Electronic Colloquium on Computational Complexity, Report No. 78 (1998)

The Query Complexity of Program Checking by Constant-Depth
Circuits

V. Arvind* K. V. Subrahmanyam T N. V. Vinodchandran *

Abstract

In this paper we study program checking (in the sense of Blum and Kannan [7]) using AC°
circuits as checkers. Our focus is on the number of queries made by the checker to the program
being checked and we term this as the query complexity of the checker for the given problem.
We study the query complexity of both deterministic and randomized AC? checkers. We show
that, for each € > 0, Q(n'~¢) is a lower bound to the query complexity of deterministic AC°
checkers for Parity and certain P-complete and NC!-complete problems, where n is the input
size. On the other hand, we show that Parity and suitably encoded complete problems for P,
NI, and NC! have randomized AC? checkers of constant query complexity. The latter results
are proved using techniques from the PCP(n?, 1) protocol for 3-SAT in [4].

1 Introduction

In this paper we study program checking (in the sense of Blum and Kannan [7]) using AC? circuits
as checkers. Our main focus is on the number of queries made by the checker to the program being
checked and we term this parameter as the query complezity of the checker for the given problem.
Clearly, the query complexity is an important parameter in the design of efficient program checkers;
a large query complexity is a serious bottleneck for a checker that may otherwise be very efficient
(in terms of sequential/parallel time, space etc.). We would like to mention that constant query
checkers are highlighted in [1] as a notion of program checking that is of practical significance. For
instance, it is shown in [1] that GCD has a constant query checker.

Before we explain our motivation for considering AC? circuits as checkers we recall that the
seminal paper of Blum and Kannan [7] already describes an ACY checker. More precisely, they give
a deterministic CRCW PRAM constant-time program checker for the P-complete problem LFMIS
(lex. first maximal independent set problem for graphs). However, in the context of the present
paper, we note that their checker has large query complexity (the number of queries is proportional
to the input size).

Our motivation for considering AC? circuits as checkers is two-fold. Firstly, in a complexity-
theoretic sense AC? represents the easiest model of parallel computation, and one aspect of program
checking is to try and make the checker as efficient as possible. In this sense, ACY checkers can be
seen as constant-time parallel checkers, since they essentially correspond to constant-time CRCW
PRAM algorithms. The second motivation rests on the main goal of this paper, namely, to study
the query complexity of program checkers. We choose a model of program checking that is amenable
to lower bound techniques since one of our aims is to establish nontrivial lower bounds on the query

*Institute of Mathematical Sciences, Chennai 600113, India (email: arvind@imsc.ernet.in)
'SPIC Mathematical Institute, Chennai 600 017, India (email: kv@smi.ernet.in)
Hnstitute of Mathematical Sciences, Chennai 600113, India (email: vinod@imsc.ernet.in)

ISSN 1433-8092

complexity of program checking. As it turns out, we are able to prove nontrivial lower bounds on
the query complexity of deterministic AC® checkers. In particular, we show for the Parity problem
that Q(n!~¢) is a lower bound for the query complexity of deterministic ACY checkers. In contrast,
we show strong upper bounds for the query complexity of randomized ACY checkers. For Parity
we are able to design a randomized ACY checker of constant query complexity.

Building on the results for Parity we next consider a suitably encoded version of the Circuit
Value Problem (henceforth CVP). Different versions of the CVP are well-known to be complete
for different important complexity classes: the unrestricted version is P-complete and the CVP
problem for circuits that are formulas (i.e. fanout of each gate is one) is NC'-complete.

Our first observation is that each of these CVP problems has deterministic ACY checkers, but in
the naive construction the number of queries made by the checker for an instance of CVP is roughly
the number of gates in the circuit. It turns out that our lower bounds for the query complexity
of deterministic AC® checkers for Parity easily carry over to each of these CVP problems. We
show that, for each € > 0, Q(n'~¢) is a lower bound to the query complexity of deterministic AC"
checkers for each of these CVP problems.

