogn
Therefore for at least one choice of the sequence the number of corresponding inputs
x 1s at least %a"21_5k€"1°g" — 9 Skenlognymn

The number of choices for the pair Wi, W, C {1, ...,n} is at most 22®. The number
of choices for the pair Ji,J; is at most |Z|**. Since Z has at most 01k elements this
is at most o *FE4k,

The domains of the functions f; contain at most 2k elements since rigth(7;) has
at most 2k elements. The range of each function is in & which has at most § <
2¢mlogn clements. Therefore the number of possible pairs of functions fi, fa is at
most 24kenlogn

The product of all of our upper bounds is at most

large. Q.E.D.(Lemma 6)

9—1+5knlogn if s sufficiently

Lemma 7. Assume that X is a set of functions defined on the set A with values
in {1,...,a} and |B| C A. For each fixed f € X let vp(f) be the number of g € X so
that f and g is identical on A — B. Then for each)\ > 0 the number of functions f
with vg(f) < A X|a~ 1478l is at most A\ X]|.

Proof. We partition X into at most al4=Bl classes: f, g are in the same class if

their restrictions to A — B is identical. The average size of a class is therefore at

13

least | X |a~|4=Bl. Therefore the number of functions counted in vg(f) are in classes

whith sizes less than A times the average. Clearly these classes can cover at most

A| X | elements of | X]|.

Lemma 8. Assume that 1 > k > 0, p > 0 and 7 is sufficiently small with respect
to both k and p, w = n™? and n is sufficiently large with respect to 7, and X is a set

of inputs with | X| > 27""!°6"q" Then thereis a’xy € X so that for all Z C {1,...,n},
|Z| > kn there are at least (wa)l?! partial inputs n defined on Z so that x1n € X.

Proof. Let Z be a fixed set with |Z| > kn. We apply Lemma 7 with
A = | X|rtam 2 (wa)l?l, A — {1,..,n}, B — Z. We get that the number
of inputs x with vz(x) < |X|_1an_|z|(aw)|z| |X|a_|"_|Z” = (aw)? is at most
MNX| < 2mnlogng a2l (wa)lZl | X | =27 le |2l X| <27mleg nkm| X |, This holds
for all sets Z C {1,...,n} with kn < |Z|. There are at most 2™ such sets. Therefore
we have that the number of inputs yx so that vz(x) < (aw)? for at least one Z is
not larger than 2n27n108 n(y)xn| x| =(1+logntrlog, p)n| x| —g(1+rlogn—rplogn)n| x|
Since 7 is sufficiently small with respect to x and p, the exponent in the last expression
is negative, that is, there is a x € X with vz(x) > (wa)|Z| for all Z of the required
size which implies the statement of the lemma. Q.E.D.(Lemma 8).

Now we may complete the proof of Theorem 2. Let H, W;, J;, T3, fi, 1 = 1,2 be
the set and functions defined in Lemma 6. We apply Lemma 8 with X — H, p — §
T — bke, Kk — %02’%_2’“. Let x be an element of H whose existence is stated in the
lemma. Lemma 6 implies that W; € T for 1 = 1,2. Therefore by (11.5) of Lemma 5
we have that the conclusion of Lemma 8 holds with Z — W;, 1 = 1,2. So if A, is the
set of all partial inputs defined on W; so that x 17 € H then |4;| > (n~%a)!W:l,

We claim that y, A;, T; satisfy the conditions of Lemma 4.

(8.4) follows from the definiton of A;.

(10.4) as we have already seen is a consequence of Lemma 8.

Assume now that 1 € A; and 7, in Ay and check the individual conditions in (9.4).

(4.2) is a consequence of (18.6).

(5.2) follows from (16.6) and from the definition of T} in (17.6).

(6.2) We know that x 1 7; € H and so (17.6) implies this condition.

(7.2) xin; € H therefore by (15.6) domain(n;) = W; is a class of I'y,,.. Consequently
its registers are not accessed outside 7;. As we have already seen 77 75 are disjoint
that is none of the registers of W; is accessed in T} at input x 1 7;.

Since all of the requirements of Lemma 4 are met we have that there exist 7y, 72,
z1, oy with the properties described in the lemma. By (19.6) outy,(x) = 0 and so by
Lemma 4 out,((x 171) 172) = 0 while z; and z3, which are taken by (x 171) 1 772 at

14

different points satisfy the relation (). This is clearly in contradiction with property
(2). Q.E.D.(Theorem 2)

Remark. There is a way to simplify slightly the proof of Theorem 2. Namely with a
somewhat weaker the lower bound in (14.6) we may include in Lemma 6 the following
condition

(20) for all n,{ € H we have ')y =T¢.

Indeed the number of possible sets I'y, is at most ¢(o, k)™, where ¢(k,n) depends on
only o and k. The reason for this is that I', is a set of disjoints subsets of {1,...,n}
and |T',| remains below a bound depending only on ¢ and k. Therefore we lose only
a factor of 2196 ¢<(%:k)" in the lower bound of (14.6). We may conclude the proof using
the modified version of Lemma 6 with only Lemma 7, that is the more complicated
Lemma 8 is not needed. The disadvantage of this proof is that it is less suitable for
further improvements, for example for proving the theorem for A-full relations with
greater values of A. The reason for this is that the the lower bound in (14.6) for the
simplified proof will decrease faster (than the corresponding bound for the original
proof) if X gets larger. (The partition T'; will have more classes and so the total

number of possible partitions I, increases drastically.)

Proof of Theorem 1. In the proof we will use the following three well-known
facts. A(™ will denote the set of all 0,1 sequences of length m. The first is the

following theorem of Harper. (For a proof see e.g. Bollobas, Combinatorics, §16.

([Be]))-

Theorem A (Harper). Assume that for all X C A™) | N(X) is the set of sequences
whose Hamming distance is at most one from at least on point of X. Then for all

X C A, |X| 2 T (7) implies N(X) 2 2125 (7).

(2

Proposition 1. for all 0 < a < % there is a 0 < b < 1 so that if m is suffciently
large then Eo<i<am (T) < 2bm

This can be proved by estimating the binomial coeflicients using Stirling’s formula.

Proposition 2. for all 0 < vy < %, there is a 8 > 0 so that if m is sufficiently large
and z,y are random 0, 1 sequences taken independently and with uniform distribution
from the set of all such sequences, then the probability that the Hamming distance
of ¢ and y is smaller than ~ is less than 277%™,

This follows easily from Proposition 1.

15

In the proof of Theorem 1 we assume, for the sake of simplicity, that « is a power
of 2 namely a = 2™. Let Q¢ be the following relation on 0,1, ..., —1: “the Hamming
distance of z and y is less than ¢”. First we prove that
(21) For ally > 0 thereis a0 < §' < 1 so that if m is sufficiently large then Qm is
o™ full.

Proof. Using Proposition 1 with a — % — % we pick a 0 < §' < 1 so that
EOSK(%—%)m (T) < 2(1=8)m Assume that B; C A(m), |B;| > 9—8'mom for; — 1,2.
We claim that N%,Ym(Bi), that is, the set of sequences whose Hamming distance
from at least one point in B; is at most %'ym, contains more than %2’" elements for
¢ = 1,2. This will imply that N%'ym(Bl) N N%'ym(BQ) # () and therefore By, Bs have
points whose distance is at most ym. We have ZOSK(%—%)m (T) < 2=8)m < | B;|.
Therefore applying Theorem A repeatedly we get by induction on j that for all 7 > 0
EOSi(j—}-(%—%)m (™) < INj(Bi)|. Now let j = [¥m]. j+ (5 — ¥)m > 2 +1. We have
gm—1 <EOSZ§%+1 (T) < N;(B;) < N%m(Bi), which completes the proof of (21).

We need the following to show that @ satisfies (1):

(22) Forall0 <~ < % if ¢ is sufficiently large (where a = 2™ > n®), m is sufficiently
large with respect to c1, and n is a random input with uniform distribution on the set
of all inputs, then with a probability of at least % we have that forall1 <1< j<n
~Qym(n(3),n(5))-

Proof of (22). For any fixed 1 < ¢ < 57 < n let p; ; the probability of the event
Q+m(n(:),n(5)). By Proposition 2 we have that this probability is at most 27™
where 6 depends only on . Let ¢; be sufficiently large with respect to 6. We
have p; ; < 2—0m < 9—feilogzn < 9-8logon < =3 Therefore the probability that
@(n(7),n(7)) holds for at least on pair ¢,7, ¢ # j is at most (g)n_?’ < % which
completes the proof of (22).

We may now complete the proof of Theorem 1. We show that the requirements
of Theorem 2 are met with Q — Q~m and § — §'cy! where &' satisfies (21). This
choice for § implies that Q is indeed n™% = o~ -full. (1) is a consequence of (22) and
(2) implies the conclusion of Theorem 1. (The proof also shows that the “promise

problem” version of Thoerem 1, mentioned in the introduction also holds.)

The element distinctness problem. In this section we prove the analogue of

Theorem 1 for the equality relation.

Theorem 3. For all positive integer k there is an € > 0 so that if n is sufficiently
large, a > n?, B < 2¢™ then the following holds:

there is no machine M = (n, a, 3, kn) so that for any input n we have
outyn(n) = 1 iff there are ¢,7 € {1,...,n}, ¢ # j so that n(7) = n(j).

16

The theorem holds not only for the equality relation but for a larger class of A-full

relations as formulated below in Theorem 4.