As regards randomized AC? checkers for the CVP problems, we use ideas from the PCP theorem
to again design constant query randomized AC® checkers for each of these CVP problems. The
design of this checker uses the randomized ACY checker for Parity as subroutine and incorporates
the main ingredients from the construction of the PCP(n* 1) system for satisfiability based on
linearity testing developed in [4].

A central aspect of our results and their proofs is the role of the parity function: the algebraic
properties of GF(2) play a role in the upper bound result for randomized ACY checkers, and for
the lower bound proofs for deterministic ACY checkers we invoke the constant depth circuit lower
bound results for parity due to [2] (also refer to Hastad’s thesis [10]).

As described in [4], the PCP theorem has evolved from interactive proofs [9] and program
checking [7, 8]. In particular, there is a strong influence of ideas from self-correcting programs in the
PCP(n?, 1) protocol for 3-SAT [4]. It is not surprising, therefore, that ingredients of the PCP(n?, 1)
protocol find application in some of our results on program checking. Our emphasis on the query
complexity of program checkers seems to naturally lead to the ideas underlying probabilistically
checkable proofs. More applications of ideas from the PCP theorem to other specific problems in
program checking appears to be an attractive area worth exploring.

2 Preliminaries
We first formally define program checkers introduced in [7].

Definition 1 [7] Let A be a decision problem, a program checker for A, Cy, is a (probabilistic)
oracle algorithm that for any program P (supposedly for A) that halts on all instances, for any
instance © of A, and for any positive integer k (the security parameter) presented in unary:

1. If P is a correct program, that is, if P(z) = A(z) for all instances x, then with probability
>1—27% Cu(z, P, k)=Correct.

2. If P(z) # A(z) then with probability > 1 — 27, C4(z, P, k) =Incorrect.

The probability is computed over the sequences of coin flips that C'4 could have tossed. Importantly,
Ca is allowed to make queries to the program P on some instances.

When we speak of AC? checkers we mean that the checker C'4 is described by a (uniform) family
of ACP circuits, one for each input size.

We will also consider the (stronger) notion of deterministic checkability. The decision problem
A is said to be deterministically checkable if C'4 in the above definition is a deterministic algorithm.

Next we define the query complexity of ACY checkers.

Definition 2 Let L be a decision problem that is deterministically AC® checkable. The AC checker
defined by the circuit family {Cy}n>0 is said to have query complexity ¢(n) if q(n) bounds the
number of queries made the checker circuit C), for any input x € ¥".

We now describe the CVP problems and the encodings of their instances. Let C' denote a
boolean circuit over the standard base (of NOT, AND, and OR gates). We consider circuits of
fanin bounded by two. We will encode the circuit C' as 4-tuples (g1, 92, 93,t) where ¢ is a couple
of bits to indicate the type of the gate labeled g1, and g, and g3 are the gates whose values feed
into the gate labeled g;. For uniformity, we can assume that NO'I' gates are also encoded as such
4-tuples, except that go = g3. Furthermore, we insist that in the encoding, the gate labels g;
be topologically sorted consistent with the DAG underlying the circuit C'. Thus, in each 4-tuple
(91, 92, g3,t) present in the encoding of C, it will hold that g; > g2 and g; > g3. This stipulation
ensures that checking whether an encoding indeed represents a circuit can be done in AC°.

For a circuit C' with n inputs let Cy(zq, 22,...,2,) denote the value of the circuit C' at gate g
designated as output gate. We now define the circuit value problem which is the decision problem
that we shall be mainly concerned with in this paper:

{(Cmgﬁrhm%"'a‘rn) |Cg($17$27"'7$n) = 1}

The circuit C' is encoded as described above.

It is well known that the above circuit value problem is P-complete (under projection reducibil-
ity). We denote this by CVP. If the input circuit is a formula (i.e. each gate of the input circuit
has fanout at most 1) the corresponding circuit value problem is known to be NC!'-complete under
projection reducibility; we denote this problem by FVP (for formula value problem). Notice that
an ACY circuit can check if a given circuit is a formula or not.

Finally, we make another important stipulation on the circuits that are valid inputs for all the
circuit value problems that we consider: we insist that the fanout of each gate is bounded by the
constant two.