Theorem 4. For all cg > 0 and positive integer k there is an € > 0 so that if n is
sufficiently large, a > n?, B < 2™ and R(z,y) is a %—fu]] and (cg,n) sparse relation
then the following holds:

there is no machine M = (n, a, 3, kn) so that for any input n we have
outyn(n) = 1 iff there are ¢,j € {1,...,n}, i # j so that R(n(z),n(J))-

Remarks. 1. The theorem remains true if we assume only that R is (2_61",n)—
sparse, where ¢ > 0 is sufficiently small with respect to k£, and our proof actually
gives this result without any substantial changes.

2. The theorem remains true if we assume only that the relation R is 1 —4-full where
d is an arbitrarily small constant. We need only minor modifications of the present
proof to get this result. In this case ¢ > 0 may depend on § too. The mentioned two
changes of parameters in the theorem can be executed simultaneously.

First we show that Theorem 4 implies Theorem 3. The relation equality is clearly
%—full. We show that if > n?, then it is (c1,n)-sparse on {1,...,a} for some absolute
constant ¢;. We pick ay,...,a, independently and with uniform distribution from
{1,...,a}. If pg is the probability of the event “there is no 0 < ¢ < j < n so that
Rai,a;)” then po > TT7 (1 - 72) 2[5 (L — %) =II75 (1 - &) ~ L. Therefore
there is a constant ¢; > 0 so that for any sufficiently large n we have py > c;.

Proof of Theorem 4. Assume now that ¢y > 0, k is an arbitrary integer, and let
e > 0 be sufficiently small with respect to & and n is sufficiently large with respect to
k,e. Suppose further that contrary to the assertion of the theorem there is a machine
M with the described restrictions on its parameters, which decides for an arbitrary
input 7 whether it has two identical values. Let H; be the set of all inputs x with
outgn(x) = 0. The assumed (cg,n) sparsity of R implies that |Hi| > cpa™. Our
plan is to to find a x € H; and two partial inputs 71,72 with disjoint domains so
that outgn(x 171 172) = outin(x) = 0 and R(n1(u),n2(v)) for some u € domain(n;)
v € domain(nz). Since x 171 1 12 takes these values (and at different places) we reach
a contradiction.

In the proof we will assume that cg, k, €, n, and the machine M has been fixed with
the mentioned properties. All of the notions which depend on a machine (e.g. the
functions rstate, register etc.) will refer to this particular machine. Sometimes we
will define numbers which depend e.g. only on k but not on n. In this case we state
the quantification of the variables k, e, n again, and, even if we do not mention the

machine M itself, we assume that it is fixed with the given properties.

17

We have defined earlier the set of intervals Z depending on a parameter 0. We will
use the same defintion here as well. We have already defined, before Lemma 2, the
functions register(T,n), and core(T,n) where T is a set of times, and 7 is an input.
We will extend this notation, namely if F' C 7 then by definition register(F,n) =
register(|J F,n) core(F,n) = core(|J F,n).

Definitions. 1. If 7' C 7 and ¥ is an input then stem(F,x) will denote the restric-
tion of x onto {1,...,n} — core(F,x). fan(F,x) will be the set of all inputs n with
stem(F,x) = stem(F,n). If H is a set of inputs then fan(H, F,x) = H N fan(F,)

2. An input x is called visible if every elements of {1, ...,n} (that is, every registers)
are accessed at input .

Remark. Without loss of generality we may assume that every input is visible.
Indeed e.g. we may suppose that our machine starts to work by accessesing each
register once. This assumption adds only n to the time needed to solve any problem.
In the proof we will assume that every input is visible. As a consequence we have that
core(F,x) consists of those registers which are not accessed outside F', (in contrast
to the original defitnion where we assumed that they are accessed in F'.)

Sketch of the proof of Theorem 4. As in the proof of Theorem 2 our plan is the
following. We start with the set H; of all inputs where the output of the machine
is 0. We have |H1| > cpa™. Our goal is to find a x € H; and two disjoint sets of
registers Uy, Us and on U; a set of partial inputs Y;, 2 = 1,2 so that

(a) |Y;| is so large that it guarantees that |U77€Yi range(n)| > § and

(b) for all n; € Y1, na € Y> we have outy,(x 171 172) = 0.

This leads to a contradiction since (a) implies that there are z; € UnEYi range(n)
so that R(z1,2z2) and therefore we may pick 71 € Y1,7n2 € Y5 so that z; € range(n;)
which implies that x’ = x 1 1 1 2 takes the values z1, x> at different places.

We will pick the sets of registers U; in the following way. As in the proof of Theorem
2 we define a partition 7 of the time interval [0,k — 1) into subintervals whose length
is about on where o > 0 is sufficiently small with respect to k, but € > 0 (from the
upper bound on the memory) is sufficiently small with respect to o. We will pick at
random two disjoint subsets F} and Fy of Z. (The common size of F;, 1 = 1,2 will
be chosen carefully. We will return to this question in the remark after Lemma 12.)
Suppose F; has been selected. We will define U; by U; = core(Fj;, x) for a suitably
chosen input x € H;. We will show that there is a large set H C H; of inputs so that
any x € H will be good in the definition of U, and Y; will be defined as the set of all
partial inputs 7 defined on U, with the property x1n € H for : = 1,2. We will give
the definition of the sets F; is three steps. In each step we reduce the requirements
on F;, H to another set of requirements, (which may not be simpler but can be more
easily satisfied) and in the last step with a probabilistic construction we show that

our requirements can be met. The three steps will be described by three lemmata

18

Lemma 9, Lemma 11 and Lemma 13 (for the understanding of Lemma 13, Lemma 12
and the definition of the function acc; before it is also necessary). The reader who
want first to get a complete picture about structure of the proof without going into
the technical details may read the statements of the given lemmata and definition

together with the remarks immediately before and after each lemma.

Lemma 9. For all positive integer k if o > 0 is sufficiently small then there is
a A > 0 so that if € > 0 is sufficiently small and n is sufficiently large and G is a
set of visible inputs then the following holds. There exist Fy, Fs, fi, fo, H with the
following properties:
(23.9) H C G and |H| > 27*"|G]
(24.9) F\, F; are disjoint subsets of 7
(25.9) foralli=1,2andj=3—1if x,& € H, and stem(F;,x) = stem(F},§), then
core(Fj,x) = core(F},¢§)
(26.9) |core(F;,x)| > 2Mn forall x € H andi=1,2
(27.9) rstateX’UFi =f;forall ye H,1=1,2.

Remarks. 1. As a motivation for this lemma we describe where the proof of
Theorem 2 breaks down if we try to adapt it to the present problem. We also point out
the changes which make after all the basic proof technique applicable. The statement
of the present lemma contains all the necessary modifications. The lemma in itself
implies the theorem. (The proof is given right after these remarks.) The remaining
part of this section is the proof of the lemma.

In the proof of Theorem 2 we used the following observation. If X is a large set of
inputs and B is a large set of registers, then for a random element y of X we have
that with high probability there are many different partial inputs 7 on B so that
x1n € X. (See Lemma 7). In applying this lemma one of the difficulties is that
the set B is fixed in advance, it cannot depend on the input y. In other words if
we first pick a random x then depending on it a set B, then there is no guarantee
that a similar assertion will hold. (In the case of Theorem 2 something like that was
still true, as formulated in Lemma 8. We may think that for each B the number of
exceptional inputs x, where B does not behave in the required way, was so small that
even if we threw out the exceptional inputs for all B still enough inputs remained.
This is not the case with the present choice of the parameters.) The need for picking
first ¥ and then B comes from the fact that one of the conditions of Lemma 2 is
domain(n;) = core(T;,x). domain(n;) will have the role of set B so we will know it
only after x has been selected.

However, in the special case B = core(F1,x), an analogue of Lemma 15 holds in
spite of the fact that B depends on . The reason for this is the following. In this

19

special case we may pick a random input x € H in the following way. First we want
to randomize x outside core(Fi,x). The problem is that we do not know yet what
is the set core(Fy,x). However the set {1,...,n} — core(F1,x) can be randomized
at the same time as we randomize the value of x on it (with the condition x € H).
We can do it by performing the computation in each interval of 7 outside F; and
picking a random value for the content of any registers (according to the distribution
induced by H) that is accessed during this computation. Condition (27.9) guarantees
that we can start performing the computation at the left border of any interval of
Z — Fy which comes right after an interval of F;. (Lemma 10 formulated and proved
below ensures that we get this way the right distribution.) Therefore we can decide
what will be {1,...,n} — core(F1,x) and therefore core(Fi,x) without giving any
information about the values of x on core(F,yx). Therefore if we now continue the
selection of x onto core(Fi,x) the situation is the same as if core(Fi,x) would be
the fixed subset B of Lemma 7. Condition (26.9) of the lemma guarantees that this
set will be sufficietly large.