Notice that this last restriction on the input circuits does not affect the fact that CVP remains
P-complete (in fact, such a restriction already holds for the CVP in the standard P-completeness
proof by simulating polynomial-time Turing machines). Also, observe that this extra stipulation
on the input circuits can be easily tested in AC°.

3 Deterministic ACY checkers for Parity

We first design deterministic AC® checkers for Parity and the circuit value problem.

Theorem 3 For each constant k, there is a deterministic AC® checker for Parity(zq,za, ..., 2,)
of query complezity n/ logk n.

Proof. Let P be an alleged program for the Parity function. First observe that the ACY checker
can make parallel queries to P for Parity(zy1, zg,...,z;) for 2 < i < n. In order to verify that the

program’s value of Parity(z1,z2,...,2,) is correct the checker just has to verify that the answers
to the queries for Parity(zy, g, ..., 2;) are all locally consistent in the following sense:

P(z1,22, ... ig1) = i1 & Pzy, 22, ..., 7))

for2<i1<n-1.

This can be easily done in parallel in ACY since query answers P(xq,22,...,%;) for 2 < i< n
are available.

This gives us an AC? checker which makes n — 1 queries. In order to design a checker with the
number of queries scaled down to n/ logl‘C n notice that we can compute the parity of log n boolean
variables in AC? by brute force. Thus, we can group the n input variables into n/logn groups of
log n variables each, compute the parity of each group again by brute force, and the problem boils
down to checking the program’s correctness for the parity of n/logn variables which we can do as
before with n/logn queries to the program. Clearly, we can repeat the above strategy of grouping
variables for a constant number of rounds, and therefore achieve the query complexity of n/ log® n
with an appropriate constant increase of depth of the checker circuit. This completes the proof. m

Remark: Notice that the above result applies to checking iterated products over arbitrary finite
monoids. The proof and construction of the checker is similar.

Indeed, the above idea of doing piece-wise ’local testing’ in order to check global correctness
was first used in the deterministic CRCW PRAM checker in [7] for an encoding of the P-complete
problem LFMIS. The same idea works in general for the CVP problem. For the sake of completeness
we explain this result (implicit in [7]).

Theorem 4 [7] CVP has a deterministic AC® checker.

Proof. The proof is exactly as for Theorem 3 so we skip the simple details. Let P be an alleged
program for CVP and let (C,g,z1,...,2,) be an input instance for program P. The AC® checker
first queries in parallel the program for

P(C,g,21,...,2,) VY gatesgeC

Next, for each tuple (g1, g2, g3,t) in the circuit description C' the checker verifies that the program’s
answers are consistent with the gate type. This is again done in parallel for each tuple.

Notice that the checker must also validate the input by verifying that the tuples that describe
the circuit indeed describe an acyclic digraph. This is made sure as described in our encoding of
the instances of the CVP. It suffices to check that g1 > g5 and g; > g3 for each tuple (g1, g2, g3, 1),
which can be done in ACY. This completes the proof. [

It can be proved exactly as above that FVP has a deterministic ACY checker.
We now turn to lower bounds on the query complexity of AC? checkers for CVP and FVP. We
first observe the following property of languages L. having deterministic AC? checkers.

Lemma 5 Let L be a decision problem that is deterministically AC® checkable. Furthermore,
suppose I, has an AC® checker of query complezity ¢(n). Then, for each n > 0, there is a nonde-
terministic AC? circuit that takes n input bits and q(n) nondeterministic bits and accepts an input
xeX" iffx € L7".

Observe that, by symmetry, such nondeterministic ACP circuits also exist for L.

The proof of the above lemma is a direct consequence of the definition of deterministic checkers
and is simply a variation of a result on self-helping due to Schoning [11]: as observed, for instance,
in [3], deterministic checking in polynomial-time coincides with the notion of self-helping defined
by Schéning [11] who showed that languages that have self-helpers are already in NP N co-NP.
The above lemma is just an extension of the same fact to the setting where the checker is in AC°.
The only extra observation made in Lemma 5 is that the number of queries made by the checker
naturally translates into the number of nondeterministic bits used by the nondeterministic circuit.

Before we prove our lower bound results we recall an important result due to Ajtai [2] on lower
bounds for AC? circuits approximating Parity.

Theorem 6 [2] For all constants k,c, and € > 0, there is no depth k circuit of size n® that can
compute Parity(z1, 2, ..., 2,) correctly for more than a 1/2 4+ 9!~ fraction of the inputs.

Lemma 7 Parity does not have AC® checkers that make O(n'=¢) queries for any ¢ > 0.

Proof. Suppose Parity has ACY checkers that makes O(n'~¢) queries for some ¢ > 0. From
Lemma 5 it follows that for each n > 0, there is a nondeterministic AC? circuit that takes n input
bits and O(n'~) nondeterministic bits and accepts an input « € 3" iff # has odd parity. By pigeon-
hole principle we can fix the O(n!~¢) nondeterministic bits so that the resulting deterministic circuit
rejects all inputs z € " such that z has even parity, and accepts at least 27"~ fraction of inputs
x € X" of odd parity. This is impossible since it contradicts Theorem 6 of Ajtai. This completes
the proof. [

Theorem 8 CVP (likewise FVP) does not have AC® checkers that make O(n'~¢) queries for any
e> 0.

Proof. We prove it for CVP. It follows similarly for the other problem. Notice that we can easily
design an AC? circuit (call it C') such that given an instance = € 3" of Parity the AC® circuit
produces an instance (C, 1, z2,..., &y, g) of CVP such that

Parity(z1, 22, ..., 2,) = 1iff (C, 21, 29,...,2,,9) € CVP

Moreover, the size of (C, z1,z2,...,%n,g) is O(nlogn), since C simply encodes the linear-sized
circuit for Parity in the 4-tuple encoding we are using for CVP instances.

Now, assume that CVP has an AC® checker that makes O(n'=%) queries for some ¢ > 0.
Combining the nondeterministic circuit given by Lemma 5 with the ACP circuit (', it is easy to see
that we get a nondeterministic ACY circuit that takes n input bits and O(n'~%) nondeterministic
bits and accepts an input x € X" iff # has odd parity, for some suitable § > 0. This contradicts
LLemma 7 and hence completes the proof. [

4 A randomized AC’ checker for Parity

In this section we turn to the question of randomized ACY checkers for the parity function. We
show that Parity has a randomized ACP checker of constant query complexity. This brings out the

power of randomness in sharp contrast to the lower bound on query complexity for deterministic
ACP checkers proved in the previous section.

In this and the next section we crucially use the linearity test. Firstly, we recall the relevant
definition and result from [8].

Definition 9 [8] Let I be GF(2) and f, g be functions from '™ to F'. The relative distance A(f, g)
between f and g is the fraction of points in F™ on which they disagree. If A(f,g) < & then f is
said to be d-close to g.

Theorem 10 [8] Let I be GF(2) and f be a function from F™ to F such that when we pick y, z
randomly from F™,

Probf(y)+ f(z) = fly+2)]21-6
where § < 1/6. Then f is 35-close to some linear function.

The theorem gives a linearity test that needs to evaluate f at only a constant number of points
in I, where the constant depends on §. If f passes the test then the function is guaranteed to be
30-close to some linear function.

Another theorem from [8] that we use is the one about self-correction. We state the result.

Theorem 11 [8] Suppose f, f : {0,1}" — {0,1}, f is a linear function that is 5-close to f. Then
Procgonnlf(e+ 1) = f(r) # f(2)] < 26

Given a function f guaranteed to be d-close to a linear function f, and an z in the domain of
[, let us denote by SC-f(z) the value f(z+r) — f(r), for a randomly chosen r in the domain of f.

Then the above theorem guarantees that with high probability SC-f(z) is equal to f(z).
We now state and prove the result of this section.

Theorem 12 Parity has a randomized AC® checker of constant query complezity.

Proof. Let P be a purported program for computing Parity. We first describe the checker.

The randomized checker for parity.

Test 0. The checker first checks that the function computed by the program is d-close to a linear
function (for a suitably small §, say, 0.01). From Theorem 10 the checker can do this with a
constant number of queries to P. For a constant number of random point pairs 7, 2 it checks
it P(7) + P(2) = P(7+ 2). If for some pair this fails the checker rejects P as incorrect.