There is another problem with the proof of Theorem 2 under the present circum-
stances. In that proof we guaranteed condition (7.2) of Lemma 2, that is the fact
that in the time set 7} during the computation at input x ! n; we will not look at
any of the registers in domain(;), in a very strong way. Namely we were able to
prove that the times were we look at domain(n;) is the same at the inputs x and
X 1 1;. This cannot be ensured now. The counting argument in the proof of this
fact breaks down because of the changes in the values of the parameters. Therefore
we guarantee condition (7.2) in a new way through condition (25.9). Since in our
case domain(n;) = core(F;, x) this condition with the original notation just says that
core(F},x) = core(F},x1n;). This, by the definition of the function core, will easily
imply the required property. Actually the implication is so easy that we may feel that
we only reformulated the original requirement. Indeed the most difficult part of the
proof of Theorem 4 is that Fy, F; can be selected with property (25.9) and the other
properties in the lemma. The main idea behind this part of the proof is the following.
In (25.9) we want that stem(F;, x) uniquely determines core(F},x). As a first step
we try to satisfy all of the other conditions of the lemma and a weakened version of
(25.9) where stem(F;, x) does not determine core(F}, x) uniquely but leaves relatively
few choices for it. (Lemma 11.) The fact that this is possible is not that surprising
since if we change x on core(F;,x) then the contents of at most 20! |F;| registers
are changed. (Assuming that (27.9)) holds for the inputs involved.) If these registers
would be randomly distributed with respect to core(F}, x) then relatively few would
be in it, so a change in x on core(F;,x) would change core(F},x) only a little and
so that total number of sets core(F}, x) would be small. (The assumed randomness

will be guaranteed by the random choice of F} and F5.) Form this weakened version

20

of (25.9) we get the original one by taking a subset of the input set H in a way that
from the few choices for core(F}, x) only one remains.

2. If we want to prove the modified version of Theorem 4 where only 1 — §-fullness
is assumed about the relation R, then we have to replace 2An by ¢An where ¢ is suffi-
ciently large with respect to 4. In the proof of Lemma 9 this additional requirement

does not cause any difficulties.

Before we give the proof of Lemma 9 we show that it implies Theorem 4.

Proof of Theorem 4. We apply Lemma 9 with G = H;. (As we have noticed
already after the definition of visibility we may assume that every input is visible.)
Let A\, F1, F5, f1, fo, H be given with the properties described in the lemma.

We show that

(28) the number of elements of x € H which satisfy the following condition is at
least %|H| |fan(H, F;, x)| > 60%2_}‘"asi, where s; = |core(F;, x)|, i1 =1,2.

First we estimate the number of inputs x so that (28) holds for only a single
fixed value of 7, say, 7 = 1. We define a partition 7 of H by “x,£ € H are in
the same class iff stem(F},x) = stem(F1,¢{)”. The following lemma says that if
x and ¢ are not in the same class then the functions (partial inputs) stem(F7,x),
stem(F1,£) are not only different but also incompatible, that is, there is a z €
domain(stem(F},x)) N domain(stem(Fy,£)) so that stem(Fy, x)(z) # stem(F1,¢)(z).
(This needs to be proved because two different functions may be compatible if they

have different domains, but take identical values in points where both are defined.)

Lemma 10. Suppose that F' C Z, x, £ are inputs with stem(F,x) # stem(F|¢)
and rstateX1UF = rstateg’UF. Then there is an ¢ € domain(y) N domain(§) so

that x(z) # ¢(z)

Proof. We show that if stem(F,x) and stem(F,¢{) are compatible then they are
identical. The set |J;c;_p I can be covered by intervals. Let Ji,...,J, be such a
covering where the number of intervals is minimal. Let us consider the computation
in a time interval J; for an arbitrary [, at both inputs x and ¢. rstateX’UF =

rstate, Ur implies that the computation starts at the same state of the machine

for the two inputs. The compatibility of stem(F,x) and stem(F,¢) implies that the
two computations will be exactly the same until a register is accessed which is not in
the domain of one of these inputs. This, by the definition of stem, cannot happen in
the interval J; which is disjoint from F'. Since every register in the domain of either

stem(F, x) or stem(F,§) is accessed at least once in |JJ; we get that their domains
are equal. Q.E.D.(Lemma 10)

21

Let H' be the set of those inputs { which are the extensions of a stem(Fy,x) for
some x € H. We define a partition 7' of H' in the following way. The inputs
(1,(> € H' belong to the same class of 7' iff there is a x € H so that both {; and (,
are extensions of stem(Fy,x). Clearly H C H' and every class of 7 is contained in a

class of 7.

Proposition 3 . Assume that A C A’ are finite sets P is a partition of A, P' is a
partition of A’, each class of P is contained in a single class of P' and d = |A||A'|™!.
Then for all A > 0, there are at most A\|A| elements z of A, so that if C,C' are the
unique P, P' classes containing z then |C'||C'|7! < \d

Proof. Let X be the set of classes C' of P with |C'||C’|™! < \d, where C' is the
unique P’ class containing C'. The total number of elements z with the required
property is at most Y o5 [C| < Ypex MO SAY oep |C!] =Ad[A'] = A|A]
Q.E.D.(Proposition 3)

Let d be the density of H in H' that is d = |[H||H'~'|. (23.9) and the defintion of
¢ implies that the density of H in the set of all inputs is at most ¢g27*". H' is a
set of inputs so we have d > ¢g2~*". We apply Proposition 3 with A — H, P — T,
A — % We get that the number of elements x of H which belong to a T-class whose
density in the corresponding 7”'-class is at most %d > %602_>‘"’ is at most %|H| The
same is true if we define the corresponding partitions for 5. Therefore at least %|H |
elements belong to a class of 7 whose density in 7' is at least %c02_>‘n forz=1,2.
This imples (28). Therefore there is a x € H so that the following holds for ¢ = 1,2:

(29) assume that s; = |core(F;,x)|, and Y; is the set of all partial inputs) defined
on core(Fj,x) so that x 1n € H. Then |Yj| >co32™*"a®.

Therefore Lemma 3 and (26.9) implies that || J{range(n)|n € Yi}| > § fori =1,2.
Consequently, by the %-fullness of the relation R, there are u; € n; € Y; for ¢t = 1,2
so that R(u1,uz).

We claim that the conditions of Lemma 2 are satisfied by x, n1,7m72, Tv — | Fi,
T — | Fs.

(3.2). By (24.9) Fi and F; are disjoint, so according to the definition of the function
core, the sets core(F;, x) = domain(r;), ¢ = 1,2 are also disjoint.

(4.2) follows from (24.9)

(5.2) This holds with equality.

(6.2) This is a consequence of x 1 n; € H and (27.9)

(7.2) domain(n;) = core(F},x). (25.9) and x 1 n; € H implies that core(F;,x) =
core(F;, xIn;). We got domain(n;) = core(F;, xln;). Since F; and F; are disjoint none

22

of the registers of core(F;, x1n;) is accessed from | J F; at input x17;. Q.E.D.(Lemma
9).

Remark. We will use the following lemma in the proof of Lemma 9. This Lemma is
similar in content to Lemma 9, only its conditions are somewhat relaxed. E.g. (25.9)
which states that stem(F;, x) is uniquely determines core(F}, x) is replaced replaced
by (33.11) and (34.11) which require only that for most of the inputs x if stem(F3, x)
is given then there are relatively few choices for core(F},x). Condition (27.9) is left
out altogether, since our bound on the working memory implies that that there are

relatively few choices for the functions rstat ey | SO as in the proof of Theorem 2

we may guarantee the condition by taking a subset of H.

Lemma 11. For all positive integer k thereis a0 < 7 < 1 so that for all sufficiently
small o > 0, there is a k > 0, so that for all sufficiently small ¢ > 0 and sufficiently
large n if G is a set of visible inputs, then there exist F1, Fs, L£1,L2, D, Dy, with the
following properties:

(30.11) & is sufficiently small with respect to T

(31.11) Do C D C G and |D| > 27""|G| and |Do| > 3|D|.

(32.11) Fi, F5 are disjoint subsets of 7

(33.11) For all © = 1,2, L;(z,y) is a binary function which is defined for all pairs
z,y, where z is a partial input and y is a subset of domain(z). Moreover for each fixed
zg, L;(zo,y) as a function of y is a one-to-one map of the set of subsets of domain(zg)
onto a set of positive integers.

(34.11) for all x € Dy and 1 = 1,2, j = 3 — i the number of elements { of the set
fan(D, F;,x) with L;(stem(F;, x), core(F},§£)) < 2" is at least §|fan(D,Fi,X)|.
(35.11) |core(Fi,x)| > k™n fori=1,2 and x € Dy

We show first that Lemma 11 implies Lemma 9. Assume that & is given and we
pick a 7 according to Lemma 11. Suppose now that ¢ > 0 is sufficiently small. and
we pick k according to Lemma 11. Let A = 4k and suppose that ¢ > 0 is sufliciently
small, n is sufficiently large and G is a set of visible inputs. Let Fy, F5,L1,Ls, D be
the elements whose existence is guaranteed by Lemma 11.

We define two functions D;, 2 = 1,2 on D by
Di(x) = Li(stem(F;, x),core(F>_;,x)). Let D' be the subset of Dy where the values
of both D; and D5 are at most 25™. If D(¥) is the set of all elements of D where the
value of D; is at most 25", then D' = Dy N D) N D). To get a lower bound on |D’|
first we give a lower bound on DY), Assume i € {1,2} is fixed. We define a partition
P;, of D so that on each class of P;, stem(F;,x) as a function of x is constant for
i = 1,2, and P; is maximal with this property. Let W be a class of P;. By (34.11)
we have that |[W — D®)| < %|W| and so |D — DW| < %|D| Since this is true for

23

i = 1,2 we have |D — (D) N D®)| < 1|D|. By (31.11) |Do| > 2|D|, so we have
D] = Dy — (DM 0 D®)[> 1|,

We partition D’ according to the values of both D; and D;, that is x and £ will be
in the same class iff D;(x) = D;(¢), ¢ = 1,2. Let C be a class of this partition with a
maximal number of elements. Clearly |C'| > 272%"|D'| > 27272%"| D|. Now we define

a partition P of C by “x, £ € C are in the same class iff rstateX1U F = rstateaU 7. K

for 1 = 1,2. Since the number of possible functions rstate, g, is at most 2¢n20 7'k a4
e is sufficiently small with respect to k, o and , we have that there is a class H of this
partition so that |H| > 2720 "kn|C| > 9—€207 "kng=2=2kn|D)| > 9=3kn|D| > 3~4kn ||,
The fact that H is a single class of P implies that there are functions fi, f> so that
for all : = 1,2 and for all x € H we have rstateX’UFi = fi, that is, (27.9) holds.

(23.9) is a consegence of A = 4k and the inequality |H| > 27*%|G| proved above.
(24.9) follows from (32.11)

(25.9). Suppose i € {1,2}, 7 =3 —i. H C C and the definition of C' imply that if
stem(F;, x) = stem(F},¢) then break
L;(stem(F;, x), core(Fy,x)) =L;(stem(F;,), core(F},§)).

According to (33.11) £;, as a function of its second variable is a one-to-one map (for
a fixed value of the first variable), therefore core(F},x) =core(F},§).
(26.9) is a consequence of (35.11), A =4k and 0 < k < 1, 0 < 7 < 1 and the fact

that x is sufficiently small with respect to 7.

Definition. If i is an input, and [is a nonnegative integer, then acc;(x) will denote
the set of all registers which, at input x, are accessed from exactly [different elements
of 7.

Remarks. 1 For the defintion of acc;(x) it is irrelevant whether a register has been
accessed only once or several times from an interval of 7.

2. The goal of the next lemma is to show that for all visible inputs x there is an
[so that |acc(x)| is large, both in an absolute sense and compared to the numbers

lace;|, 1 =1,...,1 — 1.

Lemma 12. Suppose that k > 2 is a positive integer, o > 0 is sufficiently small, n
is sufficiently large, and x is a visible input. Then there is a positive integer | with
1 <1< 2k and ap >0, so that i is an integer and
(36.12) |acci(x)| > oikn,

(37.12) forall i =0,1,....,1 — 1 we have |acc;(x)| < c(H1En
(38.12) |logo| zlogk < u < (10k)***1|log 0|2 log k

Remarks. 1. We will use this lemma to select the common size of the sets F}

and F, whose existence is stated in Lemma 11. Fj, F, will be a pair of disjoint

24

random subsets of Z with ¢ elements where ¢t = [0 ~!*#] and u is given by Lemma 12.
The importance of the gap, described in the lemma, in the sequence |acc;| between
t <I—1and ¢ =1 1s the following. In the proof of Lemma 11 we will estimate the
number of elements of the set X N core(F},x), where X is a given set of registers.
To get an upper bound will be easier if we may disregard the registers in acc;(x) for
i =1,...,l—1. The inequalities in (36.12) and (37.12) will make this possible. (36.12)
will be used again when we prove a lower bound on |core(F}, x)|.

2. The function |log o|_% in the upper and lower bounds of (38.12) can be replaced
by any function f(o) > 0 so that lim,—g f(0) = 0 and lim,_q |log o|f(0) = co. This
change does not affect the application of the lemma in the proof of Lemma 11

Proof. We define a sequence ., !, for » = 0,1,2,... by recursion on r until a pair
@ = pr,l = [, satisfies the conditions of our lemma. The pair y,,l., » =0, ..., 2k will
satisfy the following conditions:

(39) faces, ()| > 0¥,

(40) ., is an integer and [, < 2k is a positive integer for all » > 0, moreover [, < [,_4
for all » > 0,

(41) |10ga|_% log k < pr < (10k)"t1|log a|_% log k

Assume 7 = (0. The number of registers which are accessed at most in 2k different
intervals of 7 is at least 7, otherwise the total number of accesses would be more
than kn. Therefore there is an I’, 1 < I’ < 2k so that there are at least ﬁn registers
which are accessed in exactly !’ different intervals of Z, and so |accy ()| > ﬁn. Let
w = |10g0|_%10g k, po = [%]_1. laccy (x) Zj—kn > k_%“c’g”'%n = g3kt n > gikon,
Therefore if Iy = I' then (39) holds with 7 = 0. We have |logo| % logk =u' < uo
< 10|log 0|~ % log k, therefore pg, [y meet the requirements of (41). By the definitions
of po and [y ((40) also holds.

Assume now that u, [; has been already defined for s = 0, .., —1 so that (39), (40),
(41) hold. If o = pp—1,l = I, satisfy (37.12) we do not define y,,[,. Assume that
they do not satisfy (37.12). Then there exists an [, < [,_1, » > 1 so that |ace;, (x)| >
gllr—1F+Dpr—1py (Since x is visible we may assume that I, # 0). Let p, = 4(l,—1 +
)pr—1. —(37.12) implies |accy, (x)| > oi“rn, and by the inductive assumption we
have pr = 4(lr—1 + Dpr—1 < 4(2k 4+ 1)pr—1 < 10kp,—1 < (10k)r+1|10g cr|_% log k.

Since the numbers [, form a decreasing sequence of positive integers and Iy < 2k, we
have that for some » < 2k — 1 the pair /., 4, cannot be defined. This is only possible
if the pair [= [,_1, 4 = pr—1 meets the requirements of the lemma. Q.E.D.(Lemma

12).

Lemma 13. Assume that v > 0, kK > 2 is an integer, o > 0 is sufficiently small,
n is sufficiently large, G is a set of visible inputs, x € G, [, u are the numbers whose
existence are guaranteed by Lemma 12 and t = [0 ~'T#]|. Suppose further that F;, F,

25

is a random pair of disjoint subsets of I each with t elements taken with uniform
distribution from the set of all pairs with this property. Then with a probability of
at least 1 —~ we have:

(42.13) |core(F;,x)| > oH3)kn fori=1,2.

Moreover for all 1 = 1,2 if we randomize Fy, F» as described above and then
(43.13) if we pick a random partial input (defined on core(F;,x) so that x 1
(€ G, with uniform distribution on the set of all such partial inputs, then with a
probability of at least 1 — +, for the randomization of (we have: |register(F;,x
() Ncore(F3_;,x)| < oDy

Remarks. 1. The upper bound on |register(F;,x ()N core(Fs3_;,x)| in (43.13)
is essentially smaller than the lower bound in (42.13). This will be used to show that
the various sets core(x ! () are relatively close to each other in the metric defined by
the size of the symmetric difference. (Lemma 16 gives the connection between the
estimate in (43.13) and distances between the sets core(x1().) This closeness implies
that there are relatively few sets of the form core(x ! (). This will make it possible
to define the functions £; with the properties described in Lemma 11.

2. In the proof of this lemma (for both statements) we will have two steps. First we
will estimate the expected value of the numbers |core(F}, x)| resp. |register(F;, x!
()N core(F3_;,%)|, then, based on these estimate we get the bounds which hold with
high probability. The second step will be easier for the upper bound since in this
case Markov’s inequality can be used. In the case of the lower bound our solution
is more complicated. (See the remark before Lemma 14.) To get the estimates on
the expected value we will use the inequalities connecting [, u, o and |acc;(x)| stated
in Lemma 12. The definition of the function core will make it possible to estimate
the probability that a fixed register z € accj(x) is in core(F;, x), where F; has the
distribution described in the lemma.

Proof. Assume that v,k,0,n,G, x,!, u,t are fixed with the properties listed in the
lemma. We start with the proof of (43.13) and assume that e.g i = 1. First we
estimate the expected value of |register(Fi,x 1 () N core(Fy,x)| provided that we
randomize F» only. More precisely suppose that Fy C Z, |Fj| = t and a partial
input (defined on core(F1,x) so that x 1 { € G are fixed with these porperties but
otherwise in an arbitrary way. We now take a random F» C Z, |F| = t so that
F; and F, are disjoint with uniform distribution on the set of all such sets F5. We
estimate first the expected value of |register(Fy,x ! () N core(Fy,x)| with respect
to this randomization. Let z be a fixed element of register(Fi,x ! (), we estimate

the probability p, of the event z € core(Fj,x). (The expected value in question will
be > {pz|z € register(F1,x1()}.)

26

First assume that z € acc;() for some 7 < [. In this case we use the trivial bound
pr < 1. Let Z; be the set of all registers z with this porperty.