Test 1. The aim of this test is to see if the linear function to which P is é-close is the zero function
and reject if so. The checker builds the fixed vector p’ with p; = 1 and all other coordinates
set to 0. Clearly this can be done in ACY. It then computes the value SC-P(p). If it is zero
it rejects, since the parity of p'is 1.

Test 2. The checker generates a random element z; of the vector subspace >;z; = 0. It then computes
the value SC-P(zy1). If this is 1 it rejects, since the parity of z; is even.

Notice that generating a random element of the subspace ¥;z; = 0 can be done in random
ACP: The vector subspace 3;z; = 0 has a basis consisting of the following n — 1 vectors,
by = {1,1,0,...,0},b = {0,1,1,0,...,0},...,b,—1 = {0,0,...,1,1} To generate a random
element of this subspace, the checker picks up a random vector & in {0,1}"~! and computes
3k;b;. Although this involves a parity computation for each coordinate, notice that for each
coordinate there are at most two non-zero terms (in known positions) in the parity sum to
be computed. Thus, such a parity computation can be easily done in ACO.

Test 3. The checker computes the value SC-P(z). If this is the same as the value of P(z) it accepts,
otherwise it rejects.

We now prove the correctness of the checker.

Claim. For an input z, the above checker makes a constant number of queries to P and ac-
cepts with probability 1 if P correctly computes Parity, and rejects with probability 1/4 if P(Z) #
Parity(Z).

Proof of Claim. Clearly the checker only makes a constant number of queries which can be generated
in ACOTt is also clear that the checker accepts with probability 1 if P computes parity exactly. In
this case, since all the queries made to P are parity queries, they are answered correctly by P.

Now assume that P(z) # Parity(z). We denote by z the concatenation of all random bits that
the checker accesses. Let I’ denote the event that the checker fails, and let I denote the event
that the checker passes the linearity Test 0 step. We need to determine Prob,[F']. However, since
F C L, notice that Prob,[F] < Prob,[F | L] and so it is enough to bound the right hand side of
this expression.

Conditioned on event L there is a unique linear function f that is é-close to the program P.

Prob,[F | L] = Prob,[F & f =0 L]+ Prob,[F & f #0 | L]

For the first term to contribute, Test 1 must fail. From Theorem 11 this happens with probability
at most 24.
We rewrite the second term as

Prob,[F" & f # 0 | L] = Prob,[F & f # Parity & f # 0| L]+ Prob,[F & f = Parity & f # 0 | L]

and bound the two terms separately.
Note that if f # Parity, then for a random zy, in Test 2, Prob,,[f(z1) =0& f# 0| L] = 1/2.
It follows from Theorem 11 and this observation that

Prob,[I" & f # Parity & f#0 | L] < 1/2+ 26
Finally from Theorem 11 it is clear that
Prob.[F" & f = Parity & f #0 | L] = 26

So the overall probability of failure is at most 1/2 + 85. By choice of & this probability is at
most 3/4 as claimed. O

This completes the proof of the theorem.

5 A constant query randomized AC’ checker for CVP

In this section we design a constant query AC® checker for the CVP problem (also for FVP). We
make use of the main ideas from the PCP(n* 1) protocol for 3-SAT from [4]. A crucial point
of departure from [4] is when the checker needs to compute the parity of a multiset of input

variables and products of input variables. To do this we use as subroutine the checker described in
Theorem 12. Another point to remember is that all queries have to be valid instances of CVP (or
FVP as the case may be), and they need to be generated in ACY.

The starting point that leads us to applying techniques from the proof of the PCP theo-
rem is the deterministic ACY checker for CVP described in Theorem 4. Recall that given a
CVP instance (C,g,21,...,2,) the deterministic AC® checker queries the purported program for
(C,gi,x1,...,x,), for each gate g; in the circuit C'. Then it checks that the query answers of the
program are locally consistent for each gate of the circuit.

Let y1, 92, ..., ym denote the list of query answers by P for the queries (C, g, 21,...,2,), 1 <
¢t < m, where C' has m gates. We can think of the unique correct vector yi,y2,...,ym as a
satisfying assignment to the collection of all the gate conditions (each of which is essentially a
3-literal formula). The idea is to avoid querying explicitly for y;’s. Instead, using randomness the
checker will make fewer queries for other inputs that encode the y;’s in some form. More precisely,
we need to encode the vector yq, yg, ..., ¥n in such a way that making a constant number of queries
to the program (which is similar to a constant number of probes into a proof by a PCP protocol)
can convince the ACY checker with high probability that this underlying vector yi,yo,..., Y is
indeed consistent with all the gate conditions.

Before giving the formal details we recall another lemma from [4].

Lemma 13 [4] Let @ and b be vectors in GF(2)". Suppose b # @ @ @, then
Prob[f(7 @ @)7 # #b3) > 1/4
where 7 and § are randomly chosen from GF(2)™.

Theorem 14 The P-complete problem CVP (likewise the NC!-complete problem FVP) has a ran-
domized AC? checker of constant query complezity.

Proof. We describe the checker only for the P-complete problem CVP (the checker for FVP is
similar). Let P be a purported program for CVP and let (C,g,21,...,2,) be an input instance.
Assume C has m gates. Let gi,...,gn denote the set of gates of C' and w.l.o.g. assume g, =
g. The naive deterministic checker described in Theorem 4 queries P for (C, g, 21,...,2,), for
each gate g; in the circuit C'. It then performs a local consistency check to test the validity of
(Cygm,x1,...,2,). The idea is to use randomness and avoid querying the program explicitly for
the value y; := (C, ¢i, 21, ..., 2,) at each gate.

Let p; denote a GF(2) polynomial corresponding to the ith gate of the circuit C', where p; is a
polynomial in at most three variables (these three variables are from {zy, ..., 2, }U{y1,y2, .., Ym})-
We define p; such that it is zero iff the corresponding variables are consistent with the gate type of
g;- More precisely, let ¢ be an AND gate with output 2z and inputs y and z then the polynomial
corresponding to ¢ is + yz. Similarly, for an OR gate with output z and inputs y and z the
polynomial is z 4+ y 4+ z 4+ yz, and for a NOT gate with output z and input y it is z + y + 1.

The checker

The checker first queries the program on the given input (C,g¢,z1,...,2,) and sets y, =
P(C,g,z1,...,2,). To convince itself that C evaluates to y,, on the input ¥ = zy,...,z,, as
in [4], it suffices for the ACY checker to verify that the following linear function

f(fa @77 Z) = Z?Llpi(mzi

in the new variables z;,1 < i < m is the zero linear function.!

Notice that if this function is nonzero then the linear function f(Z, 7, Z) evaluated at a randomly
chosen z := (z1,...,2m) would be nonzero with probability 1/2. If it were the zero function then
it must be zero with probability 1.

Recall that the checker must compute this value by asking a series of CVP queries that are
generated in ACC. Towards this end, we rewrite the above expression as follows:

[(#,4,2) =p(Z,2) + q(7,2) + (7, ?)

where,

p(#,2) = XL 200 X xl—l_x?:l 1k IXzy'r z;
q(7,2) = XjL i+ yi

(7, 2) = (i j)e[m]x[m]Cij * YiV;

In the above expression the coefficient x* is 1 iff input 2; appears in the polynomial py and if
zr 18 1. Likewise the coefficient ij, is 1 iff z;z; appears in the polynomial py and 2 is 1. From
this it is easy to see that an nm + n®*m length Boolean vector representing each term in p can be
obtained in ACP.

Notice that the coefficients ¢; and ¢;; in ¢ and r depend upon the gates g; and g¢;, the constant
number of gates they feed into, the z values corresponding to these gates and a constant number
of input bits. So computing each of these coefficients involves computing the parity of a constant
number of Boolean variables. This can also be done in ACY.2

We describe below how the checker computes the values p, ¢, and 7 with high confidence. To

complete the checking the checker evaluates p+ ¢+ 7 and accepts P(z) as correct only if this sum
is zero.
Computing p Note that p is the parity of nm + n?m Boolean variables. As noted above the value
of these variables can be obtained in AC® given # and Z. The checker constructs a description of
a canonical circuit for the parity of nm + n’m variables, and queries the program on this input.
Next the ACY checker checks the answer of P using the checker of Theorem 12 as subroutine. If
the answer is wrong then with high probability the subroutine checker will reject the program as
incorrect. Thus the ACY checker computes a value p which is p with high (constant) probability.
In the process only a constant number of queries are made to P.