Assume now that z € acc;(x) for somei > [. Let Z5 be the set of all registers z with
this property. If z is accessed in an interval of F}, at input x then p, = 0, since F} and
F, are disjoint and core(F»,x) cannot contain a register which is accessed outside Fj
at input x. If z is not accessed in any of the intervals of F} then let X C 7 be the set
of intervals where z is accessed. We have X N F} = (. p, is equal to the probability of
X C F5. We can compute this probability by sequentially deciding about each element

of X whether it is in F5. This gives p,= Iﬂ%txllﬁ;tl—lx"‘xﬁ:lgll)%' Since | X| > 1

we have p, > |I|t_t X |I|t__t1_1 X o X |I|t—_tl7jl1+1 t = [c7!*#] implies that o~!*# is an
upper bound for all of the nominators. To get a lower bound on the denominators we

use the inequalities %0'_1 <|Z| and t < %O'_l, [< %0'_1. The first inequality follows
from the defintion of Z, the third from the fact that [< 2k and o is sufficiently large
with respect to k£, and the second inequality is a consequence of the lower bound on p

1
given in (38.12), since this lower bound implies that o# < k196 7|% Using the three

1

inequalities we get the lower bound %O'_ on the denominators. Therefore we have

(—14n)
Pz < 04—10.—1 =415k,

We have E(|register(Fi,x ! () N core(F2,x)|) <D {pz|lt € register(Fi,x!
OF < em Po + Suez, be 171] + |Zalalols,

By (37.12) we have that
|Z1] < lo(HDpy, |Z3] < |register(Fy, ()| <|U Fi| <ton < o~ 'TFon =o#n. There-
fore E(|register(Fy,() N core(Fy,x)|) < loW Dby 4 4lolighn < (4! + l)a(l"'l)“n.

Since this is true for any fixed F} and (, we have that if we first ranomize both F} and

F, and then (as described in the statement of the lemma then for the randomization of
all of the three elements we have E(|register(Fi, ()Ncore(Fy,x)|) < (4l—|—l)a(l+1)“n.
The upper bound that we claim on |register(F,() N core(Fy,x)| in (43.13) is
o+ %)k, The ratio of the upper bound and the expected value is A = 0_%"(41—{— 1)~
Therefore by Markov’s inequality |register(F;,x 1 () N core(Fs_;,x)| < o+ Dk
holds with a probability of at least 1 — A™!, for the randomization of Fy, F5 and (.
Therefore using Markov’s inequality again it is easy to see that with a probability of
at least 1 — A\~ 3 for the randomization of Fy and F; we get such a pair Fy, F, so that
with a probability of at least 1 — A~3 for the randomization of (this inequality holds.
(Here we apply Markov’s inequality for the random variable, depending on the choice
of F} and F3 only, whose value is the probability, for the randomization of (, that the
inequality in (43.13) holds.) The lower bound on w in (38.12) and [< 2k imply that
273 s sufficiently small with respect to «y if o is sufficiently small with respect to &k
and -, which implies (42.13).

For the proof of (42.13) assume e.g. that ¢ = 1. We will show that even
|core(F1,x) Nacci(x)| > o3k with a probability close to 1.

27

Remark. We may give a lower bound on the expected value of |core(Fiy,x) N
accy(x)|, using similar arguments as in the proof of (42.13), however in the case of
lower bounds there is no analogue of Markov’s inequality and so we do not get auto-
matically a lower bound on |core(F;, x)Nacc;(x)|, which holds with high probability.
The following Lemma is a general result which makes possible in certain cases to get a
lower bound on random variable, which holds with high probability, by using a lower
bound on its expected value. We assume that the random variable is the sum of those
values of a function of [variables where each varibale is restricted to the same random
subset of a finite universe.

Definition. If A is a set and [is a positive integer, then [A]' will denote the set of

those subsets of A which contain exactly [elements.

Lemma 14. There is a function g defined on the set of positive integers with
positive real values so that for all positive integer | and for all sufficiently small « > 0
there is a § > 0 so that if m is a sufficiently large positive integer, s > m'~* then the
following holds. Assume that A is a set with m elements, w is a function on [A]! with
nonnegative real values so that for all a € A we have
(44.14) S Hw(X) | X €[4]}, a € X} <m 1T Y {w(X) | X € [4]'}
and B is a random subset of A with uniform distribution on [A]® and A =
S{w(X) | X € [B]'}. Then, the probability of the following event is at least 1 _g—m’.

AngEMJ=m0<D(7)A§Z@¢W|X€iﬂﬂ

For the proof of Lemma 14 we need the following lemma.

Lemma 15. For all sufficiently small « > 0 there is an ./ > 0 so that for all
sufficiently large positive integer m the following holds. Assume that D is a finite set
with m elements, » > m!~* is an integer and f is a nonnegative real-valued function
on D so that for any X C D with |X| < m? we have >, x f(z) <75 > ,cp f()

Suppose further that R is taken at random with uniform distribution from [D]|".

Then with a probability greater than 1 — 2_mbl we have that

> f@) 2 (Y f(@)

z€R zeD

DN | =

28

Proof. We define an odering <y of the set D with the property "for all d,d' € D,
d <y d' implies f(d) <s f(d')”. Let P be a partition of D into intervals (according ot
this ordering) so that the lengths of each interval is between $m?* and (3 + ﬁ)mm.
Let I be a fixed interval. The expected value of [RN1|is = |I|. We claim that with a

probability of at least 1 — 9-m"" we have that |[RNI| > g%m, where ¢/ > 0 depends
only on ¢. This can be easily proved e.g. by expressing the probability of |[RNI| =k
by binomial coefficients and then estimating the sum of the corresponding binomial
coefficients using Stirling’s formula. Since the number of different intervals I is at
most m, we get that there is an ' > 0 so that with a probability p > 1 — 2’”“ for all
intervals I € P we have |[RNI| > %%m Let I1,...,I; be the intervals of P in the
order induced on them by the ordering <; on D. If we take two consecutive intervals
I;, I,+1 then all of the values of f on I,;; are greater than all of its values on I;. Let
Si(R) = Xaer.nr f(d):

These facts imply that with a probability p for all 1 = 2, ..., g we have that S;;1(R) >
$ B(Si(R)). This implies that 20_, S:(R) > & S0} B(Si(R)) =2 B(X_, Si(R)) -
E(Sq¢(R)) = %(L Y.zep f(z)) — E(S¢(R)). We give an upper bound on E(S,(R)).

m

|I,] < m?*, therefore by our assumption Zzequ(:n) < %EzeDf(m) and

so E(S,(R)) < %% sep f(z). Consequently > o f(z) = i Si(R) >
%% zep f(z) — %11—0% sen f(@) > %% zep f(z). Q.E.D.(Lemma 15)

Proof of Lemma 14. We will use the following notation. If z1,...,2; is an arbitrary
sequence of length [from the elements of A then w(z1,...,z;) = w({z1,...,z:}) if
[{z1,...,z1}| = I, otherwise w(z1,...,2;) = 0. Let » = [7]. We randomize B in
the following way first we pick a random sequence Bi, ..., B; so that B; € [A]" for
¢ = 1,...,] with uniform distribution on the set of all sequences with this property.
The definition of r implies that v = ||J;_, B;| < s. We pick a random subset B’ of
A— Ui:l B; with v elements with uniform distribution on the set of all sets with this
property. Let B = B' U Ui:l B;. Clearly B has uniform distribution on [A]°. (Note
that the sets B; are not necessarily disjoint.)

We have Y {w(X)|X € [B]'} > (I S {w(z1,...,z1)|z; € B;,i = 1,...,1}, since
each term on the right (apart from the order of the varaiables z;) on the left-hand-side
too. We will give a lower bound on the right-hand-side which holds with high proba-
bility for a random B. We may compute the expected value Ey of Y {w(z1,...,zi)|z; €
B;,i = 1,...,1} by adding the probabilities p(a1,...,a:) of the events that the terms
w(ai,...,a;) occur in the sum, for all ay,...,a; € 4, {a1,...,a;} € [A]". Let a1, ...,ay,
{a1,...,a;} € [A]' be fixed. Since the events a; € B; are independent we have
plal,...,a)) = (%)l Therefore E; = l!(%)l Y {w(X)|X € [A]'}. This makes it

29

possible to replace Y {w(X)|X € [4]'} by (!!)7*(%)"'E; in the conclusion of Lemma

14. We get that it is enough to prove the lemma if the conclusion is

a0 ()(7) 2

We show that the coeflicent of E; in this expression remains below a bound de-
pending only on [. If [is fixed and m,s tends to infinity with s > m!~* then
lim(%)_l(i)(ry)_l = 1. We also have that (L)™' =(2)7'2 =(2)71s[3]7! <

(=)7's()"! =(2)7'2l. Using these facts we get that if m is sufficiently large

with respect to [, then (I1)=1(Z)=¢(3) (™) 7" < (1) 12uH(2)7H(3) (M) T < (1) 12t
Therefore it is enough to show that the lemma is true if we replace the con-
clusion by A > g(l)(l!)_12lll%E1 = g(I)E; for a function § > 0. Since A >
(M~ S {w(z1,...,z1)|zi € Biyi = 1,...,1} it is sufficient to prove the lemma if the
conclusion is Y {w(z1,...,zi)|z; € B;,i =1,...,1}g(l)Eq for a function g.

We define a random variable ~; whose value depends only on the choice of By, ..., B;.
Namely, let

hj = Z{w(m, x|z € Biyi=1,..,4,z; € Ayi=7+1,..,1}

We will prove by induction on ;7 that with a probability of at least 1 —j2_m“ we have
that h; > %E(hj), where ./ > 0 depends only on ¢. Our inductive statement for j = [
implies the required inequality.