Notice that, unlike in [4], we have to deal with both yi,...,y, as well as zy, 29, ..., 2z, which
occur in the polynomials p;. The crucial difference between the z;’s and y;’s is that z;,24,...,2,
are bound to the input values. Thus, computing the value of p is a parity computation which the
checker requires to get done. As explained above, this is done using the checker of Theorem 12 as
subroutine.

Computing ¢ and r To compute ¢ and r the checker goes through the following steps.

1. It builds a circuit C; with new inputs ry,rg,...,r, that computes the function X7, y;r;.
Recall that y; is the output of the ith gate of the input circuit C on input zy,z9,...,2,.
Clearly, the encoding of Cy can be generated by an ACY circuit from the encoding of C.

! Although p; is a function of both @ and § we write p; as a function of only § for readability.
21t is easier to first conceive of a constant time CRCW PRAM algorithm for this task.

2. Similar to the above step, the checker builds a circuit C'y with new inputs r;;,1 < 4,7 < m
that computes 272, 37 y;y;r;. It is clear that an encoding for €z can also be generated by
an ACP circuit.

3. The checker verifies that the program’s behavior on C is a function that is é-close to a linear
function in the variables r;, and the program’s behavior on Y is a function that is d-close to
a linear function in the variables r;;. This can be done as described in the previous section
using Theorem 10. If either of the tests fails, it rejects the program as being incorrect.

4. Like in the PCP protocol the checker now performs a consistency check. Let 3%, X7 b;jry;
be the linear function to which Cy is d-close. The checker does a constant query test, and
ensures with high probability that the matrix b;; is the tensor product of i with itself.

To do this the checker employs the test given by Lemma 13. For two randomly random
vectors rq, ry of length m it verifies that

SC—Cl(T‘l) * SC—Cl (7‘2) = SC—CQ (7'1 @ 7‘2)

Note that the tensor product can be computed in AC® and the checker needs to ask 6 queries
of P.

Having performed the linearity and consistency tests the checker evaluates ¢ and r by self-
correction. Let ¢ denote the m-vector ¢y, ¢y, ..., ¢, and let d denote the m X m-vector consisting
of ¢;;,1 <i,j < m. The checker sets § to SC-C(¢) and 7 to SC-Cs(d).

Correctness.

Firstly, if P is a correct program for CVP then we can easily see that the checker will pass P as
correct with probability 1.
Now suppose P is incorrect for the input instance (C, g, zy,...,2,) and let P(C,g,21,...,2,) =

Let I be the event that the checker fails to detect the program as incorrect. Let 1" be the
event that the checker passes the linearity and consistency tests done in the course of computing ¢
and r. Let us denote by w the concatenation of all random strings the checker needs. We need to
compute Prob,[F]. However, notice that since I/ C T" it holds that Prob,[F] < Prob,[F | T] and
so it suffices to bound the right-hand side.

Since we are conditioning on the event T we may assume that C; is é-close to a unique linear
function of the r;’s, X, y;r;, wherein y,,, = b. Likewise C'y computes a function d-close to the linear
function X; j)e(m)x[m]¥i¥; * ¢ij- Let § = (Y1, ..., Ym) be this unique linear function.

Since P is incorrect on input z, for this vector ¢, the function®

f(9,%2) = il pi(§)
is a nonzero linear function of the z;’s. Hence,
. 1
Probu[f(5,2) = 1|71 = 5

Now,

*Notice that in the sequel we drop # from f(&,9,) and write f(§, Z) for readability.

10

Prob,[F | T] =Prob,[F & f(3,2) =1|T]+ Prob,[F & f(y,2) =0 | T]
< Prob,[F & f(9,2) =1|T]+1/2
= Proby[f(5,2) = 1| 7]+ Proby[F | f(5,2) =1 & T] 4 1/2
=1/2%Proby,[F | f(§,2)=1& T]+1/2

Since f(7,2) = p(Z,2) + q(9, 2) + r(9, Z) and F is the event that p+ ¢+ 7 = 0, we observe

Prob,[F | f(§,2) =1 & T]
= Proby[p £ p(F,2) | T] + Proby[d # a(i,2) | T1+ Probu[s # r(3,2) | T]

From Theorem 12 the first term is bounded by 3/4. Given the event T', each of the other two
terms is bounded by 24. So we get,

Proby,[I | T] < 1/2 % (3/4+ 48) +1/2

This is smaller than 15/16 if we choose § smaller than 1/32. By usual amplification techniques we
can make the error probability an arbitrarily small constant by repeating the checker a constant
number of times. This completes the proof. [|

Finally, we note that using similar techniques we can also show that there are encodings of
NL-complete problems that have constant query randomized AC® checkers. Recall that the circuit
value problem for skew circuits (i.e. a circuit in which at least one of the inputs of each AND gate
is a circuit input) is NL-complete. However, if we follow the proof of the above theorem for skew
circuits, notice that the construction of circuit Cy will not preserve the skew property. However,
we can get around this problem by considering circuits which have a formula on top whose inputs
are the outputs of skew circuits. Notice that, by the closure properties of NL, the circuit value
problem for such circuits is also NL-computable (and hence NIL-complete). We can encode these
new circuits by putting an additional tag bit on each gate label that indicates if the gate is part of
the formula on top or not. The restriction on the circuit is now as follows: Tagged gates all have
fanout 1, the untagged AND gates respect the skewness property, and no tagged gate feeds into an
untagged gate. These constraints are easily checked in ACY. The proof of Theorem 14 will now go
through for this NL-complete problem. We thus have our final result.

Theorem 15 There is an NL-complete circuit value problem for that has a randomized ACY checker
of constant query complexity.

Acknowledgments. TFor interesting discussions on AC? lower bounds and the results in Section 3
we thank Peter Bro Miltersen, Jaikumar Radhakrishnan, and S. Venkatesh.
References

[1] L. A. ApLEMAN, H. Huanag, K. KompPELLA, Efficient checkers for number-theoretic compu-
tations, Information and Computation, 121, 93-102, 1995.

[2] M. Ayrtar, ¥} formulas on finite structures, Annals of Pure and Applied Logic, 24, (1983)
1-48.

11

[3] V. ArvIND, Constructivizing membership proofs in complexity classes, International Journal
of Foundations of Computer Science, 8(4) 433-442, 1997, World Scientific.

[4] S. ArRorA, C. LunD, R. MoTwaNI, M. SUDAN, AND M. SZEGEDY, Proof Verification and the
intractability of approximation problems. In Proceedings 33rd Symposium on the Foundations
of Computer Science, 14-23, IEEE Computer Society Press, 1992.

[5] J. BALCAZAR, J. DiaZ, AND J. GABARRO, Structural Complexity II, Springer—Verlag, 1990.

[6] J. BALCAZAR, J. Dfaz, AND J. GABARRO, Structural Complexity I, Springer—Verlag, second
edition, 1995.

[7] M. BLuMm AND S. KANNAN, Designing programs that check their work, Journal of the ACM,
43:269-291, 1995.

[8] M. BLum, M. M. LuBY, aND R. RUBINFELD, Self-testing/correcting with applications to
numerical problems, J. Comput. Syst. Sciences, 47:73-83, 1993.

[9] S. GoLDpwaSSER, S. Micarl AND C. RACKOFF, The knowledge complexity of interactive
proof systems. SIAM Journal of Computing, 18(1):186-208, 1989.

[10] J. HasTaD, Computational limitations for small depth circuits. M.1.T. press, Cambridge, MA,
1986.

[11] U. ScHONING, Robust algorithms: a different approach to oracles, THEORETICAL COMPUTER
SCIENCE, 40: 57-66, 1985.

12

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftp://ftp.eccc.uni-trier.de/publ/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