Assume now that the statement holds for z = 1,...,7 — 1 for some j = 1,...[. We
may write h; in the form of ZaeBJ— f(a), where

f(a) = Z{w(ml, ey Tj=1,8, 41, .. 2)|zs € Bi,i=1,..,5—-1,z, € Aji = j+1,...,1}

Assume now that By,..., B;_; has been already randomized. We want to apply
Lemma 15 to the function f with D — A, r — [}]. Suppose that X C A, |X| <

m?2. If Yozex f(z) < % > zca f(z) does not hold then there is an zp € A so that

f(zo) > %m_mzaeA f(a). By the definition of f(a) we have > _, f(a) = hj-1,
therefore according to the inductive assumption with a probability of at least 1 — (5 —
1)2_mL/ (for the randomization of By, ..., Bj_1) we have that h;_1 > g;({)E(h;-1) >
(37)'9;(1) S {w(Y)|Y € [A])'}. This implies that for such a sequence By, ..., Bj_1 we
would get f(zo) > g;())m™2 Y {w(Y)|Y € [A]'} in contradiction to (44.14) if m is
sufficiently large. Therefore with a probability of at least 1 — (5 — 1)2_7"“ for the

randomization of By,...,B;_; Lemma 15 can be applied for the function f and we

30

get that for the randomization of B; with a probability of at least 1 — 2_mLI we
have Zzij flz) > %% seaf(2) Z%E(Ezij f(z)) Z%E(h]-) which implies the
inductive statement for j. Q.E.D.(Lemma 15)

Now we may conclude the proof of Lemma 13. We want to apply Lemma 14. Let
[be the integer from the proof of Lemma 13 and let § = +, assume that . > 0
is the number whose existence is stated in Lemma 14. We apply the Lemma with
A—TI IfX CIT, |X| =1 then w(X) will be the number of registers from acc;(Z)
,m > ko~! and
s =t = [0~ 1T#]. We have to show that s > m!™*. The upper bound in (38.12) and
the fact that p is sufficiently small with respect to k,~ implies that u is sufficiently
small with respect to k,l, v, and ¢. So we have m!™* < (2ko~!)1~* < [071TH] = .
Now we check (44.14) the second requirement of Lemma 14. On the left-hand-side

we have the number of registers which are accessed from the interval a (and also [—1

which are accessed from each elements of X. Let m = |Z| < 2ko ™!

other elements of 7.) Since a, as an element of 7, contains at most on elements, we
have that the left-hand-side is at most on. By (36.12) and |Z| > ¢! the right-hand-
side is at least |I|_1+Lo*%"n > %01_“"%'“71. As we have seen earlier, the upper bound
in (38.12) implies that p is sufficiently small with respect to ¢ so we have that the
right-hand-side is greater than on.

The random set B is Fi, and so, according to the conclusion of the lemma we have
that with a probability of at least 1 —27™" > 1 — v we have |core(Fi, x)Nacc(x)| >
g(l) (s) (m)_la%”n. Using that both s and m are sufficiently large with respect to [we

I/ \1

s\ (m\ —1 s(s—1)...(s=1+1 s _ _ _
get () (7)) =Pl > (DUR) () G) (20 R) T > (&)™

Since o is sufficiently small with repsect to [, this implies (42.13). Q.E.D.(Lemma 13)
Notation. If A and B are sets then AAB will denote their symmetric difference.

Lemma 16. Assume that x,n are inputs Fy,F, are disjoint subsets of 7,
stem(Fy,x) = stem(Fy,7n) and rstateX’UF1 = rstatemUFl. Then
(45.16) core(F»,x) — core(Fs,n) C register(Fi,n) N core(Fs,x).
(46.16) |core(Fy,n)| = |core(Fr,x)| implies
|core(Fr,n)Acore(Fs, x)| < 2|register(Fi,n) N core(Fs,x)|.

Remark. The condition |core(F3,n)| = |core(Fs,x)| in (46.16) does not restrict
essentially the applicability of this lemma, since the number of possible values for
|core(Fy,n)| is at most n. Therefore from a set of inputs we may always take a
subset with density at least % so that |core(F3,)| is the same for any input £ in the

subset.

31

Proof. stem(Fi,x) = stem(Fy,n) and rstateX’UF1 = rstaten’UF1 implies that
the computations at inputs n and x are identical outside Fj, that is the states of the
machine at the two inputs are the same at time ¢ for each ¢ € [0,kn| — Fi. Assume
now that z € core(F»,x)—core(F»,n). Register z is accessed in F» at input x. Since
F1 N Fy = () our previous remark implies that that it is also accessed in F} at input
n. Therefore by z ¢ core(F3,n), ¢ must be accessed at input 7 at some time outside
F,. This cannot happen outside Fj since there the two computations are identical
and z € core(F3,x) implies that z is not accessed outside F5 at input x. Therefore
z must be accessed in F; at input 7, that is, z € register(F},n) which completes
the proof of (45.16).

|core(Fs,n)| = |core(Fs,x)| implies that their symmetric difference consists of two
disjoint subsets with identical cardinalities. We gave an upper bound on one of them
in (45.16). Q.E.D.(Lemma 16)

Proof of Lemma 11. Suppose that a positive integer k is fixed. Let 7 = 1 — ;-

40k *
Suppose that ¢ > 0 is sufficiently small with respect to k, ¢ > 0 is sufficiently small

respect to k, o, n is sufficiently large with respect to k,0,e and G is a visible set of
input. For each fixed x in G Lemma 12 guarantees the existence of a pair of numbers
[, u with the properties listed in the lemma. [is an integer in the interval [1,2k], u=!
is a positive integer and by (38.12) we have =1 < |log O'|%. Therefore there are at
most 2k|log a|% < 071 possibilities for the choice of this pair. Consequently there is
a subset Dy of G with at most ¢~ !|G| elements so that for each x € D; the pair [,
is the same. In the following [and p will denote these common values for all x € D;.

We define a partition P’ of Dy: x,{ € D; are in the same class iff |core(F}, x)| =
|core(F}, €)| for : = 1,2. This partition has at most n? classes therefore it has a class
D so that |D| > n2|D;| > n?07!|G|. We will use later that
(47) for all x,¢ € D and ¢ = 1,2 we have |core(F;, x)| = |core(F;, §)|.

Let k = ot &)k We pick the sets F} and F5 the same way as in Lemma 13, that
is, t = [07!*#] and F},F, is a random pair of disjoint subsets of 7 each with ¢
elements taken with uniform distribution from the set of all pairs with this property.
According to Lemma 13 (with G — D), for any fixed x € D if we pick F; and F>
at random then with a probability of at least 1 — v both (42.13) and (43.13) hold.
We will use a consequence of this fact in case when we randomize x as well. We
pick x at random with uniform distribution from D and independently Fi, F; with
the distribution described above. For this randomization we have that the resulting
elements x, Fy, F5 satisfy condition (42.13) and (43.13) with a probability of at least
1 —~. Therefore we may pick a fixed value for 7 and F; so that if we randomize only
X then (42.13) and (43.13) hold with a probability of at least 1 — . Let Fy, F> be
these fixed values and let Dj be the set of all y satisfying (42.13) and (43.13). Clearly
Dol > (1—)/D.

32

Now we define the functions £;, ¢ = 1,2. Let z be a partial input. Assume first
that there is a x € Dy so that stem(F;,x) = z. For each y C domain(z) let g(y)
be the number of n € fan(D, F;, x) so that the symmetric difference of core(F3_;,n)
and core(F3_;,x) is at most 40+ 2k, We define now an ordering “<,” on all of
the subsets of domain(z) so that z <, y implies g(z) > g(y) (apart from this property
the ordering can be arbitrary). For each y C domain(z), £;(z,y) will be the rank of
y according to the ordering <, (the rank of an element y is the number of elements
which are not greater than y). If there is no x € Dy so that stem(F;,x) = z then
Li(z,y) as a function of y will be an arbitrary one-to-one map of the set of subsets
of domain(zg) onto a set of positive integers.

We show now that Fy, Fy, £1,L2, D,Dy and k meet the requirements of Lemma
11.

(30.11). This is a consequence of the defintion of «, the lower bound on y in (38.12)
and the fact that o is sufficiently small with respect to 7,

(31.11). We have seen that |D| > n"207!|G| and |Dy| > |(1 — 7)|D||. Lemma 13
allows us to choose 4 > 0 as an arbitrarily small constant.

(32.11). Fy and F; are disjoint by their definition.

(33.11). The definition of £; had two cases according to z. In the first case, for a
fixed z, the value of £;(z,y) is the rank of y in an ordered set, so £1(z,y) as a function
of y is indeed a one-to-one map, and the values are clearly positive integers. In the
second case we defined £; with no other purposes than to meet these requirements.

(34.11). Assume that x € Dy. By the definition of Dy both (42.13) and (43.13) are
satisfied. Assume that ¢ is fixed and j = 3—1. Let R = fan(D, F;, x), ¢ = stem(F}, x).
For any 6 > 0 let ¥y be the set of all subsets y of domain(z) so that |core(F}, x)Ay| <
9o+ 2)kn, R,y will denote the set of all n € R so that core(Fj,n) € ¥y.

(43.13) implies that for at least (1 — «)|R| elements n € R we have
|register(F;,n) N core(F},x)| < o+ kn. Therefore by (47) and Lemma 16 we
have |core(F}, x)Acore(F},n)| < 2|register(F;,n) N core(F},x)| < 20+ 2)kp, We
got that |Ra| > (1 — v)|R).

This implies that if g is the function defined in the defitinion of £; then for all y € ¥y
we have that g(y)) > (1—+)|R|. On the other hand if y ¢ Ug then g(y) < v|R|. There-
fore in the ordering <, all of the elements of ¥y are smaller than all of the elements
outside Wg. Therefore the rank of all of the elemnts of ¥, is at most |W¥g|. This
implies that for all n € Ry we have L;(z, core(F},n)) < |¥s|. Every elements of |¥g|
is a subset of {1,...,n} with at most 8oty elements, therefore |¥g| < (Sa(zr%)yn).
To estimate the binomial coefficient we use the follwoing well-known fact that can be
proved e.g. by using Stirling’s formula: thereis a ¢’ > 0 so that forall 0 < p < 1if nis
sufficiently large then (p"n) < ef'Prllogpl The inequality is applicable in our case since

Lemma 12 guarantees that pu has positive upper and lower bounds independent of n.

33

(H%)#n

We get the following: |¥g| < ec'80 T D log (85030 n <20 = 2*" provided that
n is sufficently large with respect to 0. We have L;(stem(F;, x), core(F},n)) < 2%
for all n € Ry. Since R1 C R, |R1| > (1 —v)|R|, v < % and R = fan(D, F;, x) this
implies (34.11).

(35.11). According to (42.13) we have |core(F}, x)| > o+3)kn, Since r =1 — ﬁ,
[<2k, k=c+8)# and 0 < 1 we have that k™ < o(+2)# that is |core(F;, x)| > k™n.
Q.E.D.(Lemma 11).

A probabilistic algorithm for the element distinctness problem. In this
section we give an upper bound on the time necessary for the solutionof the element
distinctness problem. Our computational model now is a random access machine in
the usual much narrower sense of the word than the one that we have used for our
lower bound results. That is, we assume that the read and write memory of the
machine is also consists of registers of the same sizes as the input registers. Now the
machine cannot change its state in an arbitrary way it can only perform arithmetic
and logical operations on the contents of to registers and can only access a register if
its address i1s the content of a distinguished register. An exact defintion of this RAM
is given e.g. in [AHU]|. According to the defintion given there we assume that the
content of each register is a nonnegtive integer. Our additional assumption will be an
upper bound on this integer and an upper bound on the total number of registers. It
is important for our algorithm that not only the arithmetic operations addition and
multiplication can be proformed between the contents of registers (assuming that the
result of the operation is not greater then the maximal number allowed in a register),
but also the operation [%], provided that y # 0. (This makes it possible to store and
recover efficiently a sequence of positive integers where some of them are much smaller
than the allowed maximal size. In this case we may have to store several integers in a
single register to minimize the size of the needed memory.) We also assume that the
machine has a program which is stored in some registers. (From our point of view it
is irrelevant whether the contents of these registers can be changed or not).

If we allow as an additional operation for the machine to ask for a random bit
which appears as the content of a distinguished register then we will call the machine a
probabilistic true random acess machine. Each access for a random bit will be counted
as a time unit. We assume that the random bits provided to the machine during a
computation are generated by randomizing of a sequence of mututally independent
random variables with 0, 1-values.

Theorem 5. For all § > 0,0 > 0,c > 1 there is a k > 0 so that if n is sufficiently
large, then there is a probabilistic true random access machine with a program con-
tained in a constant number of registers and with n read only input registers and

with at most én registers of read and write memory so that each of the input registers

34

and each of the registers of the read and write memory contain [clogn| bits and the
following holds. For any input x the machine gives a 0,1 output out(y) in time kn
so that with a probability of at least 1 — 6 we have

out(x) = 1 iff there exist 1 <1i < j <n so that x(¢) = x(j)

Proof. According to the statement of the theorem én is the number of registers
in the R/W memory where § can be an arbitrarily small constant. However it is
sufficient to prove the theroem for the case when § > c¢;, where c; is a sufiiciently
large absolute constant. Indeed assume that this modified version of the theroem is
true and c; is fixed. We want to prove the original version. We cut the interval [1,n]
into disjoint subintervals Iy, ..., I; whose lengths is about %501_171. For each pair of
intervals I;, I; using the algorithm provided by the modified theorem we may check
in time k'n whether there are z,y € I; U1, z # y so that x(z) = x(y). The theorem
is applicable because the number of working registers én is now larger than ¢; times
the number of input registers, since the input is contained in only || + |I;| < dc™!n
registers. We may also assume that we get the correct answer with a probability of
at least 1 — t% If we do this for all of the possible pairs I;, I; then we will get the
answer in time t2k’ with a probability of at least 1 —#. Since ¢ remains below a bound
depending only on ¢; and §, this proves the original version of the theorem. In the
remaining part of this section we give the proof of the modified version, so the word

theorem will refer to the modified form.

Definitions. 1. Assume that ¢ is a positive integer and A C B are finite sets, and h
is a function defined on B with values in {1,..,t}. We say that & is a (¢, A) dispersed
hash-function on B if the number of elements a € A with |h™(h(a)) N A] = 1 is at
least 1|Al.

2. Assume that s,n, are positive integers p is a prime and dp, ...,ds_1 are integers

in the interval [0,p). We define a function hs n p ds,....d whose domain is the set

{0,1,...,n° — 1} in the following way. Suppose that z € {0,1,...,n° — 1}. We may
write z uniquely in the form of z = E;:S b;n' where b; is an integer and 0 < b; < n
fori=0,1,...,5 — 1. Let hgn pdo,. d,_.(z) be the least positive residue of E;:Ol d;b;

modulo p.

s —

Lemma 17. There is a ¢ca > 1 so that for all positive integer c if n is sufficiently
large B = {0,1,...,n° — 1}, A C B, |A| < n, p is a prime between cyn and 2cyn
and dy, ...,d._1 is a random sequence of integers with 0 < d; < n taken with uniform
distribution from the set of all sequences with these properties, then with a probability

... Is a (2¢con, A) dispersed hash function on

of at least % we have that hen pd,,...,d
B.

35

Proof. Let T be the number of pairs (aj,a2) € A x A so that a; # az and
h(a1) = h(az) where h = he pnpdo,....d._.- We estimate E(T). Let a1,a3 € A, a1 # as
be fixed and assume that a; = Ef;é b; jn’, where 0 < b; ; < n. Since the sequences
(bj1li =0,...,c—1) and (b; 2|i =0, ...,c—1) are different we have that the distribution
of (E::O dib; 1) — (E::O dib;2) = E::o d;(b;,1 — b; 2) is uniform modulo p. Therefore
P(h(a1) = h(a2)) = % SC%". This implies that E(T') < c%n(";') < % since |A| < n.

By Markov’s inequality we have that P(T > %|A|) < i and so if ¢y 1s sufficiently
large, then P(T > %|A|) > % We claim that T < %|A| implies that A is a (2can, A)
dispersed hash function on B. Indeed in this case there are at most %|A| pairs (a1, a2)
with h(a1) = h(as). These pairs can cover at most ;|A| elements of A. Therefore for
the remaining 1|A| elements a of A we have |h™!(h(a)) N A| =1. Q.E.D.(Lemma 17)

Now we continue the proof of the theorem. First we describe the algorithm in the
more general random access machine model that we have used for the lower bound
proofs. Then we show thst it can be implemented on a true random access machine
as well.

The algorithm will have two phases. The time requirement for each phase is %n

Phase I. We will construct a sequence of sets Uy = {1,...,n}D U; D ..D U;D ...
Each susbset of n can be represented by n bits. We will always keep the set U;
that we have constructed the last time in the working memory, and discard all Uj,
j=0,...,1—1.

We describe the construction of the sequence U; by recursion on 1. Uy = {1,...,n}.
Assume that U;_; has been already constructed, for some ¢ > 1 and it is in the
working memory. We will apply Lemma 17 later, when we prove the correctness of
the algorithm, with A — {n(z)|z € U;—1}. Let h be the hash function from the
lemma taken at random as described there. We randomize the bits of the numbers
do,...,de—1. (The necessary time is O(c(1 4 logn)).) The possible values of h are
the integers 1,...,2con. We reserve 2 bits for each of these integers in our working
memory. Then we go along all of the input registers in U;_; and for register z we
compute h(n(z)) (this takes a constant number of steps for each fixed z). Assume
a = h(n(z)). Using the two bits reserved for the number a we “count” how many
times the value a has been attained as h(n(y)) for some register y which has been
already inspected. “Counting” however means now that we want to distinguish only
the possibilities “0”, “1”7, “more than 1”. Clearly we can do this with the two bits.

After we went along all of the registers in U;_; we will know what are those integers
i € {1,...,2con} which were taken as a value h(n(z)) exactly once. If we go along the
registers again and compute k(7(z)) again for all z € U;_; we will know also the set
Vi of those registers z where these values are taken, that is, the set of all registers =
so that h(n(z)) # h(n(y)) for any y # z, y € U;—1. (This set can be represented by
n bits and as we go along the registers we get the individual bits.) We know that if

36

there are two identical contents in the registers belonging to the set U;_; they are not
contained in the registers of V;. U; will be the complement of V; in U;_;.

The described steps, including “going along” the elements of a set X of registers do
not cause any problem in the more general model since the set is uniquely determined
by the state of the working memory so the machine can access the registers in X C
{1,...,n} say according to the linear oredring of the natural numbers. However in
the case of the true random access model we have to prove that “going along” of the
elements of X in the claimed amount of time is possible if the set X is given in a
suitable representation which can be constructed in time linear in | X|. We will return
to this question later.

We continue the construction of the sets U; until either

(a) we get a U; with |U;] < % or

k

57n. In this case U, will denote the last set U; which was com-

(b) we reach time

pletely constructed.

Phase II. If Phase I has been terminated through case (a) then we read the contents
of all of the registers in U; and because of the size of U; they will fit in the working
memory so we know whether there are two identical numbers among these contents.
If there are such two contents then the output of our algorithm is 1 otherwise it is 0.
(If we work with a true RAM then we may use bucket sorting to decide whether there
are two identical contents among the registers belonging to U after we have copied
the contents of these registers in the workspace.)

If Phase I was terminated through (b), then we will repeatedly do the following
until we run out of time:

First we take a random element z of U, (by randomizing an integer s between 1
and |U,| with uniform distribution and then take the s-th element of U,). Then by
going along the elements of U, we check whether there is an y € U,, y # z so that
h(n(z)) = h(n(y)). If we found such a y then the output of our algorithm is 1.

If the algorithm haven’t decided that the output is 1 (by repeating the proceedure
decribed above) before we get to time kn then the output is 0.

Proof of the correctness of the algorithm. We prove by induction on ¢ that
(48) foralli>1,ifz € U;_1 — U;, then n(z) # n(y) for any y # z, y € {1,...,n}.
Assume i > 1, z € U;_1 — U; and that the inductive assumption holds for z — 1. By
the inductive hypothesis n(z) # n(y) for any y € U; where j < ¢ — 1, and equivalently
the same holds for any y € {1,...,n} — U;,_1. For all y € U;,_1, z # y we have
h(n(z)) # h(n(y)) and so again n(z) # n(y). (This is true even for ¢ = 1.) Therefore
if Phase I terminates through case (a) then if there are identical elements they must

be contained in U; and so our algorithm finds them.

37

To show that the algorithm gives the right answer with high probability even if it
terminates through case (b) we will prove that:

(49) if Phase I terminates through case (b) then with a probability of at least 1 — g
there is a D C Uy, |D| > 15|U.| so that
(*) for all z € D thereis ay € D, y # z so that n(z) = n(y).

If there is a set D, |D| > 15|Ux| with property (*) then Phase II will find identical
elements in the input in c4|U,| steps with a probability of at least 1 — g if k is
sufficiently large with repsect to 8 but it does not depend on n. More precisely after
1 repetition of the cycle of Phase II, the probability that identical elements has not
been found yet will be at most (1 — %)Z Therefore (49) implies that the probability
that the algorithm does not give the right answer is less than g + g = 6.

Proof of (49). If there is a set U; and a subset D C Uj, |D| > 1=|U;| with property
(*) then the analogue of this assertion holds for all of the sets U;j41,Uj42, ... with the
the same set D. This is a consequence of U; D U;+1 O U;42 O Therefore if Phase [
terminates through case (b) but U, does not contain a set D, with property (*) then

(50) Phase I is terminated through case (b) and none of the sets U;, j = 0, ...
contain a D C Uj, |D| > {5|U;| with property (*).

, T

We will complete the proof by showing that the probability of (50) is smaller than
¢. Let H; be the event |U;| < 2|U;—1]. (50) implies that for i =1,...,r
(51) P(HIX) >
Hl, . H; 4.

Indeed if we apply the Lemma 17 with A — {n(z)|z € U;_1} = Z as we promised at
the description of the algorithm, then with a probability of at least %, his a (2¢an, Z)
dispersed hash function. We show that if a h is picked which is (2¢an, Z) dispersed
then |U;| < 2|U;_1|.

(50) implies that |Z| > % |U;—1]|, therefore by the definition of the (2¢2, n) dispersion
we have that thereis a Z' C Z, |Z'| > }|Z| > 5|U;—1] so that A= (h(z)) N Z = {2}
for all z € Z'. Let B = n~!(Z). (50) implies that B may contain at most 15|U;_1]
registers which are in U;. B C U;_1, |B| > |Z| > 55|Ui—1| therefore |U;_; — U;| >
5 |Ui—1| — §5|Ui—1| > 3|Ui—1| which completes the proof of (51).

Let g be an integer sufficiently large with respect to 6 so that & is sufficiently large

%, for any event X in the Boolean algebra generated by

with respect to g and let GG; be the following event:

There are more than g(j + 1) elements 7 of the set {1,...,7} so that (%)]n > |Ui| >
(%)j‘Hn. Clearly (51) implies that P(G;) < 279U+1). Therefore the probability of
d7G(5) is at most Z;o:o 2790+ = (1 —279)7! — 1. Since g is sufficiently large
with respect to 8 we have that P(35,G(j)) < g We claim that Vj, G(j) implies that
the algorithm terminates Phase I through case (a) which will complete the proof of
(49). Indeed if Vj, G(7) then we may give an upper bound on the total computational

38

time of Phase I. The time that the algorithm spends on computing sets U,41 so that
(%)Jn > |U;| > (%)j‘l'ln is at most O(1)g(j+1)|U;| < O(l)g(j—l—l)(%)jn. Therefore the
total time of Phase I is less than O(1)gn E;’io(j—l—l)(%)]n < %n if k is suffciently large
with respect to g. Therefore Phase I terminates through case (a), which completes
the proof of the theorem for the more general RAM model.

As we have seen during the description of the algorithm the only step which cannot
be realized easily on a true RAM is the representaion of a subset H of {1,...,n} with
O(1)n bits in a way that

(i) the representaion can be constructed in time O(1)|H| if the elements of the set

are given one by one to the machine in an increasing order, and

(i7) the elements of the set H can be generated from the representation one-by-one
in an increasing order, in time O(1)|H|.

At a conceptual level we will represent the set H = {h1,...,hs}, where 1 < hy < ... <
hs < n by the sequenced; 1 =1, ..., hs, where dy = hy and d; = h;—h;_1 forz = 2, ..., s.
First we note that the total number of bits in the binary representation of the integers
di,...,ds is at most O(n). This is a consequence of the fact that if ws,...,w, are

arbitrary nonnegative real numbers and) ;_; w; < n, then >_°_ logyw; < > °_ (s —

1)log %5 < n. (This can be proved by the usual methods for finding the extreme
values functions of several variables.)

Our problem is now the following: we have a sequence of positive integers dy, ..., ds,
1 < d; < n and we have to make a representation of them in time O(s) if we get
them in the given order so that we can produce them again one-by-one in the same
order. It is enough to show that we can solve the problem with the additional re-
quirement that [[]_,(d; + 1) < n, since we may break up the original sequence into
maximal disjoint subintervals with this additional property. It follows that from two
consecutive intervals at least on will satisfy the inequality [];_,(d; + 1) > y/n. Con-
sequently if for each subproblem we use a constant number of registers then the total
memory requirement is only a constant times larger then the total number of bits in
the binary representations of the numbers dy, ..., ds. The problem with the restriction
[1;—;(d; +1) < n can be solved e.g. by storing the rational representation of the finite
continued fraction

1

di +
dy + ———

generated by sequence di,...,ds. The assumption [[;_;(d; + 1) < n implies that the
binary representations of the nominator and the denominator of this rational number
have at most O(logn) bits. This is a consequence of the fact that the continued

fraction is a rational function 5 of dy,...,ds, where both P and () are multilinear

39

polynomials of the variables d, ..., ds with coeflicients 0 or 1. Therefore the number of
terms in both P and @ is at most 2°, s < logn and each term is at most [[;_, d; < n.
This implies that both the construction of the continued fraction and the reverse
process can be done by rational arithmetic so that for each d; in both direction we
need only a constant number of arithmetic operations. Q.E.D.(Theorem 5)

40

References

[AHU] A. V. Aho, J. E. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, 1975.

[BC] A. Borodin and S. Cook, A time-space tradeoff for sorting on a general sequential
model of computation, SIAM J. Comput., 11, (1982), pp. 287-297

[Be] P. Beame, A General Sequential Time-Space Tradeoff for Finding Unique Ele-
ments, STAM J. Comput., 20, (1991) No. 2,pp. 270-277,

[BFKLT] A. Borodin, M. Fischer, D. Kirckpatrick, N. Lynch, and M. Tompa, A time-
space tradeoff for sorting on non-oblivious machines, J. Comput. System Sci., 22

(1981), pp. 351-364.

[BFMUW] A. Borodin, F. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson,
A time-space tradeoff for element distinctness, SIAM J. Comput., 16 (1987), pp.
97-99.

[Bo] B. Bollobas, Combinatorics, Cambridge University Press, 1986. p 129. Section
16, Theorem 5.

[BST] P.W. Beame, M. Saks and J. S. Thathachar. Time-space Tradeoffs for Branch-
ing programs. 39th Annual Symposium on Foudations of Computer Science, 1998.
pp. 254-263, or ECCC http://www.eccc.uni-trier.de/eccc/

[K] M. Karchmer, Two time-space tradeoffs for elements ditinctness, Theoret. Com-

put. Sci., 47 (1986), pp. 237-246.
[PPST]| W. J. Paul, N. Pippenger, E. Szemerédi, W. T. Trotter, On Determinism ver-

sus Non-determinism and Related Problems, 24th Annual Symposium on Foundations
of Computer Science, 1983, pp. 429-438

[PR] J. Pagter, T. Rauhe, Optimal Time-Space Trade-Offs for Sorting, 39th Annual
Symposium on Foudations of Computer Science, 1998. pp. 264-268,

[Y] A. C. Yao, Near-optimal Time-space Tradeoff for Element Distinctness.

http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/pub/eccc

41 [ECCC ISSN 1433-809

2
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

